1
|
Hickinbotham EJ, Ridley FA, Rushton SP, Pattison Z. 30 years of climate related phenological research: themes and trends. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2025:10.1007/s00484-025-02903-w. [PMID: 40353905 DOI: 10.1007/s00484-025-02903-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 03/17/2025] [Accepted: 03/19/2025] [Indexed: 05/14/2025]
Abstract
Anthropogenic climate change has caused changes in the seasonal timing (phenology) of life-cycle events with consequential impacts on ecosystem functioning and biodiversity. Over the last 30 years, climate-related phenological research has expanded rapidly. To identify key themes and knowledge gaps in this research landscape we used a text-based analysis approach, topic modelling. Our systematic literature search identified 4,681 publications on phenology between 1989 and 2019. We showed taxonomic and geographic bias in the literature with a large proportion of publications on bird migration and reproduction, insect phenology, marine phenology, and agriculture, focused within the Northern hemisphere. Our results reflected the decadal advances in technology, for example remote sensing studies increased the most in popularity. Topics related to genetics increased along with mismatching, which has impacts on species fitness. While climate-based topics were highly connected, there was little connectivity between different disciplines and newer areas of research. Remote sensing rarely co-occurred with other topics, insect phenology was either being studied with plants or birds instead of being considered as part of a network, and mismatching was rarely studied alongside other methodologies in phenological research. We suggest that transdisciplinary research considering species as part of a system and analyzing new or understudied taxa and regions should be prioritized. The disjuncts identified in this analysis inhibit development of a coherent view of the impact of phenological changes on biodiversity and will have implications for conservation management.
Collapse
Affiliation(s)
| | - Francesca A Ridley
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, England
| | - Steven P Rushton
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, England
| | - Zarah Pattison
- Biological and Environmental Sciences, University of Stirling, Stirling, UK
| |
Collapse
|
2
|
Wairokpam B, Wagh VV, Singh HC, Maurya A, Singh LA, Rana TS. Integrating ecological niche modeling and natural regeneration assessment to identify conservation priorities for Garcinia pedunculata in India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:476. [PMID: 40140184 DOI: 10.1007/s10661-025-13925-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 03/17/2025] [Indexed: 03/28/2025]
Abstract
Garcinia pedunculata Roxb. ex-Buch. -Ham. (Clusiaceae) is a fruit-bearing tree species known for its frequent utilisation as an anti-obesity agent and to treat gastrointestinal disorders by the dwellers of the Indo-Myanmar Biodiversity Hotspot (IMBH) region. The nutritional profile of the phytocompounds found in fruits has been in high demand in pharmaceutics. Due to a lack of sustainable harvesting practices, the species population has been severely fragmented, leading to its limited genetic resources being vulnerable to the threat of climate change. This study was conducted in the northeastern states of India for 2 years between 2022 and 2024 to assess the regeneration fitness of G. pedunculata through sporadic population surveys and to predict its habitat suitability under current and future climatic scenarios using ecological niche modeling (ENM). The study incorporated 19 bioclimatic variables from WorldClim, along with physiographic (elevation, slope, hillshade), edaphic (soil pH, soil organic carbon), and biotic factors (land use, land cover). Species distribution was modelled using an ensemble of four machine learning algorithms-maxent, random forest, support vector machine, and boosted regression tree. Annual precipitation, precipitation of the coldest quarter, soil pH, and precipitation in the driest month were found to have the maximum contributions as key determinants of the species distribution. The ENM predictions of a substantial decline in suitable niches for the species toward projected climatic regimes in the year 2080 with significant model support (AUC = 0.96 and TSS = 0.87), and poor regeneration fitness of the species indicated an alarming situation for the conservation of the species and the development of its sustainable harvesting practices. Therefore, the findings of this study recommend taking immediate action to develop strict nature reserves, germplasm banks, and seed gene banks for the sustainable management of the species.
