1
|
Functional lung imaging in radiation therapy for lung cancer: A systematic review and meta-analysis. Radiother Oncol 2018; 129:196-208. [PMID: 30082143 DOI: 10.1016/j.radonc.2018.07.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/14/2018] [Accepted: 07/18/2018] [Indexed: 12/25/2022]
Abstract
RATIONALE Advanced imaging techniques allow functional information to be derived and integrated into treatment planning. METHODS A systematic review was conducted with the primary objective to evaluate the ability of functional lung imaging to predict risk of radiation pneumonitis. Secondary objectives were to evaluate dose-response relationships on post treatment functional imaging and assess the utility in including functional lung information into treatment planning. A structured search for publications was performed following PRISMA guidelines and registered on PROSPERO. RESULTS 814 articles were screened against review criteria and 114 publications met criteria. Methods of identifying functional lung included using CT, MRI, SPECT and PET to image ventilation or perfusion. Six studies compared differences between functional and anatomical lung imaging at predicting radiation pneumonitis. These found higher predictive values using functional lung imaging. Twenty-one studies identified a dose-response relationship on post-treatment functional lung imaging. Nineteen planning studies demonstrated the ability of functional lung optimised planning techniques to spare regions of functional lung. Meta-analysis of these studies found that mean (95% CI) functional volume receiving 20 Gy was reduced by 4.2% [95% CI: 2.3: 6.0] and mean lung dose by 2.2 Gy [95% CI: 1.2: 3.3] when plans were optimised to spare functional lung. There was significant variation between publications in the definition of functional lung. CONCLUSION Functional lung imaging may have potential utility in radiation therapy planning and delivery, although significant heterogeneity was identified in approaches and reporting. Recommendations have been made based on the available evidence for future functional lung trials.
Collapse
|
2
|
Gabriele P, Malinverni G, Moroni GL, Gatti M, Regge D, Versari A, Serafini D, Fraternali A, Salvo D. The Impact of 18F-deoxyglucose Positron Emission Tomography on Tumor Staging, Treatment Strategy and Treatment Planning for Radiotherapy in a Department of Radiation Oncology. TUMORI JOURNAL 2018; 90:579-85. [PMID: 15762360 DOI: 10.1177/030089160409000608] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aims and Background The study analyzed the potential contribution of positron emission tomography (PET) in patient selection for radiotherapy and in radiation therapy planning. Methods Eighty-seven patients with a histological cancer diagnosis were accrued for the study from December 2000 to December 2001. Demographic characteristics included a median age of 54 years and male/female ratio of 51/36. All patients staged by conventional workup who were candidates for radiotherapy had PET imaging and were allocated to a conventional “pre/post-PET stage”. The treatment protocol and the shape and/or size of the portals was directly related to PET results. We examined 26 lung cancers, 15 gastrointestinal tumors, 22 genitourinary cancers and 24 hematologic malignancies. Results In the lung cancer group, the stage was modified in 10/26 patients (38.5%) by PET, with a change in management in 13 (50%) and a change in radiotherapy planning in 6 (23.1%). In the hematological group, stage was modified by PET in 8/24 cases (33.3%), with a change in treatment strategy in 9 (37.5%) and a change in radiotherapy planning in 3 (12.5%). In the gastrointestinal group, the stage was modified by PET in 2/15 cases (13.4%), with a change inn treatment strategy in 4 (26.7%) and a change in the decision for radiotherapy in 8 (no radiotherapy in 53.3%). In the mixed group (genitourinary, breast and other), the stage was modified by PET in 6/22 cases (27.3%), with a change in treatment strategy in 11 (50%) and a very low rate of change in radiotherapy planning. Conclusions PET contributed to a modification of stage in 26/87 patients (30%), to a changing in treatment strategy in 37/87 (42.5%), and to a substantial change of the shape and/or size of radiotherapy portals in 13/43 (30%) who underwent radiotherapy.
Collapse
Affiliation(s)
- Pietro Gabriele
- Radiation Therapy Unit, Institute for Cancer Research and Treatment (IRCC), Candiolo (TO), Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Ceresoli GL, Cattaneo GM, Castellone P, Rizzos G, Landoni C, Gregorc V, Calandrino R, Villa E, Messa C, Santoro A, Fazio F. Role of Computed Tomographyand [18F] Fluorodeoxyglucose Positron Emission Tomography Image Fusion in Conformal Radiotherapy of Non-Small Cell Lung Cancer: A Comparison with Standard Techniques with and without Elective Nodal Irradiation. TUMORI JOURNAL 2018; 93:88-96. [PMID: 17455878 DOI: 10.1177/030089160709300116] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aims and background Mediastinal elective node irradiation (ENI) in patients with non-small cell lung cancer candidate to radical radiotherapy is controversial. In this study, the impact of co-registered [18F]fluorodeoxyglucose-positron emission tomography (PET) and standard computed tomography (CT) on definition of target volumes and toxicity parameters was evaluated, by comparison with standard CT-based simulation with and without ENI. Methods CT-based gross tumor volume (GTVCT) was first contoured by a single observer without knowledge of PET results. Subsequently, the integrated GTV based on PET/CT coregistered images (GTVPET/CT) was defined. Each patient was planned according to three different treatment techniques: 1) radiotherapy with ENI using the CT data set alone (ENI plan); 2) radiotherapy without ENI using the CT data set alone (no ENI plan); 3) radiotherapy without ENI using PET/CT fusion data set (PET plan). Rival plans were compared for each patient with respect to dose to the normal tissues (spinal cord, healthy lungs, heart and esophagus). Results The addition of PET-modified TNM staging in 10/21 enrolled patients (48%); 3/21 were shifted to palliative treatment due to detection of metastatic disease or large tumor not amenable to high-dose radiotherapy. In 7/18 (39%) patients treated with radical radiotherapy, a significant (≥25%) change in volume between GTVCT and GTVPET/CT was observed. For all the organs at risk, ENI plans had dose values significantly greater than no-ENI and PET plans. Comparing no ENI and PET plans, no statistically significant difference was observed, except for maximum point dose to the spinal cord Dmax, which was significantly lower in PET plans. Notably, even in patients in whom PET/CT planning resulted in an increased GTV, toxicity parameters were fairly acceptable, and always more favorable than with ENI plans. Conclusions Our study suggests that [18F]-fluorodeoxyglucose-PET should be integrated in no-ENI techniques, as it improves target volume delineation without a major increase in predicted toxicity.
Collapse
Affiliation(s)
- Giovanni Luca Ceresoli
- Department of Oncology and Hematology, Istituto Clinico Humanitas, Rozzano, Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Tahir BA, Bragg CM, Wild JM, Swinscoe JA, Lawless SE, Hart KA, Hatton MQ, Ireland RH. Impact of field number and beam angle on functional image-guided lung cancer radiotherapy planning. ACTA ACUST UNITED AC 2017; 62:7114-7130. [DOI: 10.1088/1361-6560/aa8074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
5
|
Hatt M, Lee JA, Schmidtlein CR, Naqa IE, Caldwell C, De Bernardi E, Lu W, Das S, Geets X, Gregoire V, Jeraj R, MacManus MP, Mawlawi OR, Nestle U, Pugachev AB, Schöder H, Shepherd T, Spezi E, Visvikis D, Zaidi H, Kirov AS. Classification and evaluation strategies of auto-segmentation approaches for PET: Report of AAPM task group No. 211. Med Phys 2017; 44:e1-e42. [PMID: 28120467 DOI: 10.1002/mp.12124] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 12/09/2016] [Accepted: 01/04/2017] [Indexed: 12/14/2022] Open
Abstract
PURPOSE The purpose of this educational report is to provide an overview of the present state-of-the-art PET auto-segmentation (PET-AS) algorithms and their respective validation, with an emphasis on providing the user with help in understanding the challenges and pitfalls associated with selecting and implementing a PET-AS algorithm for a particular application. APPROACH A brief description of the different types of PET-AS algorithms is provided using a classification based on method complexity and type. The advantages and the limitations of the current PET-AS algorithms are highlighted based on current publications and existing comparison studies. A review of the available image datasets and contour evaluation metrics in terms of their applicability for establishing a standardized evaluation of PET-AS algorithms is provided. The performance requirements for the algorithms and their dependence on the application, the radiotracer used and the evaluation criteria are described and discussed. Finally, a procedure for algorithm acceptance and implementation, as well as the complementary role of manual and auto-segmentation are addressed. FINDINGS A large number of PET-AS algorithms have been developed within the last 20 years. Many of the proposed algorithms are based on either fixed or adaptively selected thresholds. More recently, numerous papers have proposed the use of more advanced image analysis paradigms to perform semi-automated delineation of the PET images. However, the level of algorithm validation is variable and for most published algorithms is either insufficient or inconsistent which prevents recommending a single algorithm. This is compounded by the fact that realistic image configurations with low signal-to-noise ratios (SNR) and heterogeneous tracer distributions have rarely been used. Large variations in the evaluation methods used in the literature point to the need for a standardized evaluation protocol. CONCLUSIONS Available comparison studies suggest that PET-AS algorithms relying on advanced image analysis paradigms provide generally more accurate segmentation than approaches based on PET activity thresholds, particularly for realistic configurations. However, this may not be the case for simple shape lesions in situations with a narrower range of parameters, where simpler methods may also perform well. Recent algorithms which employ some type of consensus or automatic selection between several PET-AS methods have potential to overcome the limitations of the individual methods when appropriately trained. In either case, accuracy evaluation is required for each different PET scanner and scanning and image reconstruction protocol. For the simpler, less robust approaches, adaptation to scanning conditions, tumor type, and tumor location by optimization of parameters is necessary. The results from the method evaluation stage can be used to estimate the contouring uncertainty. All PET-AS contours should be critically verified by a physician. A standard test, i.e., a benchmark dedicated to evaluating both existing and future PET-AS algorithms needs to be designed, to aid clinicians in evaluating and selecting PET-AS algorithms and to establish performance limits for their acceptance for clinical use. The initial steps toward designing and building such a standard are undertaken by the task group members.
