1
|
Jiang X. An overview of the Plasmodium falciparum hexose transporter and its therapeutic interventions. Proteins 2022; 90:1766-1778. [PMID: 35445447 PMCID: PMC9790349 DOI: 10.1002/prot.26351] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/22/2022] [Accepted: 03/30/2022] [Indexed: 12/30/2022]
Abstract
Despite intense elimination efforts, human malaria, caused by the infection of five Plasmodium species, remains the deadliest parasitic disease in the world. Even worse, with the emergence and spreading of the first-line drug-resistant Plasmodium parasites, therapeutic interventions based on novel plasmodial drug targets are more necessary than ever. Given that the blood-stage parasites primarily rely on glycolysis for their energy supply, blocking glucose uptake, the rate-limiting step of ATP generation, was considered a promising approach to kill these parasites. To achieve this goal, characterization of the plasmodial hexose transporter and development of selective inhibitors have been pursued for decades. Here, we review the identification and characterization of the Plasmodium falciparum hexose transporter (PfHT1) and summarize current advances in its inhibitor development.
Collapse
Affiliation(s)
- Xin Jiang
- School of Biotechnology and Biomolecular Sciencesthe University of New South WalesSydneyNew South Wales
| |
Collapse
|
2
|
Wei M, Lu L, Sui W, Liu Y, Shi X, Lv L. Inhibition of GLUTs by WZB117 mediates apoptosis in blood-stage Plasmodium parasites by breaking redox balance. Biochem Biophys Res Commun 2018; 503:1154-1159. [DOI: 10.1016/j.bbrc.2018.06.134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 06/24/2018] [Indexed: 10/28/2022]
|
3
|
Sayers CP, Mollard V, Buchanan HD, McFadden GI, Goodman CD. A genetic screen in rodent malaria parasites identifies five new apicoplast putative membrane transporters, one of which is essential in human malaria parasites. Cell Microbiol 2017; 20. [DOI: 10.1111/cmi.12789] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/04/2017] [Accepted: 09/07/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Claire P. Sayers
- School of BioSciences University of Melbourne Parkville Victoria Australia
| | - Vanessa Mollard
- School of BioSciences University of Melbourne Parkville Victoria Australia
| | - Hayley D. Buchanan
- School of BioSciences University of Melbourne Parkville Victoria Australia
| | | | | |
Collapse
|
4
|
A lactate and formate transporter in the intraerythrocytic malaria parasite, Plasmodium falciparum. Nat Commun 2015; 6:6721. [PMID: 25823844 DOI: 10.1038/ncomms7721] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 02/23/2015] [Indexed: 12/24/2022] Open
Abstract
The intraerythrocytic malaria parasite relies primarily on glycolysis to fuel its rapid growth and reproduction. The major byproduct of this metabolism, lactic acid, is extruded into the external medium. In this study, we show that the human malaria parasite Plasmodium falciparum expresses at its surface a member of the microbial formate-nitrite transporter family (PfFNT), which, when expressed in Xenopus laevis oocytes, transports both formate and lactate. The transport characteristics of PfFNT in oocytes (pH-dependence, inhibitor-sensitivity and kinetics) are similar to those of the transport of lactate and formate across the plasma membrane of mature asexual-stage P. falciparum trophozoites, consistent with PfFNT playing a major role in the efflux of lactate and hence in the energy metabolism of the intraerythrocytic parasite.
Collapse
|
5
|
Penkler G, du Toit F, Adams W, Rautenbach M, Palm DC, van Niekerk DD, Snoep JL. Construction and validation of a detailed kinetic model of glycolysis in Plasmodium falciparum. FEBS J 2015; 282:1481-511. [PMID: 25693925 DOI: 10.1111/febs.13237] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 02/07/2015] [Accepted: 02/13/2015] [Indexed: 11/26/2022]
Abstract
UNLABELLED The enzymes in the Embden-Meyerhof-Parnas pathway of Plasmodium falciparum trophozoites were kinetically characterized and their integrated activities analyzed in a mathematical model. For validation of the model, we compared model predictions for steady-state fluxes and metabolite concentrations of the hexose phosphates with experimental values for intact parasites. The model, which is completely based on kinetic parameters that were measured for the individual enzymes, gives an accurate prediction of the steady-state fluxes and intermediate concentrations. This is the first detailed kinetic model for glucose metabolism in P. falciparum, one of the most prolific malaria-causing protozoa, and the high predictive power of the model makes it a strong tool for future drug target identification studies. The modelling workflow is transparent and reproducible, and completely documented in the SEEK platform, where all experimental data and model files are available for download. DATABASE The mathematical models described in the present study have been submitted to the JWS Online Cellular Systems Modelling Database (http://jjj.bio.vu.nl/database/penkler). The investigation and complete experimental data set is available on SEEK (10.15490/seek.1. INVESTIGATION 56).