Collapse
Affiliation(s)
- Benerjit Wairokpam
- Molecular Systematics Laboratory, CSIR-National Botanical Research Institute, Rana Pratap Marg, Uttar Pradesh, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Plant Diversity, Systematics and Herbarium Division, CSIR-National Botanical Research Institute, Uttar Pradesh, Lucknow, 226001, India
| | - Vijay V Wagh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Plant Diversity, Systematics and Herbarium Division, CSIR-National Botanical Research Institute, Uttar Pradesh, Lucknow, 226001, India
| | - Harish Chandra Singh
- Molecular Systematics Laboratory, CSIR-National Botanical Research Institute, Rana Pratap Marg, Uttar Pradesh, Lucknow, 226001, India
- School of Studies in Botany, Jiwaji University, Gwalior, 474011, Madhya Pradesh, India
- Plant Diversity, Systematics and Herbarium Division, CSIR-National Botanical Research Institute, Uttar Pradesh, Lucknow, 226001, India
| | - Aakash Maurya
- Molecular Systematics Laboratory, CSIR-National Botanical Research Institute, Rana Pratap Marg, Uttar Pradesh, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Lamabam Aashishkumar Singh
- Molecular Systematics Laboratory, CSIR-National Botanical Research Institute, Rana Pratap Marg, Uttar Pradesh, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Plant Diversity, Systematics and Herbarium Division, CSIR-National Botanical Research Institute, Uttar Pradesh, Lucknow, 226001, India
| | - Tikam S Rana
- Molecular Systematics Laboratory, CSIR-National Botanical Research Institute, Rana Pratap Marg, Uttar Pradesh, Lucknow, 226001, India.
- Central Government Enclave, CSIR-Human Resource Development Centre (Council of Scientific and Industrial Research, Uttar Pradesh, Ministry of S & T, Govt. of India, New Delhi) Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Beltrán I, Vila-Pouca C, Loiseleur R, Webb JK, Herculano-Houzel S, Whiting MJ. Effect of elevated incubation temperatures on learning and brain anatomy of hatchling and juvenile lizards. J Comp Physiol B 2025; 195:67-79. [PMID: 39648166 DOI: 10.1007/s00360-024-01595-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 08/02/2024] [Accepted: 11/17/2024] [Indexed: 12/10/2024]
Abstract
Global warming is a major threat to reptiles because temperature strongly affects their development. High incubation temperatures reduce hatchling body size and physiological performance; however, its effects on brain development and learning abilities are less well understood. In particular, it remains unclear if the effects of elevated temperatures on learning are restricted to hatchlings or instead will persist later in life. To address this gap, we examined the effect of 'current' and 'future' (end-of-century, + 4 °C) incubation temperatures on hatchling and juvenile geckos Amalosia lesueurii, to test: (1) if elevated temperatures affect hatchling learning ability; (2) if the effects on learning persist in juvenile lizards, and (3) if and how elevated temperatures affect hatchling and juvenile brain anatomy and neuronal count. We found that fewer future-incubated hatchlings succeeded in the learning tasks. Nonetheless, the successful ones needed fewer trials to learn compared to current-incubated hatchlings, possibly due to a higher motivation. Reduced learning ability was still observed at the juvenile stage, but it did not differ between treatments due to a reduced cognitive performance of current-incubated juveniles. Future-incubated hatchlings had a smaller telencephalon, but this pattern was not found in juveniles. Neuron number and density in hatchlings or juveniles from both treatments were not different. Our results suggest that global warming will affect hatchling survival in the wild but it remains unclear if future-incubated lizards could compensate for the harmful effects of elevated temperatures. Further testing beyond the laboratory is required to understand whether phenotypic plasticity in lizards is sufficient to track global warming.