Collapse
Affiliation(s)
- Mathieu Hatt
- INSERM, UMR 1101, LaTIM, University of Brest, IBSAM, Brest, France
| | - John A Lee
- Université catholique de Louvain (IREC/MIRO) & FNRS, Brussels, 1200, Belgium
| | | | | | - Curtis Caldwell
- Sunnybrook Health Sciences Center, Toronto, ON, M4N 3M5, Canada
| | | | - Wei Lu
- Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Shiva Das
- University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Xavier Geets
- Université catholique de Louvain (IREC/MIRO) & FNRS, Brussels, 1200, Belgium
| | - Vincent Gregoire
- Université catholique de Louvain (IREC/MIRO) & FNRS, Brussels, 1200, Belgium
| | - Robert Jeraj
- University of Wisconsin, Madison, WI, 53705, USA
| | | | | | - Ursula Nestle
- Universitätsklinikum Freiburg, Freiburg, 79106, Germany
| | - Andrei B Pugachev
- University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Heiko Schöder
- Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | | | - Emiliano Spezi
- School of Engineering, Cardiff University, Cardiff, Wales, United Kingdom
| | | | - Habib Zaidi
- Geneva University Hospital, Geneva, CH-1211, Switzerland
| | - Assen S Kirov
- Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| |
Collapse
|
6
|
Rajan Radha R, Chandrasekharan G. Pulmonary injury associated with radiation therapy - Assessment, complications and therapeutic targets. Biomed Pharmacother 2017; 89:1092-1104. [PMID: 28298070 DOI: 10.1016/j.biopha.2017.02.106] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 12/20/2022] Open
Abstract
Pulmonary injury is more common in patients undergoing radiation therapy for lungs and other thoracic malignancies. Recently with the use of most-advanced technologies powerful doses of radiation can be delivered directly to tumor site with exquisite precision. The awareness of technical and clinical parameters that influence the chance of radiation induced lung injury is important to guide patient selection and toxicity minimization strategies. At the cellular level, radiation activates free radical production, leading to DNA damage, apoptosis, cell cycle changes, and reduced cell survival. Preclinical research shows the potential for therapies targeting transforming growth factor-β (TGF-B), Toll like receptor (TLRs), Tumour necrosis factor-alpha (TNF-alpha), Interferon gamma (IFN-γ) and so on that may restore lung function. At present Amifostine (WR-2721) is the only approved broad spectrum radioprotector in use for patients undergoing radiation therapy. Newer techniques also offer the opportunity to identify new biomarkers and new targets for interventions to prevent or ameliorate these late effects of lung damage.
Collapse
Affiliation(s)
- Rasmi Rajan Radha
- Laboratory of Immunopharmacology and Experimental Therapeutics, Division of Cancer Research, Regional Cancer Centre, Trivandrum 695 011, Kerala, India
| | - Guruvayoorappan Chandrasekharan
- Laboratory of Immunopharmacology and Experimental Therapeutics, Division of Cancer Research, Regional Cancer Centre, Trivandrum 695 011, Kerala, India.
| |
Collapse
|
7
|
Ireland R, Tahir B, Wild J, Lee C, Hatton M. Functional Image-guided Radiotherapy Planning for Normal Lung Avoidance. Clin Oncol (R Coll Radiol) 2016; 28:695-707. [DOI: 10.1016/j.clon.2016.08.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 07/19/2016] [Accepted: 07/20/2016] [Indexed: 12/25/2022]
|
8
|
Mantovani C, Filippi AR, Ricardi U. Which radiation therapy schedule in combination with chemotherapy for locally advanced NSCLC? Lung Cancer Manag 2015. [DOI: 10.2217/lmt.15.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Concurrent chemoradiotherapy is the standard of care in the management of locally advanced NSCLC, with disappointing results in terms of local tumor control and overall survival. Hystorically, it has been demonstrated a strict dose–response relationship in thoracic radiotherapy for lung cancer and, therefore, dose escalation was tested in many prospective trials. In this paper, we briefly review the most relevant publications focusing on dose management in terms of dose escalation with both conventional and altered fractionation schedules.
Collapse
Affiliation(s)
- Cristina Mantovani
- Radiation Oncology Unit, Department of Oncology, University of Torino, Via Genova 3, 10126 Torino, Italy
| | - Andrea Riccardo Filippi
- Radiation Oncology Unit, Department of Oncology, University of Torino, Via Genova 3, 10126 Torino, Italy
| | - Umberto Ricardi
- Radiation Oncology Unit, Department of Oncology, University of Torino, Via Genova 3, 10126 Torino, Italy
| |
Collapse
|
9
|
Ju W, Xiang D, Zhang B, Wang L, Kopriva I, Chen X. Random Walk and Graph Cut for Co-Segmentation of Lung Tumor on PET-CT Images. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2015; 24:5854-5867. [PMID: 26462198 DOI: 10.1109/tip.2015.2488902] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Accurate lung tumor delineation plays an important role in radiotherapy treatment planning. Since the lung tumor has poor boundary in positron emission tomography (PET) images and low contrast in computed tomography (CT) images, segmentation of tumor in the PET and CT images is a challenging task. In this paper, we effectively integrate the two modalities by making fully use of the superior contrast of PET images and superior spatial resolution of CT images. Random walk and graph cut method is integrated to solve the segmentation problem, in which random walk is utilized as an initialization tool to provide object seeds for graph cut segmentation on the PET and CT images. The co-segmentation problem is formulated as an energy minimization problem which is solved by max-flow/min-cut method. A graph, including two sub-graphs and a special link, is constructed, in which one sub-graph is for the PET and another is for CT, and the special link encodes a context term which penalizes the difference of the tumor segmentation on the two modalities. To fully utilize the characteristics of PET and CT images, a novel energy representation is devised. For the PET, a downhill cost and a 3D derivative cost are proposed. For the CT, a shape penalty cost is integrated into the energy function which helps to constrain the tumor region during the segmentation. We validate our algorithm on a data set which consists of 18 PET-CT images. The experimental results indicate that the proposed method is superior to the graph cut method solely using the PET or CT is more accurate compared with the random walk method, random walk co-segmentation method, and non-improved graph cut method.
Collapse
|
10
|
Yan S, Bowsher J, Tough M, Cheng L, Yin FF. A hardware investigation of robotic SPECT for functional and molecular imaging onboard radiation therapy systems. Med Phys 2014; 41:112504. [PMID: 25370663 DOI: 10.1118/1.4898121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To construct a robotic SPECT system and to demonstrate its capability to image a thorax phantom on a radiation therapy flat-top couch, as a step toward onboard functional and molecular imaging in radiation therapy. METHODS A robotic SPECT imaging system was constructed utilizing a gamma camera detector (Digirad 2020tc) and a robot (KUKA KR150 L110 robot). An imaging study was performed with a phantom (PET CT Phantom(TM)), which includes five spheres of 10, 13, 17, 22, and 28 mm diameters. The phantom was placed on a flat-top couch. SPECT projections were acquired either with a parallel-hole collimator or a single-pinhole collimator, both without background in the phantom and with background at 1/10th the sphere activity concentration. The imaging trajectories of parallel-hole and pinhole collimated detectors spanned 180° and 228°, respectively. The pinhole detector viewed an off-centered spherical common volume which encompassed the 28 and 22 mm spheres. The common volume for parallel-hole system was centered at the phantom which encompassed all five spheres in the phantom. The maneuverability of the robotic system was tested by navigating the detector to trace the phantom and flat-top table while avoiding collision and maintaining the closest possible proximity to the common volume. The robot base and tool coordinates were used for image reconstruction. RESULTS The robotic SPECT system was able to maneuver parallel-hole and pinhole collimated SPECT detectors in close proximity to the phantom, minimizing impact of the flat-top couch on detector radius of rotation. Without background, all five spheres were visible in the reconstructed parallel-hole image, while four spheres, all except the smallest one, were visible in the reconstructed pinhole image. With background, three spheres of 17, 22, and 28 mm diameters were readily observed with the parallel-hole imaging, and the targeted spheres (22 and 28 mm diameters) were readily observed in the pinhole region-of-interest imaging. CONCLUSIONS Onboard SPECT could be achieved by a robot maneuvering a SPECT detector about patients in position for radiation therapy on a flat-top couch. The robot inherent coordinate frames could be an effective means to estimate detector pose for use in SPECT image reconstruction.