Collapse
Affiliation(s)
- Gerald Penkler
- Department of Biochemistry, Stellenbosch University, Matieland, South Africa; Molecular Cell Physiology, Vrije Universiteit Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
6
|
Dean P, Major P, Nakjang S, Hirt RP, Embley TM. Transport proteins of parasitic protists and their role in nutrient salvage. FRONTIERS IN PLANT SCIENCE 2014; 5:153. [PMID: 24808897 PMCID: PMC4010794 DOI: 10.3389/fpls.2014.00153] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 04/01/2014] [Indexed: 05/02/2023]
Abstract
The loss of key biosynthetic pathways is a common feature of important parasitic protists, making them heavily dependent on scavenging nutrients from their hosts. This is often mediated by specialized transporter proteins that ensure the nutritional requirements of the parasite are met. Over the past decade, the completion of several parasite genome projects has facilitated the identification of parasite transporter proteins. This has been complemented by functional characterization of individual transporters along with investigations into their importance for parasite survival. In this review, we summarize the current knowledge on transporters from parasitic protists and highlight commonalities and differences in the transporter repertoires of different parasitic species, with particular focus on characterized transporters that act at the host-pathogen interface.
Collapse
Affiliation(s)
- Paul Dean
- The Medical School, Institute for Cell and Molecular Biosciences, Newcastle UniversityNewcastle upon Tyne, UK
| | | | | | | | - T. Martin Embley
- The Medical School, Institute for Cell and Molecular Biosciences, Newcastle UniversityNewcastle upon Tyne, UK
| |
Collapse
|
7
|
Abstract
As it grows and replicates within the erythrocytes of its host the malaria parasite takes up nutrients from the extracellular medium, exports metabolites and maintains a tight control over its internal ionic composition. These functions are achieved via membrane transport proteins, integral membrane proteins that mediate the passage of solutes across the various membranes that separate the biochemical machinery of the parasite from the extracellular environment. Proteins of this type play a key role in antimalarial drug resistance, as well as being candidate drug targets in their own right. This review provides an overview of recent work on the membrane transport biology of the malaria parasite-infected erythrocyte, encompassing both the parasite-induced changes in the membrane transport properties of the host erythrocyte and the cell physiology of the intracellular parasite itself.
Collapse
|
8
|
Abstract
Even at a time when HIV/AIDS and immunosuppressive therapy have increased the number of individuals living with significant immunocompromise, diabetes mellitus (DM) remains a major comorbid disorder for several rare but potentially lethal infections, including rhino-orbital-cerebral mucormycosis and malignant external otitis. DM is also a commonly associated condition in patients with nontropical pyomyositis, pyogenic spinal infections, Listeria meningitis, and blastomycosis. As West Nile virus spread to and across North America over a decade ago, DM appeared in many series as a risk factor for death or neuroinvasive disease. More recently, in several large international population-based studies, DM was identified as a risk factor for herpes zoster. The relationships among infection, DM, and the nervous system are multidirectional. Viral infections have been implicated in the pathogenesis of type 1 and type 2 DM, while parasitic infections have been hypothesized to protect against autoimmune disorders, including type 1 DM. DM-related neurologic disease can predispose to systemic infection - polyneuropathy is the predominant risk factor for diabetic foot infection. Because prognosis for many neurologic infections depends on timely institution of antimicrobial and sometimes surgical therapy, neurologists caring for diabetic patients should be familiar with the clinical features of the neuroinfectious syndromes associated with DM.
Collapse
Affiliation(s)
- Cheryl A Jay
- Department of Neurology, University of California San Francisco and Neurology Service, San Francisco General Hospital, San Francisco, CA, USA.
| | - Marylou V Solbrig
- Departments of Internal Medicine (Neurology) and Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
9
|
Tjhin ET, Staines HM, van Schalkwyk DA, Krishna S, Saliba KJ. Studies with the Plasmodium falciparum hexokinase reveal that PfHT limits the rate of glucose entry into glycolysis. FEBS Lett 2013; 587:3182-7. [PMID: 23954294 DOI: 10.1016/j.febslet.2013.07.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 07/25/2013] [Accepted: 07/31/2013] [Indexed: 12/16/2022]
Abstract
To characterise plasmodial glycolysis, we generated two transgenic Plasmodium falciparum lines, one expressing P. falciparum hexokinase (PfHK) tagged with GFP (3D7-PfHK(GFP)) and another overexpressing native PfHK (3D7-PfHK(+)). Contrary to previous reports, we propose that PfHK is cytosolic. The glucose analogue, 2-deoxy-d-glucose (2-DG) was nearly 2-fold less toxic to 3D7-PfHK(+) compared with control parasites, supporting PfHK as a potential drug target. Although PfHK activity was higher in 3D7-PfHK(+), they accumulated phospho-[(14)C]2-DG at the same rate as control parasites. Transgenic parasites overexpressing the parasite's glucose transporter (PfHT) accumulated phospho-[(14)C]2-DG at a higher rate, consistent with glucose transport limiting glucose entry into glycolysis.