Collapse
Affiliation(s)
- Iván Beltrán
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia.
| | - Catarina Vila-Pouca
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175 CNRS, Montpellier, France
| | - Rebecca Loiseleur
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
- Faculty of Life Sciences, University of Strasbourg, Strasbourg, France
| | - Jonathan K Webb
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | | | - Martin J Whiting
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
4
|
Wang WWY, Page NR, Strickler AM, Kusaka AK, Gunderson AR. Heat sensitivity of sperm in the lizard Anolis sagrei. J Exp Biol 2025; 228:jeb249435. [PMID: 39670469 DOI: 10.1242/jeb.249435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/08/2024] [Indexed: 12/14/2024]
Abstract
The heat sensitivity of reproduction is a critical determinant of population persistence under climate change. However, the heat sensitivity of gametes has been much less studied relative to that of adults. We developed a method to measure the heat tolerance limits of lizard sperm cells, and used the method to test several aspects of sperm cell thermal biology in the brown anole lizard (Anolis sagrei). We estimated the repeatability of sperm traits by measuring heat tolerance and baseline motility of ejaculated sperm from the same individuals multiple times over 21 days. To investigate co-adaptation of sperm and adult thermal traits, we tested for a correlation between sperm heat tolerance and the heat tolerance of the adults that produced them. Furthermore, we tested for effects of episodic heat stress experienced by males on sperm performance. Sperm heat tolerance and motility were both repeatable, consistent with evolutionary potential, though there was clear evidence for environmental effects on these traits as well. Contrary to the expectation of thermal co-adaptation, we found no correlation between sperm and adult heat tolerance. A single, episodic extreme heat event experienced by adult males immediately impaired sperm motility, consistent with detrimental effects of adult heat stress on sperm stored within males. Our study adds to the mounting evidence that sperm are heat-sensitive and represent a vulnerability to global warming, but also suggest evolutionary potential for thermal adaptation at the gamete level.
Collapse
Affiliation(s)
- Wayne Wen-Yeu Wang
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA 70118, USA
| | - Natalie R Page
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA 70118, USA
| | - Anthony M Strickler
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA 70118, USA
| | - Alicia K Kusaka
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA 70118, USA
| | - Alex R Gunderson
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA 70118, USA
| |
Collapse
|
5
|
Bartes SN, Monk J, Jenkins C, Hindell MA, Costa DP, Arnould JPY. Habitat selection and influence on hunting success in female Australian fur seals. Sci Rep 2024; 14:26982. [PMID: 39506103 PMCID: PMC11541878 DOI: 10.1038/s41598-024-78643-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/04/2024] [Indexed: 11/08/2024] Open
Abstract
Determining the factors influencing habitat selection and hunting success in top predators is crucial for understanding how these species may respond to environmental changes. For marine top predators, such factors have been documented in pelagic foragers, with habitat use and hunting success being linked to chlorophyll-a concentrations, sea surface temperature and light conditions. In contrast, little is known about the determinants of benthic marine predators. The Australian fur seal (Arctocephalus pusillus doriferus) is a benthic-diving forager that has a breeding and foraging distribution largely restricted to Bass Strait, the shallow (max. depth 80 m) continental shelf region between the Australian mainland and Tasmania. The species forages mostly on benthic prey and represents the greatest resident marine predator biomass in south-eastern Australia. The region is also one of the world's fastest-warming marine areas and oceanographic changes are influencing shifts in prey distribution and abundance. In the present study, GPS-derived locations of benthic dives (n = 288,449) and dive behaviour metrics were used to determine seafloor habitat selection and factors influencing hunting success in 113 lactating adult females from Kanowna Island during the winters of 2006-2021. Individuals non-randomly selected foraging habitats comprised of deeper, steeper sloped, muddy-sandy areas with less gravel and highly disturbed regions (P < 0.01). Hunting success was greatest in shallower rocky reefs (< 30 m) and deep areas (> 40 m) characterised by moderate presence of gravel (25-50%) and substantial rock composition (50-75%) on the seabed. These findings suggest that habitat use and hunting success in adult female Australian fur seals could be impacted by predicted oceanographic changes, such as rising temperature, altered currents and waves which may modify seafloor characteristics and benthic communities.