Collapse
Affiliation(s)
- Susu Yan
- Medical Physics Graduate Program, Duke University, Durham, North Carolina 27710
| | - James Bowsher
- Medical Physics Graduate Program, Duke University, Durham, North Carolina 27710 and Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710
| | - MengHeng Tough
- Medical Physics Graduate Program, Duke University, Durham, North Carolina 27710
| | - Lin Cheng
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710
| | - Fang-Fang Yin
- Medical Physics Graduate Program, Duke University, Durham, North Carolina 27710 and Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
11
|
Munley MT, Kagadis GC, McGee KP, Kirov AS, Jang S, Mutic S, Jeraj R, Xing L, Bourland JD. An introduction to molecular imaging in radiation oncology: a report by the AAPM Working Group on Molecular Imaging in Radiation Oncology (WGMIR). Med Phys 2014; 40:101501. [PMID: 24089890 DOI: 10.1118/1.4819818] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Molecular imaging is the direct or indirect noninvasive monitoring and recording of the spatial and temporal distribution of in vivo molecular, genetic, and/or cellular processes for biochemical, biological, diagnostic, or therapeutic applications. Molecular images that indicate the presence of malignancy can be acquired using optical, ultrasonic, radiologic, radionuclide, and magnetic resonance techniques. For the radiation oncology physicist in particular, these methods and their roles in molecular imaging of oncologic processes are reviewed with respect to their physical bases and imaging characteristics, including signal intensity, spatial scale, and spatial resolution. Relevant molecular terminology is defined as an educational assist. Current and future clinical applications in oncologic diagnosis and treatment are discussed. National initiatives for the development of basic science and clinical molecular imaging techniques and expertise are reviewed, illustrating research opportunities in as well as the importance of this growing field.
Collapse
Affiliation(s)
- Michael T Munley
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Rosenzweig KE, Sura S. Image-Guided Radiation Therapy. Lung Cancer 2014. [DOI: 10.1002/9781118468791.ch20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Impact of different beam directions on intensity-modulated radiation therapy dose delivered to functioning lung tissue identified using single-photon emission computed tomography. Contemp Oncol (Pozn) 2014; 18:436-41. [PMID: 25784844 PMCID: PMC4355654 DOI: 10.5114/wo.2014.46237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 01/23/2014] [Accepted: 02/03/2014] [Indexed: 11/17/2022] Open
Abstract
Aim of the study To use different beam arrangements and numbers to plan intensity-modulated radiation therapy (IMRT) and investigate their effects on low and high radiation doses delivered to the functional lung, in order to reduce radiation-induced lung damage. Material and methods Ten patients with stage I–III non-small cell lung carcinoma (NSCLC) underwent IMRT. Beam arrangements were selected on the basis of orientation and dose-volume histograms to create SPECT-guided IMRT plans that spared the functional lung and maintained target coverage. Four different plans, including CT-7, SPECT-7, SPECT-4, SPECT-5 with different beam arrangements, were used. The differences of conformity index (CI), heterogeneity index (HI) between the plans were analyzed, by using a paired t-test. Results The seven-beam SPECT (SPECT-7) plan reduced the volume of the functional lung irradiated with at least 20 Gy (FV20) and 30 Gy (FV30) by 26.02% ±15.45% and 14.41% ±16.66%, respectively, as compared to the seven-beam computed tomography (CT-7) plan. The CI significantly differed between the SPECT-7 and SPECT-4 plans and between the SPECT-5 and SPECT-4 plans, but not between the SPECT-5 and SPECT-7 plans. The CIs in the SPECT-5 and SPECT-7 plans were better than that in the SPECT-4 plan. The heterogeneity index significantly differed among the three SPECT plans and was best in the SPECT-7 plan. Conclusions The incorporation of SPECT images into IMRT planning for NSCLC greatly affected beam angles and number of beams. Fewer beams and modified beam angles achieved similar or better IMRT quality. The low-dose volumes were lower in SPECT-4.
Collapse
|
14
|
Hemmer E, Venkatachalam N, Hyodo H, Hattori A, Ebina Y, Kishimoto H, Soga K. Upconverting and NIR emitting rare earth based nanostructures for NIR-bioimaging. NANOSCALE 2013; 5:11339-61. [PMID: 23938606 DOI: 10.1039/c3nr02286b] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In recent years, significant progress was achieved in the field of nanomedicine and bioimaging, but the development of new biomarkers for reliable detection of diseases at an early stage, molecular imaging, targeting and therapy remains crucial. The disadvantages of commonly used organic dyes include photobleaching, autofluorescence, phototoxicity and scattering when UV (ultraviolet) or visible light is used for excitation. The limited penetration depth of the excitation light and the visible emission into and from the biological tissue is a further drawback with regard to in vivo bioimaging. Lanthanide containing inorganic nanostructures emitting in the near-infrared (NIR) range under NIR excitation may overcome those problems. Due to the outstanding optical and magnetic properties of lanthanide ions (Ln(3+)), nanoscopic host materials doped with Ln(3+), e.g. Y2O3:Er(3+),Yb(3+), are promising candidates for NIR-NIR bioimaging. Ln(3+)-doped gadolinium-based inorganic nanostructures, such as Gd2O3:Er(3+),Yb(3+), have a high potential as opto-magnetic markers allowing the combination of time-resolved optical imaging and magnetic resonance imaging (MRI) of high spatial resolution. Recent progress in our research on over-1000 nm NIR fluorescent nanoprobes for in vivo NIR-NIR bioimaging will be discussed in this review.
Collapse
Affiliation(s)
- Eva Hemmer
- Tokyo University of Science, Center for Technologies against Cancer (CTC), 2669 Yamazaki, 278-0022 Chiba, Japan.
| | | | | | | | | | | | | |
Collapse
|
15
|
Song Q, Bai J, Han D, Bhatia S, Sun W, Rockey W, Bayouth JE, Buatti JM, Wu X. Optimal co-segmentation of tumor in PET-CT images with context information. IEEE TRANSACTIONS ON MEDICAL IMAGING 2013; 32:1685-97. [PMID: 23693127 PMCID: PMC3965345 DOI: 10.1109/tmi.2013.2263388] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Positron emission tomography (PET)-computed tomography (CT) images have been widely used in clinical practice for radiotherapy treatment planning of the radiotherapy. Many existing segmentation approaches only work for a single imaging modality, which suffer from the low spatial resolution in PET or low contrast in CT. In this work, we propose a novel method for the co-segmentation of the tumor in both PET and CT images, which makes use of advantages from each modality: the functionality information from PET and the anatomical structure information from CT. The approach formulates the segmentation problem as a minimization problem of a Markov random field model, which encodes the information from both modalities. The optimization is solved using a graph-cut based method. Two sub-graphs are constructed for the segmentation of the PET and the CT images, respectively. To achieve consistent results in two modalities, an adaptive context cost is enforced by adding context arcs between the two sub-graphs. An optimal solution can be obtained by solving a single maximum flow problem, which leads to simultaneous segmentation of the tumor volumes in both modalities. The proposed algorithm was validated in robust delineation of lung tumors on 23 PET-CT datasets and two head-and-neck cancer subjects. Both qualitative and quantitative results show significant improvement compared to the graph cut methods solely using PET or CT.
Collapse
Affiliation(s)
- Qi Song
- Biomedical Image Analysis Lab, GE Global Research Center, Niskayuna, NY 12309, USA. The work was mainly finished when he was with the Department of Electrical & Computer Engineering, The University of Iowa, Iowa City, IA 52242, USA
| | - Junjie Bai
- Department of Electrical & Computer Engineering, The University of Iowa, Iowa City, IA 52242, USA
| | - Dongfeng Han
- Department of Electrical & Computer Engineering, The University of Iowa, Iowa City, IA 52242, USA
| | - Sudershan Bhatia
- Department of Radiation Oncology, The University of Iowa, Iowa City, IA 52242, USA
| | - Wenqing Sun
- Department of Radiation Oncology, The University of Iowa, Iowa City, IA 52242, USA
| | - William Rockey
- Department of Radiation Oncology, The University of Iowa, Iowa City, IA 52242, USA
| | - John E. Bayouth
- Department of Radiation Oncology, The University of Iowa, Iowa City, IA 52242, USA
| | - John M. Buatti
- Department of Radiation Oncology, The University of Iowa, Iowa City, IA 52242, USA
| | - Xiaodong Wu
- Department of Electrical & Computer Engineering and the Department of Radiation Oncology, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
16
|
Computer-aided diagnosis systems for lung cancer: challenges and methodologies. Int J Biomed Imaging 2013; 2013:942353. [PMID: 23431282 PMCID: PMC3570946 DOI: 10.1155/2013/942353] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 11/20/2012] [Indexed: 11/24/2022] Open
Abstract
This paper overviews one of the most important, interesting, and challenging problems in oncology, the problem of lung cancer diagnosis. Developing an effective computer-aided diagnosis (CAD) system for lung cancer is of great clinical importance and can increase the patient's chance of survival. For this reason, CAD systems for lung cancer have been investigated in a huge number of research studies. A typical CAD system for lung cancer diagnosis is composed of four main processing steps: segmentation of the lung fields, detection of nodules inside the lung fields, segmentation of the detected nodules, and diagnosis of the nodules as benign or malignant. This paper overviews the current state-of-the-art techniques that have been developed to implement each of these CAD processing steps. For each technique, various aspects of technical issues, implemented methodologies, training and testing databases, and validation methods, as well as achieved performances, are described. In addition, the paper addresses several challenges that researchers face in each implementation step and outlines the strengths and drawbacks of the existing approaches for lung cancer CAD systems.