Collapse
Affiliation(s)
- Erick T Tjhin
- Research School of Biology, College of Medicine, Biology and Environment, The Australian National University, Canberra, ACT 0200, Australia
| | | | | | | | | |
Collapse
|
10
|
van Schalkwyk DA, Saliba KJ, Biagini GA, Bray PG, Kirk K. Loss of pH control in Plasmodium falciparum parasites subjected to oxidative stress. PLoS One 2013; 8:e58933. [PMID: 23536836 PMCID: PMC3594203 DOI: 10.1371/journal.pone.0058933] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 02/08/2013] [Indexed: 11/29/2022] Open
Abstract
The intraerythrocytic malaria parasite is susceptible to oxidative stress and this may play a role in the mechanism of action of some antimalarial agents. Here we show that exposure of the intraerythrocytic malaria parasite to the oxidising agent hydrogen peroxide results in a fall in the intracellular ATP level and inhibition of the parasite's V-type H+-ATPase, causing a loss of pH control in both the parasite cytosol and the internal digestive vacuole. In contrast to the V-type H+-ATPase, the parasite's digestive vacuole H+-pyrophosphatase is insensitive to hydrogen peroxide-induced oxidative stress. This work provides insights into the effects of oxidative stress on the intraerythrocytic parasite, as well as providing an alternative possible explanation for a previous report that light-induced oxidative stress causes selective lysis of the parasite's digestive vacuole.
Collapse
Affiliation(s)
- Donelly A van Schalkwyk
- Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | | | | | | | | |
Collapse
|
11
|
On the evolution of hexose transporters in kinetoplastid Protozoans [corrected]. PLoS One 2012; 7:e36303. [PMID: 22567148 PMCID: PMC3342237 DOI: 10.1371/journal.pone.0036303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 04/02/2012] [Indexed: 11/24/2022] Open
Abstract
Glucose, an almost universally used energy and carbon source, is processed through several well-known metabolic pathways, primarily glycolysis. Glucose uptake is considered to be the first step in glycolysis. In kinetoplastids, a protozoan group that includes relevant human pathogens, the importance of glucose uptake in different phases of the life cycles is well established, and hexose transporters have been proposed as targets for therapeutic drugs. However, little is known about the evolutionary history of these hexose transporters. Hexose transporters contain an intracellular N- and C- termini, and 12 transmembrane spans connected by alternate intracellular and extracellular loops. In the present work we tested the hypothesis that the evolutionary rate of the transmembrane span is different from that of the whole sequence and that it is possible to define evolutionary units inside the sequence. The phylogeny of whole molecules was compared to that of their transmembrane spans and the loops connecting the transmembrane spans. We show that the evolutionary units in these proteins primarily consist of clustered rather than individual transmembrane spans. These analyses demonstrate that there are evolutionary constraints on the organization of these proteins; more specifically, the order of the transmembrane spans along the protein is highly conserved. Finally, we defined a signature sequence for the identification of kinetoplastid hexose transporters.
Collapse
|
12
|
van Schalkwyk DA, Priebe W, Saliba KJ. The inhibitory effect of 2-halo derivatives of D-glucose on glycolysis and on the proliferation of the human malaria parasite Plasmodium falciparum. J Pharmacol Exp Ther 2008; 327:511-7. [PMID: 18713952 DOI: 10.1124/jpet.108.141929] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The intraerythrocytic stage of the human malaria parasite Plasmodium falciparum relies on glycolysis for ATP generation, and because it has no energy stores, a constant supply of glucose is necessary for the parasite to grow and multiply. The 2-substituted glucose analogs 2-deoxy-D-glucose (2-DG) and 2-fluoro-2-deoxy-D-glucose (2-FG) have been previously shown to inhibit the in vitro growth of P. falciparum and have been suggested to do so by inhibiting glycosylation in the parasite. In this study, we have investigated the antiplasmodial mechanism of action of 2-DG and 2-FG and compared it with that of other 2-substituted-glucose analogs. The compounds tested inhibited parasite growth to varying degrees, with 2-FG being the most effective. The antiplasmodial activity of some, but not all, of the analogs could be altered by varying the glucose concentration in the culture medium, increasing the antiplasmodial activity of the analogs as the glucose concentration is reduced. A trend was observed between the antiplasmodial activity of these analogs and their ability to inhibit glucose accumulation, glucose phosphorylation by hexokinase, and cytosolic pH regulation within the intraerythrocytic stage of the parasite. Our data are consistent with inhibition of glycolysis being a primary mechanism by which 2-DG and 2-FG inhibit parasite growth, and they validate the early steps in glycolysis as viable drug targets.