Collapse
Affiliation(s)
- Saia Nahir Bartes
- School of Life and Environmental Sciences, Deakin University, 221 Burwood Highway, Burwood, VIC, 3125, Australia.
| | - Jacquomo Monk
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, 7001, Australia
| | - Chris Jenkins
- Institute of Artic and Alpine Research, University of Colorado Boulder, Boulder, USA
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Mark A Hindell
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, 7001, Australia
| | - Daniel P Costa
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - John P Y Arnould
- School of Life and Environmental Sciences, Deakin University, 221 Burwood Highway, Burwood, VIC, 3125, Australia
| |
Collapse
|
6
|
Zhu D, Yang L, Li Y, Huang P, Yao B, Kong Z, Xiang Y. Predicting the Potential Distribution of the Endangered Pyrethrum tatsienense in China Using an Optimized Maxent Model Under Climate Change Scenarios. Ecol Evol 2024; 14:e70503. [PMID: 39498200 PMCID: PMC11532267 DOI: 10.1002/ece3.70503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/04/2024] [Accepted: 10/14/2024] [Indexed: 11/07/2024] Open
Abstract
Climate change can significantly impact the ecological suitability and diversity of species. Pyrethrum tatsienense, a critically endangered species in China, requires a thorough understanding of its habitat distribution and the environmental factors that affect it in the context of climate change. The Maxent algorithm was used to examine the key factors influencing the distribution of P. tatsienense in China, using data from 127 species occurrences and environmental variables from the Last Interglacial (LIG), Last Glacial Maximum (LGM), Mid-Holocene (MH), current, and future scenarios. The Maxent model was optimized utilizing the R package ENMeval, providing the most accurate predictions for suitable habitats across various scenarios. Results show that suitable regions for P. tatsienense encompass approximately 15.02% (14.42 × 105 km2) of China, predominantly on the Qinghai-Tibetan Plateau. The mean UV-B of the highest month (UVB3: 39.7%), elevation (elev: 28.7%), and the warmest season of precipitation (Bio18: 17.4%) are the major limiting factors for suitable habitat. The optimal species distribution ranges are identified as > 7500 J m-2 day-1 for UVB3, 2700-5600 m for elev, and 150-480 mm for Bio18. Predictions for the historical climate indicate the presence of refugia at the junction of Sichuan, Tibet, and Qinghai. The MH predictions show an increase in climatic suitability for P. tatsienense compared to the LIG and LGM, with an expansion of suitable areas westward. Future climate change scenarios indicate that the potential suitable habitat for P. tatsienense is expected to increase with increasing radiative forcing, with higher latitude regions becoming new marginally suitable habitats. However, predicted environmental changes in western Tibet may drive the loss of highly suitable habitats in the future. These findings enhance our understanding of how environmental factors impact the habitat suitability of P. tatsienense and provide valuable insights for developing effective management and conservation strategies for this important species.
Collapse
Affiliation(s)
- Duo Ping Zhu
- Institute of Ecological Conservation and RestorationChinese Academy of ForestryBeijingChina
- State Forestry Administration Dunhuang‐ Kumutage Desert Ecosystem Location Research StationDunhuangChina
- Institute of Desertification StudiesChinese Academy of ForestryBeijingChina
| | - Liu Yang
- Institute of Ecological Conservation and RestorationChinese Academy of ForestryBeijingChina
- State Forestry Administration Dunhuang‐ Kumutage Desert Ecosystem Location Research StationDunhuangChina
- Institute of Desertification StudiesChinese Academy of ForestryBeijingChina
| | - Yong‐hua Li
- Institute of Ecological Conservation and RestorationChinese Academy of ForestryBeijingChina
- State Forestry Administration Dunhuang‐ Kumutage Desert Ecosystem Location Research StationDunhuangChina
- Institute of Desertification StudiesChinese Academy of ForestryBeijingChina
| | - Pei Huang
- Institute of Ecological Conservation and RestorationChinese Academy of ForestryBeijingChina
- State Forestry Administration Dunhuang‐ Kumutage Desert Ecosystem Location Research StationDunhuangChina
- Institute of Desertification StudiesChinese Academy of ForestryBeijingChina
| | - Bin Yao
- Institute of Ecological Conservation and RestorationChinese Academy of ForestryBeijingChina
- State Forestry Administration Dunhuang‐ Kumutage Desert Ecosystem Location Research StationDunhuangChina