Collapse
|
17
|
Filippi AR, Mantovani C, Ricardi U. Innovative technologies in thoracic radiation therapy for lung cancer. Transl Lung Cancer Res 2012; 1:263-8. [PMID: 25806191 PMCID: PMC4367545 DOI: 10.3978/j.issn.2218-6751.2012.10.06] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 10/23/2012] [Indexed: 12/25/2022]
Abstract
Radiation therapy plays a major role in the cure of patients affected with lung cancer, both in early and locally advanced disease. Local control and survival rates are still poor, even with the best combination with chemotherapy and/or targeted agents. The recent technical advances in radiotherapy changed the planning and delivery processes, enabling radiation oncologists to modify treatment schedules towards further dose intensification, while opening a new scenario for future clinical studies. In this paper we briefly review the major technical changes in the field of thoracic radiotherapy for primary lung tumors and their potential in improving clinical outcomes.
Collapse
Affiliation(s)
- Andrea Riccardo Filippi
- Radiation Oncology Unit, Department of Oncology, University of Torino, via Genova 3, 10126 Torino, Italy
| | - Cristina Mantovani
- Radiation Oncology Unit, Department of Oncology, University of Torino, via Genova 3, 10126 Torino, Italy
| | - Umberto Ricardi
- Radiation Oncology Unit, Department of Oncology, University of Torino, via Genova 3, 10126 Torino, Italy
| |
Collapse
|
18
|
Mac Manus MP, Hicks RJ. The role of positron emission tomography/computed tomography in radiation therapy planning for patients with lung cancer. Semin Nucl Med 2012; 42:308-19. [PMID: 22840596 DOI: 10.1053/j.semnuclmed.2012.04.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Positron emission tomography (PET)/computed tomography (CT) has rapidly assumed a critical role in the management of patients with locoregionally advanced lung cancers who are candidates for definitive radiation therapy (RT). Definitive RT is given with curative intent, but can only be successful in patients without distant metastasis and if all gross tumor is contained within the treated volume. An increasing body of evidence supports the use of PET-based imaging for selection of patients for both surgery and definitive RT. Similarly, the use of PET/CT images for accurate target volume definition in lung cancer is a dynamic area of research. Most available evidence on PET staging of lung cancer relates to non-small cell lung cancer (NSCLC). In general clinical use, (18)F-fluorodeoxyglucose (FDG) is the primary radiopharmaceutical useful in NSCLC. Other tracers, including proliferation markers and hypoxia tracers, may have significant roles in future. Much of the FDG-PET literature describing the impact of PET on actual patient management has concerned candidates for surgical resection. In the few prospective studies where PET was used for staging and patient selection in NSCLC candidates for definitive RT, 25%-30% of patients were denied definitive RT, generally because PET detected unsuspected advanced locoregional or distant metastatic disease. PET/CT and CT findings are often discordant in NSCLC but studies with clinical-pathological correlation always show that PET-assisted staging is more accurate than conventional assessment. In all studies in which "PET-defined" and "non-PET-defined" RT target volumes were compared, there were major differences between PET and non-PET volumes. Therefore, in cases where PET-assisted and non-PET staging are different and biopsy confirmation is unavailable, it is rational to use the most accurate modality (namely PET/CT) to define the target volume. The use of PET/CT in patient selection and target volume definition is likely to lead to improvements in outcome for patients with NSCLC.
Collapse
Affiliation(s)
- Michael P Mac Manus
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia.
| | | |
Collapse
|
19
|
Olson JD, Walb MC, Moore JE, Attia A, Sawyer HL, McBride JE, Wheeler KT, Miller MS, Munley MT. A gated-7T MRI technique for tracking lung tumor development and progression in mice after exposure to low doses of ionizing radiation. Radiat Res 2012; 178:321-7. [PMID: 22950352 DOI: 10.1667/rr2800.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A gated-7T magnetic resonance imaging (MRI) application is described that can accurately and efficiently measure the size of in vivo mouse lung tumors from ∼0.1 mm(3) to >4 mm(3). This MRI approach fills a void in radiation research because the technique can be used to noninvasively measure the growth rate of lung tumors in large numbers of mice that have been irradiated with low doses (<50 mGy) without the additional radiation exposure associated with planar X ray, CT or PET imaging. High quality, high resolution, reproducible images of the mouse thorax were obtained in ∼20 min using: (1) a Bruker 7T micro-MRI scanner equipped with a 60 mm inner diameter gradient insert capable of generating a maximum gradient of 1000 mT/m; (2) a 35 mm inner diameter quadrature radiofrequency volume coil; and (3) an electrocardiogram and respiratory gated Fast Low Angle Shot (FLASH) pulse sequence. The images had an in-plane image resolution of 98 μm and a 0.5 mm slice thickness. Tumor diameter measured by MRI was highly correlated (R(2) = 0.97) with the tumor diameter measured by electronic calipers. Data generated with an initiation/promotion mouse model of lung carcinogenesis and this MRI technique demonstrated that mice exposed to 4 weekly fractions of 10, 30 or 50 mGy of CT radiation had the same lung tumor growth rate as that measured in sham-irradiated mice. In summary, this high-field, double-gated MRI approach is an efficient way of quantitatively tracking lung tumor development and progression after exposure to low doses of ionizing radiation.
Collapse
Affiliation(s)
- John D Olson
- Center for Biomolecular Imaging, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Du XL, Jiang T, Sheng XG, Li QS, Wang C, Yu H. PET/CT scanning guided intensity-modulated radiotherapy in treatment of recurrent ovarian cancer. Eur J Radiol 2012; 81:3551-6. [PMID: 22521528 DOI: 10.1016/j.ejrad.2012.03.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Revised: 03/08/2012] [Accepted: 03/09/2012] [Indexed: 11/28/2022]
Abstract
OBJECTIVE This study was undertaken to evaluate the clinical contribution of positron emission tomography using (18)F-fluorodeoxyglucose and integrated computer tomography (FDG-PET/CT) guided intensity-modulated radiotherapy (IMRT) for treatment of recurrent ovarian cancer. MATERIALS AND METHODS Fifty-eight patients with recurrent ovarian cancer from 2003 to 2008 were retrospectively studied. In these patients, 28 received PET/CT guided IMRT (PET/CT-IMRT group), and 30 received CT guided IMRT (CT-IMRT group). Treatment plans, tumor response, toxicities and survival were evaluated. RESULTS Changes in GTV delineation were found in 10 (35.7%) patients based on PET-CT information compared with CT data, due to the incorporation of additional lymph node metastases and extension of the metastasis tumor. PET/CT guided IMRT improved tumor response compared to CT-IMRT group (CR: 64.3% vs. 46.7%, P=0.021; PR: 25.0% vs. 13.3%, P=0.036). The 3-year overall survival was significantly higher in the PET-CT/IMRT group than control (34.1% vs. 13.2%, P=0.014). CONCLUSIONS PET/CT guided IMRT in recurrent ovarian cancer patients improved the delineation of GTV and reduce the likelihood of geographic misses and therefore improve the clinical outcome.
Collapse
Affiliation(s)
- Xue-lian Du
- Department of Gynecologic Oncology, Shandong Cancer Hospital, Shandong Academy of Medical Science, Jinan 250012, PR China.
| | | | | | | | | | | |
Collapse
|
21
|
Aristophanous M, Berbeco RI, Killoran JH, Yap JT, Sher DJ, Allen AM, Larson E, Chen AB. Clinical Utility of 4D FDG-PET/CT Scans in Radiation Treatment Planning. Int J Radiat Oncol Biol Phys 2012; 82:e99-105. [DOI: 10.1016/j.ijrobp.2010.12.060] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 12/10/2010] [Accepted: 12/19/2010] [Indexed: 11/29/2022]
|
22
|
Bradley J, Bae K, Choi N, Forster K, Siegel BA, Brunetti J, Purdy J, Faria S, Vu T, Thorstad W, Choy H. A phase II comparative study of gross tumor volume definition with or without PET/CT fusion in dosimetric planning for non-small-cell lung cancer (NSCLC): primary analysis of Radiation Therapy Oncology Group (RTOG) 0515. Int J Radiat Oncol Biol Phys 2012; 82:435-41.e1. [PMID: 21075551 PMCID: PMC3117034 DOI: 10.1016/j.ijrobp.2010.09.033] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 08/27/2010] [Accepted: 09/03/2010] [Indexed: 10/18/2022]
Abstract
BACKGROUND Radiation Therapy Oncology Group (RTOG) 0515 is a Phase II prospective trial designed to quantify the impact of positron emission tomography (PET)/computed tomography (CT) compared with CT alone on radiation treatment plans (RTPs) and to determine the rate of elective nodal failure for PET/CT-derived volumes. METHODS Each enrolled patient underwent definitive radiation therapy for non-small-cell lung cancer (≥ 60 Gy) and had two RTP datasets generated: gross tumor volume (GTV) derived with CT alone and with PET/CT. Patients received treatment using the PET/CT-derived plan. The primary end point, the impact of PET/CT fusion on treatment plans was measured by differences of the following variables for each patient: GTV, number of involved nodes, nodal station, mean lung dose (MLD), volume of lung exceeding 20 Gy (V20), and mean esophageal dose (MED). Regional failure rate was a secondary end point. The nonparametric Wilcoxon matched-pairs signed-ranks test was used with Bonferroni adjustment for an overall significance level of 0.05. RESULTS RTOG 0515 accrued 52 patients, 47 of whom are evaluable. The follow-up time for all patients is 12.9 months (2.7-22.2). Tumor staging was as follows: II = 6%; IIIA = 40%; and IIIB = 54%. The GTV was statistically significantly smaller for PET/CT-derived volumes (98.7 vs. 86.2 mL; p < 0.0001). MLDs for PET/CT plans were slightly lower (19 vs. 17.8 Gy; p = 0.06). There was no significant difference in the number of involved nodes (2.1 vs. 2.4), V20 (32% vs. 30.8%), or MED (28.7 vs. 27.1 Gy). Nodal contours were altered by PET/CT for 51% of patients. One patient (2%) has developed an elective nodal failure. CONCLUSIONS PET/CT-derived tumor volumes were smaller than those derived by CT alone. PET/CT changed nodal GTV contours in 51% of patients. The elective nodal failure rate for GTVs derived by PET/CT is quite low, supporting the RTOG standard of limiting the target volume to the primary tumor and involved nodes.