Collapse
Affiliation(s)
- Donelly A van Schalkwyk
- School of Biochemistry and Molecular Biology, The Australian National University, Canberra, ACT, Australia
| | | | | |
Collapse
|
13
|
Derbyshire ET, Franssen FJ, de Vries E, Morin C, Woodrow CJ, Krishna S, Staines HM. Identification, expression and characterisation of a Babesia bovis hexose transporter. Mol Biochem Parasitol 2008; 161:124-9. [PMID: 18638508 PMCID: PMC2688680 DOI: 10.1016/j.molbiopara.2008.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 06/18/2008] [Accepted: 06/19/2008] [Indexed: 11/21/2022]
Abstract
Babesia are tick-transmitted haemoprotozoan parasites that infect cattle, with an estimated 500 million at risk worldwide. Here, two predicted hexose transporters (BboHT1 and 2) have been identified within the Babesia bovis genome. BboHT1, having 40% and 47% amino acid sequence similarity compared with the human (GLUT1) and Plasmodium falciparum (PfHT) hexose transporters, respectively, is the only one that could be characterised functionally after expression in Xenopus laevis oocytes. Radiotracer studies on BboHT1 showed that it is a saturable, Na(+)-independent, stereo-specific hexose transporter, with a K(m) value for glucose of 0.84+/-0.54 mM (mean+/-SEM). Using D-glucose analogues, hydroxyl positions at O-4 and O-6 have been identified as important for ligand binding to BboHT1. D-glucose transport was inhibited maximally by cytochalasin B (50 microM). A long-chain O-3 hexose derivative (compound 3361) that selectively inhibits PfHT also inhibited relatively potently BboHT1, with an apparent K(i) value of 4.1+/-0.9 microM (mean+/-SEM). Compound 3361 did not inhibit B. bovis proliferation in in vitro growth assays but inhibited invasion of glucose-depleted bovine erythrocytes. Taken together with results of inhibition studies with cytochalasin B and beta-glucogallin, these data provide new insights into glucose metabolism of erythrocytic-stage Babesia infections.
Collapse
Affiliation(s)
- Elvira T. Derbyshire
- Centre for Infection, Division of Cellular and Molecular Medicine, St. George's, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Frits J. Franssen
- Virology Division, Department of Infectious Diseases and Immunology, Utrecht University, P.O. Box 80.165, NL-3508 TD Utrecht, The Netherlands
| | - Erik de Vries
- Virology Division, Department of Infectious Diseases and Immunology, Utrecht University, P.O. Box 80.165, NL-3508 TD Utrecht, The Netherlands
| | - Christophe Morin
- Département de Chimie Moléculaire (UMR 5250, ICMG FR-2607, CNRS), 301 rue de la chimie, BP-53, 38041 Grenoble Cedex 9, France
| | - Charles J. Woodrow
- Centre for Infection, Division of Cellular and Molecular Medicine, St. George's, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Sanjeev Krishna
- Centre for Infection, Division of Cellular and Molecular Medicine, St. George's, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Henry M. Staines
- Centre for Infection, Division of Cellular and Molecular Medicine, St. George's, University of London, Cranmer Terrace, London SW17 0RE, UK
| |
Collapse
|
14
|
Patel AP, Staines HM, Krishna S. New antimalarial targets: the example of glucose transport. Travel Med Infect Dis 2008; 6:58-66. [PMID: 18342277 DOI: 10.1016/j.tmaid.2008.01.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Accepted: 01/10/2008] [Indexed: 11/19/2022]
Abstract
In order for a novel drug target to attract attention it must be shown to be essential for parasite survival. In addition, it is desirable that a novel target provides some molecular and functional basis for the development of selective inhibitors. In this respect the pathway for transport of glucose to the parasite in Plasmodium falciparum has attracted increasing interest as a target for antimalarial chemotherapy. In particular, the plasmodial hexose transporter, PfHT, known to mediate transport of this essential substrate to the parasite has been a promising candidate for development of inhibitors. The article summarises the steps involved in development of this parasite protein as a drug target. Details of PfHT identification, functional characterisation and its validation as a drug target by using a selective inhibitor are discussed. The potential use of a robust system to screen libraries of compounds in a high-throughput format, in pursuit of an inhibitor of PfHT is also described. In conclusion PfHT represents one example of a rational approach in the drug discovery process to structure-base design of drugs.
Collapse
Affiliation(s)
- Asha Parbhu Patel
- Centre for Infection, Division of Cellular and Molecular Medicine, St. George's, University of London, Cranmer Terrace, London SW17 0RE, UK.
| | | | | |
Collapse
|
15
|
Joët T, Morin C, Fischbarg J, Louw AI, Eckstein-Ludwig U, Woodrow C, Krishna S. Why is the Plasmodium falciparum hexose transporter a promising new drug target? Expert Opin Ther Targets 2005; 7:593-602. [PMID: 14498822 DOI: 10.1517/14728222.7.5.593] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Chemotherapy of malaria parasites is limited by established drug resistance and lack of novel treatment options. Intraerythrocytic stages of Plasmodium falciparum, the causative agent of severe malaria, are wholly dependent upon host glucose for energy. A facilitative hexose transporter (PfHT), encoded by a single-copy gene, mediates glucose uptake and is therefore an attractive potential target. The authors first established heterologous expression in Xenopus laevis to allow functional characterisation of PfHT. They then used this expression system to compare the interaction of substrates with PfHT and mammalian Gluts (hexose transporters) and identified important differences between host and parasite transporters. Certain Omethyl derivatives of glucose proved to be particularly useful discriminators between mammalian transporters and PfHT. The authors exploited this selectivity and synthesised an O-3 hexose derivative that potently inhibits PfHT expressed in oocytes. This O-3 derivative (compound 3361) also kills cultured P. falciparum with comparable potency. Compound 3361 acts with reasonable specificity against PfHT orthologues encoded by other parasites such as Plasmodium vivax, Plasmodium yoelii and Plasmodium knowlesi. Multiplication of Plasmodium berghei in a mouse model is also significantly impeded by this compound. These findings validate PfHT as a novel target.