- State Key Laboratory of Tree Genetics and BreedingInstitute of Ecolog Conservation and Restoration Chinese Academy of ForestryBeijingChina
| | - Zhe Kong
- Foreign Environmental Cooperation Center of Ministry of Ecology and Environment of ChinaBeijingChina
| | - Yangzhou Xiang
- School of Geography and Resources, Guizhou Provincial Key Laboratory of Geographic State Monitoring of WatershedGuizhou Education UniversityGuiyangChina
| |
Collapse
|
7
|
Cecchetto M, Dettai A, Gallut C, Obst M, Kuklinski P, Balazy P, Chelchowski M, Małachowicz M, Poćwierz-Kotus A, Zbawicka M, Reiss H, Eléaume MP, Ficetola GF, Pavloudi C, Exter K, Fontaneto D, Schiaparelli S. Seasonality of primary production explains the richness of pioneering benthic communities. Nat Commun 2024; 15:8340. [PMID: 39333524 PMCID: PMC11436788 DOI: 10.1038/s41467-024-52673-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 09/18/2024] [Indexed: 09/29/2024] Open
Abstract
A pattern of increasing species richness from the poles to the equator is frequently observed in many animal taxa. Ecological limits, determined by the abiotic conditions and biotic interactions within an environment, are one of the major factors influencing the geographical distribution of species diversity. Energy availability is often considered a crucial limiting factor, with temperature and productivity serving as empirical measures. However, these measures may not fully explain the observed species richness, particularly in marine ecosystems. Here, through a global comparative approach and standardised methodologies, such as Autonomous Reef Monitoring Structures (ARMS) and DNA metabarcoding, we show that the seasonality of primary production explains sessile animal richness comparatively or better than surface temperature or primary productivity alone. A Hierarchical Generalised Additive Model (HGAM) is validated, after a model selection procedure, and the prediction error is compared, following a cross-validation approach, with HGAMs including environmental variables commonly used to explain animal richness. Moreover, the linear effect of production magnitude on species richness becomes apparent only when considered jointly with seasonality, and, by identifying world coastal areas characterized by extreme values of both, we postulate that this effect may result in a positive relationship in environments with lower seasonality.
Collapse
Affiliation(s)
- Matteo Cecchetto
- Department of Earth, Environmental and Life Science (DISTAV), University of Genoa, Genoa, Italy.
| | - Agnès Dettai
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, SU, EPHE, UA, Paris, France
| | - Cyril Gallut
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Sorbonne Université, MNHN, CNRS, EPHE, UA Station Marine de Concarneau, Concarneau, France
| | - Matthias Obst
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Piotr Kuklinski
- Institute of Oceanology, Polish Academy of Sciences, ul. Powstańców Warszawy 55, Sopot, Poland
| | - Piotr Balazy
- Institute of Oceanology, Polish Academy of Sciences, ul. Powstańców Warszawy 55, Sopot, Poland
| | - Maciej Chelchowski
- Institute of Oceanology, Polish Academy of Sciences, ul. Powstańców Warszawy 55, Sopot, Poland
| | - Magdalena Małachowicz
- Institute of Oceanology, Polish Academy of Sciences, ul. Powstańców Warszawy 55, Sopot, Poland
| | - Anita Poćwierz-Kotus
- Institute of Oceanology, Polish Academy of Sciences, ul. Powstańców Warszawy 55, Sopot, Poland
| | - Małgorzata Zbawicka
- Institute of Oceanology, Polish Academy of Sciences, ul. Powstańców Warszawy 55, Sopot, Poland
| | - Henning Reiss
- Nord University, Faculty of Biosciences and Aquaculture, 8049, Bodø, Norway
| | - Marc P Eléaume
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, SU, EPHE, UA, Paris, France
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Sorbonne Université, MNHN, CNRS, EPHE, UA Station Marine de Concarneau, Concarneau, France
| | | | | | - Katrina Exter
- Flanders Marine Institute (VLIZ), InnovOcean Campus, Jacobsenstraat 1, 8400, Oostende, Belgium
| | - Diego Fontaneto
- National Research Council of Italy-Water Research Institute (CNR-IRSA), I-28922, Verbania, Italy
- National Biodiversity Future Center (NBFC), I-90133, Palermo, Italy
| | - Stefano Schiaparelli
- Department of Earth, Environmental and Life Science (DISTAV), University of Genoa, Genoa, Italy
- Italian National Antarctic Museum (MNA, Section of Genoa), University of Genoa, Genoa, Italy
| |
Collapse
|
8
|