Collapse
Affiliation(s)
- Jeffrey Bradley
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, MO, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Topkan E, Parlak C, Kotek A, Yapar AF, Pehlivan B. Predictive value of metabolic 18FDG-PET response on outcomes in patients with locally advanced pancreatic carcinoma treated with definitive concurrent chemoradiotherapy. BMC Gastroenterol 2011; 11:123. [PMID: 22074002 PMCID: PMC3224773 DOI: 10.1186/1471-230x-11-123] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 11/10/2011] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND We aimed to study the predictive value of combined 18F-fluoro-deoxy-D-glucose positron emission tomography and computerized tomography (FDG-PET-CT), on outcomes in locally advanced pancreatic carcinoma (LAPC) patients treated with concurrent chemoradiotherapy (C-CRT). METHODS Thirty-two unresectable LAPC patients received 50.4 Gy (1.8 Gy/fr) of RT and concurrent 5-FU followed by 4 to 6 cycles of gemcitabine consolidation. Response was evaluated by FDG-PET-CT at post-C-CRT 12-week. Patients were stratified into two groups according to the median difference between pre- and post-treatment maximum standard uptake values (SUVmax) as an indicator of response for comparative analysis. RESULTS At a median follow-up of 16.1 months, 16 (50.0%) patients experienced local/regional failures, 6 of which were detected on the first follow-up FDG-PET-CT. There were no marginal or isolated regional failures. Median pre- and post-treatment SUVmax and median difference were 14.5, 3.9, and -63.7%, respectively. Median overall survival (OS), progression-free survival (PFS), and local-regional progression-free survival (LRPFS) were 14.5, 7.3, and 10.3 months, respectively. Median OS, PFS, and LRPFS for those with greater (N = 16) versus lesser (N = 16) SUVmax change were 17.0 versus 9.8 (p = 0.001), 8.4 versus 3.8 (p = 0.005), and 12.3 versus 6.9 months (p = 0.02), respectively. On multivariate analysis, SUVmax difference was predictive of OS, PFS, and LRPFS, independent of existing covariates. CONCLUSIONS Significantly higher OS, PFS, and LRPFS in patients with greater SUVmax difference suggest that FDG-PET-CT-based metabolic response assessment is an independent predictor of clinical outcomes in LAPC patients treated with definitive C-CRT.
Collapse
Affiliation(s)
- Erkan Topkan
- Baskent University Adana Medical Faculty, Department of Radiation Oncology, Adana, Turkey
| | - Cem Parlak
- Baskent University Adana Medical Faculty, Department of Radiation Oncology, Adana, Turkey
| | - Ayşe Kotek
- Baskent University Adana Medical Faculty, Department of Radiation Oncology, Adana, Turkey
| | - Ali Fuat Yapar
- Baskent University Adana Medical Faculty, Department of Nuclear Medicine, Adana, Turkey
| | - Berrin Pehlivan
- Akdeniz University Medical Faculty, Department of Radiation Oncology, Antalya, Turkey
| |
Collapse
|
24
|
Kolodziejczyk M, Kepka L, Dziuk M, Zawadzka A, Szalus N, Gizewska A, Bujko K. Impact of [18F]Fluorodeoxyglucose PET-CT Staging on Treatment Planning in Radiotherapy Incorporating Elective Nodal Irradiation for Non-Small-Cell Lung Cancer: A Prospective Study. Int J Radiat Oncol Biol Phys 2011; 80:1008-14. [DOI: 10.1016/j.ijrobp.2010.04.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2009] [Revised: 03/23/2010] [Accepted: 04/01/2010] [Indexed: 11/17/2022]
|
25
|
Ibeas P, Cantos B, Gasent JM, Rodríguez B, Provencio M. PET-CT in the staging and treatment of non-small-cell lung cancer. Clin Transl Oncol 2011; 13:368-77. [DOI: 10.1007/s12094-011-0670-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Gubbi J, Kanakatte A, Tomas K, Binns D, Srinivasan B, Mani N, Palaniswami M. Automatic tumour volume delineation in respiratory-gated PET images. J Med Imaging Radiat Oncol 2011; 55:65-76. [DOI: 10.1111/j.1754-9485.2010.02231.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Positron Emission Tomography with 18Fluorodeoxyglucose in Radiation Treatment Planning for Non-small Cell Lung Cancer: A Systematic Review. J Thorac Oncol 2011. [DOI: 10.1097/jto.0b013e3181fc7687] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Partridge M, Yamamoto T, Grau C, Høyer M, Muren LP. Imaging of normal lung, liver and parotid gland function for radiotherapy. Acta Oncol 2010; 49:997-1011. [PMID: 20831488 DOI: 10.3109/0284186x.2010.504735] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
There is growing clinical evidence that functional imaging is useful for target volume definition and early assessment of tumour response to external beam radiotherapy. A subject that has perhaps received less attention, but is no less promising, is the application of functional imaging to the prediction or measurement of radiation adverse effects in normal tissues. In this manuscript, we review the current published literature describing the use of positron emission tomography (PET), four-dimensional computed tomography (4D-CT), single photon emission computed tomography (SPECT) and magnetic resonance imaging (MRI) to study normal tissue function in the context of radiotherapy to the lung, liver and head & neck. Published results to date demonstrate that functional imaging can be used to preferentially avoid normal tissues not easily identifiable on solely anatomical images. It is also a potentially very powerful tool for the early detection of radiotherapy-induced normal tissue adverse effects and could provide valuable data for building predictive models of outcome. However, one of the major challenges to building useful predictive models is that, to date, there are very little data available with combined images of normal function, 3D delivered radiation dose and clinical outcomes. Prospective data collection through well-constructed studies which use established morbidity scores is clearly a priority if significant progress is to be made in this area.
Collapse
Affiliation(s)
- Mike Partridge
- Joint Department of Physics, The Royal Mardsen NHS Foundation Trust & The Institute of Cancer Research, Sutton, UK.
| | | | | | | | | |
Collapse
|
29
|
Impact of18F-FDG PET on Treatment Strategy and 3D Radiotherapy Planning in Non–Small Cell Lung Cancer: A Prospective Multicenter Study. AJR Am J Roentgenol 2010; 195:350-5. [DOI: 10.2214/ajr.09.3981] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
30
|
Zaidi H, El Naqa I. PET-guided delineation of radiation therapy treatment volumes: a survey of image segmentation techniques. Eur J Nucl Med Mol Imaging 2010; 37:2165-87. [PMID: 20336455 DOI: 10.1007/s00259-010-1423-3] [Citation(s) in RCA: 230] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 02/20/2010] [Indexed: 12/23/2022]
Abstract
Historically, anatomical CT and MR images were used to delineate the gross tumour volumes (GTVs) for radiotherapy treatment planning. The capabilities offered by modern radiation therapy units and the widespread availability of combined PET/CT scanners stimulated the development of biological PET imaging-guided radiation therapy treatment planning with the aim to produce highly conformal radiation dose distribution to the tumour. One of the most difficult issues facing PET-based treatment planning is the accurate delineation of target regions from typical blurred and noisy functional images. The major problems encountered are image segmentation and imperfect system response function. Image segmentation is defined as the process of classifying the voxels of an image into a set of distinct classes. The difficulty in PET image segmentation is compounded by the low spatial resolution and high noise characteristics of PET images. Despite the difficulties and known limitations, several image segmentation approaches have been proposed and used in the clinical setting including thresholding, edge detection, region growing, clustering, stochastic models, deformable models, classifiers and several other approaches. A detailed description of the various approaches proposed in the literature is reviewed. Moreover, we also briefly discuss some important considerations and limitations of the widely used techniques to guide practitioners in the field of radiation oncology. The strategies followed for validation and comparative assessment of various PET segmentation approaches are described. Future opportunities and the current challenges facing the adoption of PET-guided delineation of target volumes and its role in basic and clinical research are also addressed.