Collapse
Affiliation(s)
- T Joët
- Department of Cellular and Molecular Medicine, Infectious Diseases, St George's Hospital Medical School, Cranmer Terrace, London, SW17 ORE, UK
| | | | | | | | | | | | | |
Collapse
|
16
|
Huber SM, Duranton C, Lang F. Patch-clamp analysis of the "new permeability pathways" in malaria-infected erythrocytes. INTERNATIONAL REVIEW OF CYTOLOGY 2005; 246:59-134. [PMID: 16164967 DOI: 10.1016/s0074-7696(05)46003-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The intraerythrocytic amplification of the malaria parasite Plasmodium falciparum induces new pathways of solute permeability in the host cell's membrane. These pathways play a pivotal role in parasite development by supplying the parasite with nutrients, disposing of the parasite's metabolic waste and organic osmolytes, and adapting the host's electrolyte composition to the parasite's needs. The "new permeability pathways" allow the fast electrogenic diffusion of ions and thus can be analyzed by patch-clamp single-channel or whole-cell recording. By employing these techniques, several ion-channel types with different electrophysiological profiles have been identified in P. falciparum-infected erythrocytes; they have also been identified in noninfected cells. This review discusses a possible contribution of these channels to the new permeability pathways on the one hand and their supposed functions in noninfected erythrocytes on the other.
Collapse
Affiliation(s)
- Stephan M Huber
- Department of Physiology, Eberhard-Karls-University, D-72076 Tübingen, Germany
| | | | | |
Collapse
|
17
|
JOëT T, Chotivanich K, Silamut K, Patel A, Morin C, Krishna S. Analysis of Plasmodium vivax hexose transporters and effects of a parasitocidal inhibitor. Biochem J 2004; 381:905-9. [PMID: 15107012 PMCID: PMC1133902 DOI: 10.1042/bj20040433] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2004] [Revised: 04/19/2004] [Accepted: 04/23/2004] [Indexed: 11/17/2022]
Abstract
Plasmodium vivax is the second most common species of malaria parasite and causes up to 80 million episodes of infection each year. New drug targets are urgently needed because of emerging resistance to current treatments. To study new potential targets, we have functionally characterized two natural variants of the hexose transporter of P. vivax (PvHT) after heterologous expression in Xenopus oocytes. We show that PvHT transports both glucose and fructose. Differences in the affinity for fructose between the two variants of PvHT establishes that sequence variation is associated with phenotypic plasticity. Mutation of a single glutamine residue, Gln(167), predicted to lie in transmembrane helix 5, abolishes fructose transport by PvHT, although glucose uptake is preserved. In contrast, the exofacial site located between predicted helices 5 and 6 of PvHT is not an important determinant of substrate specificity, despite exhibiting sequence polymorphisms between hexose transporters of different Plasmodium spp. Indeed, replacement of twelve residues located within this region of PvHT by those found in the orthologous Plasmodium falciparum sequence (PfHT) is functionally silent with respect to affinity for hexoses. All PvHT variants are inhibited by compound 3361, a long-chain O-3 derivative of D-glucose effective against PfHT. Furthermore, compound 3361 kills short term cultures of P. vivax isolated from patients. These data provide unique insights into the function of hexose transporters of Plasmodium spp. as well as further evidence that they could be targeted by drugs.
Collapse
Affiliation(s)
- Thierry JOëT
- *Department of Cellular and Molecular Medicine – Infectious Diseases, St. George's Hospital Medical School, Cranmer Terrace, London SW17 ORE, U.K
| | - Kesinee Chotivanich
- †Wellcome Trust Research Laboratories, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok 10400, Thailand
| | - Kamolrat Silamut
- †Wellcome Trust Research Laboratories, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok 10400, Thailand
| | - Asha P. Patel
- *Department of Cellular and Molecular Medicine – Infectious Diseases, St. George's Hospital Medical School, Cranmer Terrace, London SW17 ORE, U.K
| | - Christophe Morin
- ‡Laboratoire d'Etudes Dynamiques et Structurales de la Sélectivité, UMR CNRS/UJF 5616, ICMGFR-2607, Université Joseph Fourier Grenoble 1, BP 53, 38041, Grenoble, Cedex 9, France
| | - Sanjeev Krishna
- *Department of Cellular and Molecular Medicine – Infectious Diseases, St. George's Hospital Medical School, Cranmer Terrace, London SW17 ORE, U.K
- To whom correspondence should be addressed (e-mail )
| |
Collapse
|
18
|
Saliba KJ, Krishna S, Kirk K. Inhibition of hexose transport and abrogation of pH homeostasis in the intraerythrocytic malaria parasite by an O-3-hexose derivative. FEBS Lett 2004; 570:93-6. [PMID: 15251446 DOI: 10.1016/j.febslet.2004.06.032] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2004] [Revised: 05/26/2004] [Accepted: 06/05/2004] [Indexed: 11/26/2022]
Abstract
An O-3-hexose derivative, shown previously to inhibit a malaria parasite hexose transporter expressed in Xenopus oocytes as well as to suppress the multiplication of parasites, both in vitro and in vivo, was shown here to block the uptake of hexose sugars into isolated blood-stage parasites. This led to a decline in ATP levels and the loss of intracellular pH control. The results are consistent with those obtained with the cloned transporter. They support the notion that the transporter mediates uptake of glucose into the intraerythrocytic parasite and provide further support for the view that it is a suitable antimalarial drug target.