Thierry M, Cote J, Bestion E, Legrand D, Clobert J, Jacob S. The interplay between abiotic and biotic factors in dispersal decisions in metacommunities. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230137. [PMID: 38913055 PMCID: PMC11391301 DOI: 10.1098/rstb.2023.0137] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/23/2024] [Accepted: 03/01/2024] [Indexed: 06/25/2024] Open
Abstract
Suitable conditions for species to survive and reproduce constitute their ecological niche, which is built by abiotic conditions and interactions with conspecifics and heterospecifics. Organisms should ideally assess and use information about all these environmental dimensions to adjust their dispersal decisions depending on their own internal conditions. Dispersal plasticity is often considered through its dependence on abiotic conditions or conspecific density and, to a lesser extent, with reference to the effects of interactions with heterospecifics, potentially leading to misinterpretation of dispersal drivers. Here, we first review the evidence for the effects of and the potential interplays between abiotic factors, biotic interactions with conspecifics and heterospecifics and phenotype on dispersal decisions. We then present an experimental test of these potential interplays, investigating the effects of density and interactions with conspecifics and heterospecifics on temperature-dependent dispersal in microcosms of Tetrahymena ciliates. We found significant differences in dispersal rates depending on the temperature, density and presence of another strain or species. However, the presence and density of conspecifics and heterospecifics had no effects on the thermal-dependency of dispersal. We discuss the causes and consequences of the (lack of) interplay between the different environmental dimensions and the phenotype for metacommunity assembly and dynamics. This article is part of the theme issue 'Diversity-dependence of dispersal: interspecific interactions determine spatial dynamics'.
Collapse
Affiliation(s)
- Mélanie Thierry
- Station d'Ecologie Théorique et Expérimentale, UAR 2029, CNRS , Moulis 09200, France
| | - Julien Cote
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), UMR 5300 CNRS-IRD-TINP-UT3 Université Toulouse III - Paul Sabatier, Bât. 4R1, 118 route de Narbonne , Toulouse Cedex 9 31062, France
| | - Elvire Bestion
- Station d'Ecologie Théorique et Expérimentale, UAR 2029, CNRS , Moulis 09200, France
| | - Delphine Legrand
- Station d'Ecologie Théorique et Expérimentale, UAR 2029, CNRS , Moulis 09200, France
| | - Jean Clobert
- Station d'Ecologie Théorique et Expérimentale, UAR 2029, CNRS , Moulis 09200, France
| | - Staffan Jacob
- Station d'Ecologie Théorique et Expérimentale, UAR 2029, CNRS , Moulis 09200, France
| |
Collapse
|
9
|
Zhang D, Zhao Y, Qi H, Shan L, Chen G, Ning T. Effects of Micro-Topography and Vegetation on Soil Moisture on Fixed Sand Dunes in Tengger Desert, China. PLANTS (BASEL, SWITZERLAND) 2024; 13:1571. [PMID: 38891378 PMCID: PMC11174629 DOI: 10.3390/plants13111571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
Soil moisture is a key factor in arid ecosystems, with local variations influenced by topography and vegetation. Understanding this relationship is crucial for combating desertification. Employing ANOVA, Mean Decrease Accuracy (MDA) analysis from random forest modeling and Structural Equation Modeling (SEM), this study investigates the distribution of soil moisture and its associations with topographic and vegetative factors across four micro-geomorphic units in the Tengger Desert, China. Significant heterogeneity in soil moisture across various layers and locations, including windward and leeward slopes and the tops and bottoms of dunes, was observed. Soil moisture generally increases from the surface down to 300 cm, with diminishing fluctuations at greater depths. Soil moisture peaks in the surface and middle layers on windward slopes and in deep layers at the bottom of dunes, exhibiting an initial rise and then a decline on windward slopes. Topographic (including slope direction and elevation difference) and vegetation (including shrub and herb coverage) factors significantly influence soil moisture across three depth layers. Topographic factors negatively affect soil moisture directly, whereas vegetation positively influences it indirectly, with shrub and herb abundance enhancing moisture levels. These insights inform ecological management and the formulation of soil moisture-conservation strategies in arid deserts. The study underscores customizing sand-binding vegetation to various micro-geomorphic dune units.