Collapse
Affiliation(s)
- Habib Zaidi
- Geneva University Hospital, Geneva 4, Switzerland.
| | | |
Collapse
|
31
|
Rodríguez N, Sanz X, Trampal C, Foro P, Reig A, Lacruz M, Membrive I, Lozano J, Quera J, Algara M. 18F-FDG PET definition of gross tumor volume for radiotherapy of lung cancer: is the tumor uptake value-based approach appropriate for lymph node delineation? Int J Radiat Oncol Biol Phys 2010; 78:659-66. [PMID: 20133071 DOI: 10.1016/j.ijrobp.2009.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 08/09/2009] [Accepted: 08/13/2009] [Indexed: 11/17/2022]
Abstract
PURPOSE Positron emission tomography (PET) with the glucose analogue [18F] fluoro-2-deoxy-D-glucose ((18)F-FDG-PET) has been used in radiation treatment planning for non-small-cell carcinoma. To date, lymph nodes have been contoured according to the uptake of the tumor. This prospective study was performed to evaluate if nodal volume delineates according to FDG uptake within the primary tumor (PET-GTVnt) is suitable for nodal target volume delineation or if individualized nodal FDG uptake measure (PET-GTVnn) is necessary to better nodal target definition. METHODS AND MATERIALS Forty cases, who underwent a diagnostic (18)F-FDG PET/computed tomography (CT) scan, were included. Two PET-based GTVs for each lymph node were contoured and compared. First, we used an isocontour of 40% of the maximum tumor uptake (PET-GTVnt). Second, an isocontour of 40% of the maximum uptake of each node (PET-GTVnn) was employed. To avoid interobserver variability, this was carried out by the same radiation oncologist. Afterwards, the difference between both lymph node volumes was plotted against the ratio of the maximum uptakes (I(n)/I(t)) in a linear regression analysis. RESULTS Compared with CT-based lymph node volume (CT-GTVn), the intraclass correlation coefficient of PET-GTVnn was higher than the coefficient of PET-GTVnt (p < 0.001). All cases could be divided into four groups: undetected (17.5%), detected but overestimated (10%), detected but underestimated (35%), and correctly detected (37.5%). CONCLUSIONS If a method of automatic delineation shall be applied, this method must be applied to every lesion separately. However, to facilitate the delineation in daily practice, when I(n)/I(t) is ≤25%, lymph nodes could be delineated in accordance with tumor uptake, keeping an absolute difference in radii <5 mm.
Collapse
Affiliation(s)
- Núria Rodríguez
- Department of Radiation Oncology, Hospitales de la Esperanza y del Mar, Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
McGuire SM, Marks LB, Yin FF, Das SK. A methodology for selecting the beam arrangement to reduce the intensity-modulated radiation therapy (IMRT) dose to the SPECT-defined functioning lung. Phys Med Biol 2009; 55:403-16. [PMID: 20019404 DOI: 10.1088/0031-9155/55/2/005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Macroaggregated albumin single-photon emission computed tomography (MAA-SPECT) provides a map of the spatial distribution of lung perfusion. Our previous work developed a methodology to use SPECT guidance to reduce the dose to the functional lung in IMRT planning. This study aims to investigate the role of beam arrangement on both low and high doses in the functional lung. In our previous work, nine-beam IMRT plans were generated with and without SPECT guidance and compared for five patients. For the current study, the dose-function histogram (DFH) contribution for each of the nine beams for each patient was calculated. Four beams were chosen based on orientation and DFH contributions to create a SPECT-guided plan that spared the functional lung and maintained target coverage. Four-beam SPECT-guided IMRT plans reduced the F(20) and F(30) values by (16.5 +/- 6.8)% and (6.1 +/- 9.2)%, respectively, when compared to nine-beam conventional IMRT plans. Moreover, the SPECT-4F Plan reduces F(5) and F(13) for all patients by (11.0 +/- 8.2)% and (6.1 +/- 3.6)%, respectively, compared to the SPECT Plan. Using fewer beams in IMRT planning may reduce the amount of functional lung that receives 5 and 13 Gy, a factor that has recently been associated with radiation pneumonitis.
Collapse
Affiliation(s)
- S M McGuire
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA.
| | | | | | | |
Collapse
|
33
|
High impact of 18F-FDG-PET on management and prognostic stratification of newly diagnosed small cell lung cancer. Mol Imaging Biol 2009; 12:443-51. [PMID: 19921339 DOI: 10.1007/s11307-009-0295-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2009] [Revised: 07/12/2009] [Accepted: 07/29/2009] [Indexed: 12/13/2022]
Abstract
PURPOSE We evaluated whether 18F-FDG-PET altered stage classification, management, and prognostic stratification of newly diagnosed small cell lung cancer (SCLC). PROCEDURES We identified 46 consecutive patients undergoing staging positron emission tomography for SCLC from 1993-2008 inclusive. Updated survival data from the state Cancer Registry was available on 42 of 46 patients. RESULTS PET altered stage classification in 12 of 46 (26%) patients. PET altered treatment modality in nine patients, and the target mediastinal radiation field in another three patients. Therefore, PET altered management in 12 of 46 (26%) patients. Patients with limited disease (LD) on pre-PET staging had significantly longer overall survival (OS) than those upstaged to extensive disease (ED; median 18.6 months versus 5.7 months; log-rank p < 0.0001). In patients with ED on pre-PET staging, those downstaged to LD by PET had significantly longer OS than those with ED on PET (median 10.9 months versus 5.9 months; log-rank p = 0.037). CONCLUSION PET had a major impact on stage classification, management, and prognostic stratification of newly diagnosed SCLC.
Collapse
|
34
|
Ford EC, Herman J, Yorke E, Wahl RL. 18F-FDG PET/CT for image-guided and intensity-modulated radiotherapy. J Nucl Med 2009; 50:1655-65. [PMID: 19759099 PMCID: PMC2899678 DOI: 10.2967/jnumed.108.055780] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Advances in technology have allowed extremely precise control of radiation dose delivery and localization within a patient. The ability to confidently delineate target tumor boundaries, however, has lagged behind. (18)F-FDG PET/CT, with its ability to distinguish metabolically active disease from normal tissue, may provide a partial solution to this problem. Here we review the current applications of (18)F-FDG PET/CT in a variety of disease sites, including non-small cell lung cancer, head and neck cancer, and pancreatic adenocarcinoma. This review focuses on the use of (18)F-FDG PET/CT to aid in planning radiotherapy and the associated benefits and challenges. We also briefly consider novel radiopharmaceuticals that are beginning to be used in the context of radiotherapy planning.
Collapse
Affiliation(s)
- Eric C Ford
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland 21231, USA.
| | | | | | | |
Collapse
|
35
|
Zaidi H, Vees H, Wissmeyer M. Molecular PET/CT imaging-guided radiation therapy treatment planning. Acad Radiol 2009; 16:1108-33. [PMID: 19427800 DOI: 10.1016/j.acra.2009.02.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 02/11/2009] [Accepted: 02/19/2009] [Indexed: 01/01/2023]
Abstract
The role of positron emission tomography (PET) during the past decade has evolved rapidly from that of a pure research tool to a methodology of enormous clinical potential. (18)F-fluorodeoxyglucose (FDG)-PET is currently the most widely used probe in the diagnosis, staging, assessment of tumor response to treatment, and radiation therapy planning because metabolic changes generally precede the more conventionally measured parameter of change in tumor size. Data accumulated rapidly during the last decade, thus validating the efficacy of FDG imaging and many other tracers in a wide variety of malignant tumors with sensitivities and specificities often in the high 90 percentile range. As a result, PET/computed tomography (CT) had a significant impact on the management of patients because it obviated the need for further evaluation, guided further diagnostic procedures, and assisted in planning therapy for a considerable number of patients. On the other hand, the progress in radiation therapy technology has been enormous during the last two decades, now offering the possibility to plan highly conformal radiation dose distributions through the use of sophisticated beam targeting techniques such as intensity-modulated radiation therapy (IMRT) using tomotherapy, volumetric modulated arc therapy, and many other promising technologies for sculpted three-dimensional (3D) dose distribution. The foundation of molecular imaging-guided radiation therapy lies in the use of advanced imaging technology for improved definition of tumor target volumes, thus relating the absorbed dose information to image-based patient representations. This review documents technological advancements in the field concentrating on the conceptual role of molecular PET/CT imaging in radiation therapy treatment planning and related image processing issues with special emphasis on segmentation of medical images for the purpose of defining target volumes. There is still much more work to be done and many of the techniques reviewed are themselves not yet widely implemented in clinical settings.