Collapse
Affiliation(s)
- Kevin J Saliba
- School of Biochemistry and Molecular Biology, Faculty of Science, Australian National University, Canberra ACT 0200, Australia.
| | | | | |
Collapse
|
19
|
Lehane AM, Saliba KJ, Allen RJW, Kirk K. Choline uptake into the malaria parasite is energized by the membrane potential. Biochem Biophys Res Commun 2004; 320:311-7. [PMID: 15219828 DOI: 10.1016/j.bbrc.2004.05.164] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2004] [Indexed: 11/23/2022]
Abstract
The uptake by the intraerythrocytic malaria parasite of the phospholipid precursor choline was investigated in parasites 'isolated' from their host cells by saponin permeabilization of the erythrocyte membrane. Choline is transported across the parasite plasma membrane then phosphorylated and thereby trapped within the parasite. Choline influx was inhibited competitively by quinine. It increased with increasing extracellular pH, decreased on depolarization of the parasite plasma membrane with a protonophore or by increasing extracellular [K+], and increased in response to hyperpolarization of the membrane by decreasing extracellular [K+] or by addition of the K+ channel blocker Cs+. In ATP-depleted parasites choline was taken up but not phosphorylated. Under these conditions, imposition of an inwardly negative membrane potential using the K+ ionophore valinomycin resulted in the accumulation of choline to an intracellular concentration more than 15-fold higher than the extracellular concentration. Choline influx is therefore an electrogenic process, energized by the parasite plasma membrane potential.
Collapse
Affiliation(s)
- Adele M Lehane
- School of Biochemistry and Molecular Biology, Faculty of Science, Australian National University, Canberra, ACT 0200, Australia
| | | | | | | |
Collapse
|
20
|
Abstract
Throughout the intraerythrocytic phase of its lifecycle the malaria parasite is separated from the extracellular medium by the plasma membrane of its host erythrocyte and by the parasitophorous vacuole in which the parasite is enclosed. The intracellular parasite itself has, at its surface, a plasma membrane, and has a variety of membrane-bound organelles which carry out a range of biochemical functions. Each of the various membranes of the infected cell have in them proteins that facilitate the movement of molecules and ions from one side of the membrane to the other. These 'channels' and 'transporters' play a central role in the physiology of the parasitised cell. From a clinical viewpoint they are of interest both as potential targets in their own right, and as potential drug targeting routes capable of mediating the entry of cytotoxic drugs into the appropriate compartment of the infected cell. In this review both of these aspects are considered.
Collapse
Affiliation(s)
- Kiaran Kirk
- School of Biochemistry and Molecular Biology, Australian National University, Faculty of Science, 0200 ACT, Canberra, Australia.
| |
Collapse
|
21
|
Abstract
Despite substantial efforts at control over several decades, malaria is still a major global health problem as chemotherapy of malaria parasites is limited by established drug resistance and lack of novel treatment options. Intraerythrocytic stages of these parasites are wholly dependent upon host glucose for energy and malarial proteins involved in hexose permeation are therefore attractive new drug targets. For Plasmodium falciparum, the causative agent of severe malaria, a facilitative hexose transporter (PfHT), encoded by a single-copy gene mediates glucose uptake. We first established heterologous expression in Xenopus laevis to allow functional characterisation of PfHT. This review describes the value of using Xenopus oocytes in heterologous studies of P. falciparum-encoded proteins and summarises the properties of PfHT. Comparisons between Gluts (mammalian facilitative hexose transporters) and PfHT using this expression system have highlighted important mechanistic and structural differences between parasite and host proteins. Certain O-methyl derivatives of glucose proved particularly useful discriminators between mammalian transporters and PfHT. We exploited this selectivity and synthesised a long-chain O-3-hexose derivative (compound 3361) that potently inhibits PfHT expressed in oocytes and also kills P. falciparum when it is cultured in medium containing either glucose or fructose as a carbon source. To extend our observations to the second most important human malarial pathogen, we have cloned and expressed the Plasmodium vivax orthologue of PfHT, and demonstrate inhibition of glucose uptake by compound 3361. These findings validate malarial hexose transporters as a novel target. We now aim to design a new class of antimalarials by the discovery of highly specific inhibitors which could act with a broad spectrum of action on different Plasmodium spp. infections.