Collapse
|
36
|
Use of PET and PET/CT for Radiation Therapy Planning: IAEA expert report 2006–2007. Radiother Oncol 2009; 91:85-94. [DOI: 10.1016/j.radonc.2008.11.008] [Citation(s) in RCA: 260] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 11/03/2008] [Accepted: 11/07/2008] [Indexed: 11/18/2022]
|
37
|
Abstract
PET/CT is an effective tool for the diagnosis, staging and restaging of cancer patients. It combines the complementary information of functional PET images and anatomical CT images in one imaging session. Conventional stand-alone PET has been replaced by PET/CT for improved patient comfort, patient throughput, and most importantly the proven clinical outcome of PET/CT over that of PET and that of separate PET and CT. There are over two thousand PET/CT scanners installed worldwide since 2001. Oncology is the main application for PET/CT. Fluorine-18 deoxyglucose is the choice of radiopharmaceutical in PET for imaging the glucose uptake in tissues, correlated with an increased rate of glycolysis in many tumor cells. New molecular targeted agents are being developed to improve the accuracy of targeting different disease states and assessing therapeutic response. Over 50% of cancer patients receive radiation therapy (RT) in the course of their disease treatment. Clinical data have demonstrated that the information provided by PET/CT often changes patient management of the patient and/or modifies the RT plan from conventional CT simulation. The application of PET/CT in RT is growing and will become increasingly important. Continuing improvement of PET/CT instrumentation will also make it easier for radiation oncologists to integrate PET/CT in RT. The purpose of this article is to provide a review of the current PET/CT technology, to project the future development of PET and CT for PET/CT, and to discuss some issues in adopting PET/CT in RT and potential improvements in PET/CT simulation of the thorax in radiation therapy.
Collapse
Affiliation(s)
- Tinsu Pan
- Department of Imaging Physics, M. D. Anderson Cancer Center, The University of Texas, Houston, Texas 77030, USA.
| | | |
Collapse
|
38
|
Mac Manus M, Hicks RJ. The use of positron emission tomography (PET) in the staging/evaluation, treatment, and follow-up of patients with lung cancer: a critical review. Int J Radiat Oncol Biol Phys 2008; 72:1298-306. [PMID: 19028270 DOI: 10.1016/j.ijrobp.2008.08.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 08/17/2008] [Accepted: 08/20/2008] [Indexed: 11/25/2022]
Affiliation(s)
- Michael Mac Manus
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, and University of Melbourne, Melbourne, Australia
| | | |
Collapse
|
39
|
Nestle U, Weber W, Hentschel M, Grosu AL. Biological imaging in radiation therapy: role of positron emission tomography. Phys Med Biol 2008; 54:R1-25. [PMID: 19060363 DOI: 10.1088/0031-9155/54/1/r01] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In radiation therapy (RT), staging, treatment planning, monitoring and evaluation of response are traditionally based on computed tomography (CT) and magnetic resonance imaging (MRI). These radiological investigations have the significant advantage to show the anatomy with a high resolution, being also called anatomical imaging. In recent years, so called biological imaging methods which visualize metabolic pathways have been developed. These methods offer complementary imaging of various aspects of tumour biology. To date, the most prominent biological imaging system in use is positron emission tomography (PET), whose diagnostic properties have clinically been evaluated for years. The aim of this review is to discuss the valences and implications of PET in RT. We will focus our evaluation on the following topics: the role of biological imaging for tumour tissue detection/delineation of the gross tumour volume (GTV) and for the visualization of heterogeneous tumour biology. We will discuss the role of fluorodeoxyglucose-PET in lung and head and neck cancer and the impact of amino acids (AA)-PET in target volume delineation of brain gliomas. Furthermore, we summarize the data of the literature about tumour hypoxia and proliferation visualized by PET. We conclude that, regarding treatment planning in radiotherapy, PET offers advantages in terms of tumour delineation and the description of biological processes. However, to define the real impact of biological imaging on clinical outcome after radiotherapy, further experimental, clinical and cost/benefit analyses are required.
Collapse
Affiliation(s)
- Ursula Nestle
- Departments of Radiation Oncology, University of Freiburg, Robert Koch Str. 3, 79106 Freiburg, Germany.
| | | | | | | |
Collapse
|
40
|
Roach PJ, Bailey DL, Harris BE. Enhancing Lung Scintigraphy With Single-Photon Emission Computed Tomography. Semin Nucl Med 2008; 38:441-9. [DOI: 10.1053/j.semnuclmed.2008.06.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
41
|
Topkan E, Yavuz AA, Aydin M, Onal C, Yapar F, Yavuz MN. Comparison of CT and PET-CT based planning of radiation therapy in locally advanced pancreatic carcinoma. J Exp Clin Cancer Res 2008; 27:41. [PMID: 18808725 PMCID: PMC2562364 DOI: 10.1186/1756-9966-27-41] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 09/23/2008] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND To compare computed tomography (CT) with co-registered positron emission tomography-computed tomography (PET-CT) as the basis for delineating gross tumor volume (GTV) in unresectable, locally advanced pancreatic carcinoma (LAPC). METHODS Fourteen patients with unresectable LAPC had both CT and PET images acquired. For each patient, two three-dimensional conformal plans were made using the CT and PET-CT fusion data sets. We analyzed differences in treatment plans and doses of radiation to primary tumors and critical organs. RESULTS Changes in GTV delineation were necessary in 5 patients based on PET-CT information. In these patients, the average increase in GTV was 29.7%, due to the incorporation of additional lymph node metastases and extension of the primary tumor beyond that defined by CT. For all patients, the GTVCT versus GTVPET-CT was 92.5 +/- 32.3 cm3 versus 104.5 +/- 32.6 cm3 (p = 0.009). Toxicity analysis revealed no clinically significant differences between two plans with regard to doses to critical organs. CONCLUSION Co-registration of PET and CT information in unresectable LAPC may improve the delineation of GTV and theoretically reduce the likelihood of geographic misses.
Collapse
Affiliation(s)
- Erkan Topkan
- Department of Radiation Oncology, Baskent University Medical Faculty, Adana Medical and Research Center, Kisla Saglik Yerleskesi, 01120, Adana, Turkey
| | - Ali A Yavuz
- Department of Radiation Oncology, Baskent University Medical Faculty, Adana Medical and Research Center, Kisla Saglik Yerleskesi, 01120, Adana, Turkey
| | - Mehmet Aydin
- Department of Nuclear Medicine, Baskent University Medical Faculty, Adana Medical and Research Center, Kisla Saglik Yerleskesi, 01120, Adana, Turkey
| | - Cem Onal
- Department of Radiation Oncology, Baskent University Medical Faculty, Adana Medical and Research Center, Kisla Saglik Yerleskesi, 01120, Adana, Turkey
| | - Fuat Yapar
- Department of Nuclear Medicine, Baskent University Medical Faculty, Adana Medical and Research Center, Kisla Saglik Yerleskesi, 01120, Adana, Turkey
| | - Melek N Yavuz
- Department of Radiation Oncology, Baskent University Medical Faculty, Adana Medical and Research Center, Kisla Saglik Yerleskesi, 01120, Adana, Turkey
| |
Collapse
|
42
|
Aristophanous M, Penney BC, Pelizzari CA. The development and testing of a digital PET phantom for the evaluation of tumor volume segmentation techniques. Med Phys 2008; 35:3331-42. [DOI: 10.1118/1.2938518] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
43
|
Seo Y, Mari C, Hasegawa BH. Technological development and advances in single-photon emission computed tomography/computed tomography. Semin Nucl Med 2008; 38:177-98. [PMID: 18396178 PMCID: PMC3049175 DOI: 10.1053/j.semnuclmed.2008.01.001] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Single-photon emission computed tomography/computed tomography (SPECT/CT) has emerged during the past decade as a means of correlating anatomical information from CT with functional information from SPECT. The integration of SPECT and CT in a single imaging device facilitates anatomical localization of the radiopharmaceutical to differentiate physiological uptake from that associated with disease and patient-specific attenuation correction to improve the visual quality and quantitative accuracy of the SPECT image. The first clinically available SPECT/CT systems performed emission-transmission imaging using a dual-headed SPECT camera and a low-power x-ray CT subsystem. Newer SPECT/CT systems are available with high-power CT subsystems suitable for detailed anatomical diagnosis, including CT coronary angiography and coronary calcification that can be correlated with myocardial perfusion measurements. The high-performance CT capabilities also offer the potential to improve compensation of partial volume errors for more accurate quantitation of radionuclide measurement of myocardial blood flow and other physiological processes and for radiation dosimetry for radionuclide therapy. In addition, new SPECT technologies are being developed that significantly improve the detection efficiency and spatial resolution for radionuclide imaging of small organs including the heart, brain, and breast, and therefore may provide new capabilities for SPECT/CT imaging in these important clinical applications.
Collapse
MESH Headings
- Coronary Angiography
- Coronary Artery Disease/diagnostic imaging
- Coronary Artery Disease/physiopathology
- Coronary Circulation
- Equipment Design/trends
- Humans
- Image Processing, Computer-Assisted/trends
- Radiopharmaceuticals/pharmacokinetics
- Radiotherapy Dosage
- Sensitivity and Specificity
- Technology, Radiologic/instrumentation
- Technology, Radiologic/trends
- Tomography Scanners, X-Ray Computed/trends
- Tomography, Emission-Computed, Single-Photon/instrumentation
- Tomography, Emission-Computed, Single-Photon/trends
- Tomography, X-Ray Computed/instrumentation
- Tomography, X-Ray Computed/trends
Collapse
Affiliation(s)
- Youngho Seo
- Department of Radiology, University of California, San Francisco, San Francisco, CA, USA
| | | | | |
Collapse
|
44
|
Ford EC, Lavely WC, Frassica DA, Myers LT, Asrari F, Wahl RL, Zellars RC. Comparison of FDG-PET/CT and CT for delineation of lumpectomy cavity for partial breast irradiation. Int J Radiat Oncol Biol Phys 2008; 71:595-602. [PMID: 18394814 DOI: 10.1016/j.ijrobp.2008.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 02/05/2008] [Accepted: 02/05/2008] [Indexed: 11/18/2022]
Abstract
PURPOSE The success of partial breast irradiation critically depends on proper target localization. We examined the use of fluorodeoxyglucose-positron emission tomography (FDG-PET)/computed tomography (CT) for improved lumpectomy cavity (LC) delineation and treatment planning. METHODS AND MATERIALS Twelve breast cancer patients underwent FDG-PET/CT on a GE Discovery scanner with a median time from surgery to PET/CT of 49 days. The LC was contoured on the CT scan by a radiation oncologist and, together with a nuclear medicine physician, on the PET/CT scan. The volumes were calculated and compared in each patient. Treatment planning target volumes (PTVs) were calculated by expanding the margin 2 cm beyond the LC, maintaining a 5-mm margin from the skin and chest wall, and the treatment plans were evaluated. In addition, a study with a patient-like phantom was conducted to evaluate the effect that the window/level settings might have on contouring. RESULTS The margin of the LC was well visualized on all FDG-PET images. The phantom results indicated that the difference between the known volume and the FDG-PET-delineated volume was <10%, regardless of the window/level settings. The PET/CT volumes were larger than the CT volumes in all cases (median volume ratio, 1.68; range, 1.24-2.45; p = 0.004). The PET/CT-based PTVs were also larger than the CT-based PTV (median volume ratio, 1.16; range, 1.08-1.64; p = 0.006). In 9 of 12 patients, a CT-based treatment plan did not provide adequate coverage of the PET/CT-based PTV (99% of the PTV received <95% of the prescribed dose), resulting in substantial cold spots in some plans. In these cases, treatment plans were generated which were specifically designed to cover the larger PET/CT-based PTV. Although these plans showed an increased dose to the normal tissues, the increases were modest: the non-target breast volume receiving > or =50 Gy, lung volume receiving > or =30 Gy, and heart volume receiving > or =5 Gy increased by 5.7%, 0.8%, and 0.2%, respectively. The normal tissue dose-volume objectives were still met with these plans. CONCLUSION The results of our study have shown that FDG-PET/CT can be used to define the LC volume. The increased FDG uptake was likely a result of postoperative inflammation in the LC. The targets defined using PET/CT were significantly larger than those defined with CT alone. Our results have shown that treatment plans can be generated to cover these larger PET/CT target volumes with only a modest increase in irradiated tissue volume compared with CT-determined PTVs.
Collapse
Affiliation(s)
- Eric C Ford
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD 21231, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Macapinlac HA. Clinical applications of positron emission tomography/computed tomography treatment planning. Semin Nucl Med 2008; 38:137-40. [PMID: 18243849 DOI: 10.1053/j.semnuclmed.2007.11.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Positron emission tomography/computed tomography (PET/CT) has provided an incremental dimension to the management of cancer patients by allowing the incorporation of important molecular images in radiotherapy treatment planning, ie, direct evaluation of tumor metabolism, cell proliferation, apoptosis, hypoxia, and angiogenesis. The CT component allows 4D imaging techniques, allowing improvements in the accuracy of treatment delivery by compensating for tumor/normal organ motion, improving PET quantification, and correcting PET and CT image misregistration. The combination of PET and CT in a single imaging system to obtain a fused anatomical and functional image data is now emerging as a promising tool in radiotherapy departments for improved delineation of tumor volumes and optimization of treatment plans. PET has the potential to improve radiotherapy planning by minimizing unnecessary irradiation of normal tissues and by reducing the risk of geographic miss. PET influences treatment planning in a high proportion of cases and therefore radiotherapy dose escalation without PET may be futile. This article examines the increasing role of hybrid PET/CT imaging techniques in process of improving treatment planning in oncology with emphasis on non small cell lung cancer.
Collapse
Affiliation(s)
- Homer A Macapinlac
- Department of Nuclear Medicine, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
46
|
Sura S, Greco C, Gelblum D, Yorke ED, Jackson A, Rosenzweig KE. (18)F-fluorodeoxyglucose positron emission tomography-based assessment of local failure patterns in non-small-cell lung cancer treated with definitive radiotherapy. Int J Radiat Oncol Biol Phys 2008; 70:1397-402. [PMID: 18374225 PMCID: PMC2899687 DOI: 10.1016/j.ijrobp.2007.08.052] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 08/19/2007] [Accepted: 08/20/2007] [Indexed: 10/22/2022]
Abstract
PURPOSE To assess the pattern of local failure using (18)F-fluorodeoxyglucose (FDG)-positron emission tomography (PET) scans after radiotherapy (RT) in non-small-cell lung cancer (NSCLC) patients treated with definitive RT whose gross tumor volumes (GTVs) were defined with the aid of pre-RT PET data. METHOD AND MATERIALS The data from 26 patients treated with involved-field RT who had local failure and a post-RT PET scan were analyzed. The patterns of failure were visually scored and defined as follows: (1) within the GTV/planning target volume (PTV); (2) within the GTV, PTV, and outward; (3) within the PTV and outward; and (4) outside the PTV. Local failure was also evaluated as originating from nodal areas vs. the primary tumor. RESULTS We analyzed 34 lesions. All 26 patients had recurrence originating from their primary tumor. Of the 34 lesions, 8 (24%) were in nodal areas, 5 of which (63%) were marginal or geographic misses compared with only 1 (4%) of the 26 primary recurrences (p = 0.001). Of the eight primary tumors that had received a dose of <60 Gy, six (75%) had failure within the GTV and two (25%) at the GTV margin. At doses of > or = 60 Gy, 6 (33%) of 18 had failure within the GTV and 11 (61%) at the GTV margin, and 1 (6%) was a marginal miss (p < 0.05). CONCLUSION At lower doses, the pattern of recurrences was mostly within the GTV, suggesting that the dose might have been a factor for tumor control. At greater doses, the treatment failures were mostly at the margin of the GTV. This suggests that visual incorporation of PET data for GTV delineation might be inadequate, and more sophisticated approaches of PET registration should be evaluated.
Collapse
Affiliation(s)
- Sonal Sura
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Carlo Greco
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Daphna Gelblum
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Ellen D. Yorke
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Andrew Jackson
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Kenneth E. Rosenzweig
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY
| |
Collapse
|
47
|
Gross Tumor Volume and Clinical Target Volume. Cancer Imaging 2008. [DOI: 10.1016/b978-012374212-4.50093-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
48
|
Abstract
The superiority of PET imaging to structural imaging in many cancers is rapidly transforming the practice of radiotherapy planning, especially in lung cancer. Although most lung cancers are potentially treatable with radiation therapy, only patients who have truly locoregionally confined disease can be cured by this modality. PET improves selection for high-dose radiation therapy by excluding many patients who have incurable distant metastasis or extensive locoregional spread. In those patients suitable for definitive treatment, PET can help shape the treatment fields to avoid geographic miss and minimize unnecessary irradiation of normal tissues. PET will allow for more accurately targeted dose escalation studies in the future and could potentially lead to better long-term survival.
Collapse
Affiliation(s)
- Michael P Mac Manus
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, Vic 3002, Australia.
| | | |
Collapse
|
49
|
Noël G, Schumacher C, Niederst C, Beneyton V, Meyer P, Karamanoukian D. Techniques innovantes en radiothérapie des cancers bronchopulmonaires. Rev Mal Respir 2007. [DOI: 10.1016/s0761-8425(07)78138-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
50
|
Greco C, Rosenzweig K, Cascini GL, Tamburrini O. Current status of PET/CT for tumour volume definition in radiotherapy treatment planning for non-small cell lung cancer (NSCLC). Lung Cancer 2007; 57:125-34. [PMID: 17478008 DOI: 10.1016/j.lungcan.2007.03.020] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 03/15/2007] [Accepted: 03/20/2007] [Indexed: 11/25/2022]
Abstract
Target volume delineation of lung cancer is well known to be prone to large inter-observer variability. The advent of PET/CT devices, with co-registered functional and anatomical data, has opened new exciting possibilities for target volume definition in radiation oncology. PET/CT imaging is rapidly being embraced by the radiation oncology community as a tool to improve the accuracy of target volume delineation for treatment optimization in NSCLC. Several studies have dealt with the feasibility of incorporating FDG-PET information into contour delineation with the aim to improve overall accuracy and to reduce inter-observer variation. A significant impact of PET-derived contours on treatment planning has been shown in 30-60% of the plans with respect to the CT-only target volume. The most prominent changes in the gross tumour volume (GTV) have been reported in cases with atelectasis and following the incorporation of PET-positive nodes in otherwise CT-insignificant nodal areas. Although inter-observer variability is still present following target volume delineation with PET/CT, it is greatly reduced compared to conventional CT-only contouring. PET/CT may also provide improved therapeutic ratio compared to conventional CT planning. Increased target coverage and often reduced target volumes may potentially result in PET/CT-based planning to yield better tumour control probability through dose escalation, while still complying with dose/volume constrains for normal tissues. Despite these exciting results, more clinical studies need to be performed to better define the role of combined PET/CT in treatment planning for NSCLC.
Collapse
Affiliation(s)
- Carlo Greco
- Division of Radiation Oncology, University of Magna Graecia, Viale Europa, Germaneto, Catanzaro 88100, Italy.
| | | | | | | |
Collapse
|