Collapse
Affiliation(s)
- Thierry Joët
- Department of Cellular and Molecular Medicine, Infectious Diseases, St. George's Hospital Medical School, Cranmer Terrace, London SW17 ORE, UK
| | | |
Collapse
|
22
|
Giordana B, Milani A, Grimaldi A, Farneti R, Casartelli M, Ambrosecchio MR, Digilio MC, Leonardi MG, de Eguileor M, Pennacchio F. Absorption of sugars and amino acids by the epidermis of Aphidius ervi larvae. JOURNAL OF INSECT PHYSIOLOGY 2003; 49:1115-1124. [PMID: 14624883 DOI: 10.1016/j.jinsphys.2003.08.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Aphidius ervi Haliday (Hymenoptera, Braconidae) is an endophagous parasitoid of several aphid species of economic importance, widely used in biological control. The definition of a suitable artificial diet for in vitro mass production of this parasitoid is still an unresolved issue that, to be properly addressed, requires a deeper understanding both of its nutritional needs and of the functional properties of the larval epithelia involved in nutrient absorption. The experimental evidence presented in this paper unequivocally demonstrates that the uptake of sugars and amino acids takes place through the body surface of the larval stages of A. ervi. These nutrients are efficiently absorbed by the larval epidermis, but the transport rate progressively declines over time. The epidermis exhibits a cross-reactivity to antibodies raised against the mammalian facilitative glucose transporter GLUT2 and the sodium cotransporter SGLT1. The analysis of sugar transport sensitivity to specific inhibitors indicates the involvement of GLUT2-like transporters, while a role for SGLT1-like transporters is not supported. The peculiar pathways of nutrient absorption in A. ervi larvae further corroborate the general idea that the pre-imaginal stages of endophagous koinobiont Hymenoptera, like Metazoan parasites, show a high degree of physiological integration with their hosts.
Collapse
Affiliation(s)
- B Giordana
- Dipartimento di Biologia, Università di Milano, via Celoria 26, 20133 Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Joet T, Eckstein-Ludwig U, Morin C, Krishna S. Validation of the hexose transporter of Plasmodium falciparum as a novel drug target. Proc Natl Acad Sci U S A 2003; 100:7476-9. [PMID: 12792024 PMCID: PMC164611 DOI: 10.1073/pnas.1330865100] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chemotherapy of malaria parasites is limited by established drug resistance and lack of novel targets. Intraerythrocytic stages of Plasmodium falciparum are wholly dependent on host glucose for energy. Glucose uptake is mediated by a parasite-encoded facilitative hexose transporter (PfHT). We report that O-3 hexose derivatives inhibit uptake of glucose and fructose by PfHT when expressed in Xenopus oocytes. Selectivity of these derivatives for PfHT is confirmed by lack of inhibition of hexose transport by the major mammalian glucose and fructose transporters (Gluts) 1 and 5. A long chain O-3 hexose derivative is the most effective inhibitor of PfHT and also kills P. falciparum when it is cultured in medium containing either glucose or fructose as a carbon source. To extend our observations to the second most important human malarial pathogen, we have cloned and expressed the Plasmodium vivax orthologue of PfHT, and demonstrate inhibition of glucose uptake by the long chain O-3 hexose derivative. Furthermore, multiplication of Plasmodium berghei in a mouse model is significantly reduced by the O-3 derivative. Our robust expression system conclusively validates PfHT as a novel drug target and is an important step in the development of novel antimalarials directed against membrane transport proteins.
Collapse
Affiliation(s)
- Thierry Joet
- Department of Cellular and Molecular Medicine, Infectious Diseases, St. George's Hospital Medical School, Cranmer Terrace, London SW17 ORE, United Kingdom
| | | | | | | |
Collapse
|
24
|
Joët T, Holterman L, Stedman TT, Kocken CHM, Van Der Wel A, Thomas AW, Krishna S. Comparative characterization of hexose transporters of Plasmodium knowlesi, Plasmodium yoelii and Toxoplasma gondii highlights functional differences within the apicomplexan family. Biochem J 2002; 368:923-9. [PMID: 12238947 PMCID: PMC1223042 DOI: 10.1042/bj20021189] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2002] [Revised: 09/17/2002] [Accepted: 09/19/2002] [Indexed: 11/17/2022]
Abstract
Chemotherapy of apicomplexan parasites is limited by emerging drug resistance or lack of novel targets. PfHT1, the Plasmodium falciparum hexose transporter 1, is a promising new drug target because asexual-stage malarial parasites depend wholly on glucose for energy. We have performed a comparative functional characterization of PfHT1 and hexose transporters of the simian malarial parasite P. knowlesi (PkHT1), the rodent parasite P. yoelii (PyHT1) and the human apicomplexan parasite Toxoplasma gondii ( T. gondii glucose transporter 1, TgGT1). PkHT1 and PyHT1 share >70% amino acid identity with PfHT1, while TgGT1 is more divergent (37.2% identity). All transporters mediate uptake of D-glucose and D-fructose. PyHT1 has an affinity for glucose ( K (m) approximately 0.12 mM) that is higher than that for PkHT1 ( K (m) approximately 0.67 mM) or PfHT1 ( K (m) approximately 1 mM). TgGT1 is highly temperature dependent (the Q (10) value, the fold change in activity for a 10 degrees C change in temperature, was >7) compared with Plasmodium transporters ( Q (10), 1.5-2.5), and overall has the highest affinity for glucose ( K (m) approximately 30 microM). Using active analogues in competition for glucose uptake, experiments show that hydroxyl groups at the C-3, C-4 and C-6 positions are important in interacting with PkHT1, PyHT1 and TgGT1. This study defines models useful to study the biology of apicomplexan hexose permeation pathways, as well as contributing to drug development.
Collapse
Affiliation(s)
- Thierry Joët
- Department of Infectious Diseases, St. George's Hospital Medical School, Cranmer Terrace, London SW17 ORE, UK
| | | | | | | | | | | | | |
Collapse
|
25
|
Krishna S, Eckstein-Ludwig U, Joët T, Uhlemann AC, Morin C, Webb R, Woodrow C, Kun JFJ, Kremsner PG. Transport processes in Plasmodium falciparum-infected erythrocytes: potential as new drug targets. Int J Parasitol 2002; 32:1567-73. [PMID: 12435441 DOI: 10.1016/s0020-7519(02)00185-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Plasmodium falciparum infection induces alterations in the transport properties of infected erythrocytes that have recently been defined using electrophysiological techniques. Mechanisms responsible for transport of substrates into intraerythrocytic parasites have also been clarified by studies of three substrate-specific (hexose, nucleoside and aquaglyceroporin) parasite plasma membrane transporters. These have been characterised functionally using the Xenopus laevis oocyte heterologous expression system. The same expression system is currently being used to define the function of parasite 'P' type ATPases responsible for intraparasitic [Ca(2+)] homeostasis. We review studies on these transport processes and examine their potential as novel drug targets.
Collapse
Affiliation(s)
- Sanjeev Krishna
- Department of Infectious Diseases, St. George's Hospital Medical School, Cranmer Terrace, London, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Saliba KJ, Kirk K. Nutrient acquisition by intracellular apicomplexan parasites: staying in for dinner. Int J Parasitol 2001; 31:1321-30. [PMID: 11566300 DOI: 10.1016/s0020-7519(01)00258-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The intracellular forms of the apicomplexan parasites Plasmodium, Toxoplasma and Eimeria reside within a parasitophorous vacuole. The nutrients required by these intracellular parasites to support their high rate of growth and replication originate from the host cell which, in turn, takes up such compounds from the extracellular milieu. Solutes moving from the external medium to the interior of the parasite, are confronted by a series of three membranes --the host cell membrane, the parasitophorous vacuole membrane and the parasite plasma membrane. Each constitutes a potential permeability barrier which must be either crossed or bypassed. It is the mechanisms by which this occurs that are the subject of this review.
Collapse
Affiliation(s)
- K J Saliba
- School of Biochemistry and Molecular Biology, Faculty of Science, Australian National University, Canberra, A.C.T. 0200, Australia
| | | |
Collapse
|
27
|
Krishna S, Webb R, Woodrow C. Transport proteins of Plasmodium falciparum: defining the limits of metabolism. Int J Parasitol 2001; 31:1331-42. [PMID: 11566301 DOI: 10.1016/s0020-7519(01)00254-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this review we give an account of transport processes occurring at the membrane interface that separates the asexual stage of Plasmodium falciparum from its host, the infected erythrocyte, and also describe proteins whose activities may be important at this location. We explain the potential clinical value of such studies in the light of the current spread of parasite resistance to conventional antimalarial strategies. We discuss the uptake of substrates critical to the survival of the intracellular malaria parasite, and also the parasite's homeostatic and disposal mechanisms. The use of the Xenopus laevis expression system in the characterisation of a hexose transporter ("PfHT1") and a Ca(2+) ATPase ("PfATP4") of the parasite plasma membrane are described in detail.
Collapse
Affiliation(s)
- S Krishna
- Department of Infectious Diseases, St. George's Hospital Medical School, Cranmer Terrace, London SW17 0RE, UK.
| | | | | |
Collapse
|
28
|
Abstract
The malaria parasite is a unicellular eukaryotic organism which, during the course of its complex life cycle, invades the red blood cells of its vertebrate host. As it grows and multiplies within its host blood cell, the parasite modifies the membrane permeability and cytosolic composition of the host cell. The intracellular parasite is enclosed within a so-called parasitophorous vacuolar membrane, tubular extensions of which radiate out into the host cell compartment. Like all eukaryote cells, the parasite has at its surface a plasma membrane, as well as having a variety of internal membrane-bound organelles that perform a range of functions. This review focuses on the transport properties of the different membranes of the malaria-infected erythrocyte, as well as on the role played by the various membrane transport systems in the uptake of solutes from the extracellular medium, the disposal of metabolic wastes, and the origin and maintenance of electrochemical ion gradients. Such systems are of considerable interest from the point of view of antimalarial chemotherapy, both as drug targets in their own right and as routes for targeting cytotoxic agents into the intracellular parasite.
Collapse
Affiliation(s)
- K Kirk
- Division of Biochemistry and Molecular Biology, Faculty of Science, Australian National University, Canberra, Australian Capital Territory, Australia.
| |
Collapse
|