Collapse
Affiliation(s)
- Dinghai Zhang
- Centre for Quantitative Biology, College of Science, Gansu Agricultural University, Lanzhou 730070, China; (Y.Z.); (H.Q.); (T.N.)
| | - Youyi Zhao
- Centre for Quantitative Biology, College of Science, Gansu Agricultural University, Lanzhou 730070, China; (Y.Z.); (H.Q.); (T.N.)
| | - Haidi Qi
- Centre for Quantitative Biology, College of Science, Gansu Agricultural University, Lanzhou 730070, China; (Y.Z.); (H.Q.); (T.N.)
| | - Lishan Shan
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China; (L.S.); (G.C.)
| | - Guopeng Chen
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China; (L.S.); (G.C.)
| | - Ting Ning
- Centre for Quantitative Biology, College of Science, Gansu Agricultural University, Lanzhou 730070, China; (Y.Z.); (H.Q.); (T.N.)
| |
Collapse
|
10
|
Zhang X, Nizamani MM, Jiang C, Fang F, Zhao K. Potential planting regions of Pterocarpus santalinus (Fabaceae) under current and future climate in China based on MaxEnt modeling. Ecol Evol 2024; 14:e11409. [PMID: 38826162 PMCID: PMC11139971 DOI: 10.1002/ece3.11409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 06/04/2024] Open
Abstract
This study modeled the habitat distribution of Pterocarpus santalinus, a valuable rosewood species, across China under current and future climate scenarios (SSPs126, SSPs245, and SSPs585) using MaxEnt. Our findings reveal that the current suitable habitat, spanning approximately 409,600 km2, is primarily located in the central and southern parts of Guangdong, Guangxi, Fujian, and Yunnan, as well as in the Hainan provinces, along with the coastal regions of Taiwan, and the Sichuan-Chongqing border. The habitat's distribution is significantly influenced by climatic factors such as temperature seasonality (bio4), mean temperature of the wettest quarter (bio8), annual mean temperature (bio1), and annual precipitation (bio12), while terrain and soil factors play a lesser role. Under future climate scenarios, the suitable habitat for P. santalinus is projected to expand, with a northeastward shift in its distribution center. This research not only sheds light on the geoecological characteristics and geographical distribution of P. santalinus in China but also offers a scientific basis for planning its cultivation areas and enhancing cultivation efficiency under changing climate conditions.
Collapse
Affiliation(s)
- Xiao‐Feng Zhang
- Hainan Academy of Forestry (Hainan Academy of Mangrove)HaikouChina
| | | | - Chao Jiang
- Jinxian County No. 3 Middle SchoolNanchangChina
| | - Fa‐Zhi Fang
- Hainan Academy of Forestry (Hainan Academy of Mangrove)HaikouChina
| | - Kun‐Kun Zhao
- Tropical Crops Genetic Resources InstituteChinese Academy of Tropical Agricultural SciencesHaikouChina
| |
Collapse
|
11
|
Opdal AF, Wright PJ, Blom G, Höffle H, Lindemann C, Kjesbu OS. Spawning fish maintains trophic synchrony across time and space beyond thermal drivers. Ecology 2024; 105:e4304. [PMID: 38747119 DOI: 10.1002/ecy.4304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 01/12/2024] [Accepted: 02/20/2024] [Indexed: 06/04/2024]
Abstract
Increasing ocean temperature will speed up physiological rates of ectotherms. In fish, this is suggested to cause earlier spawning due to faster oocyte growth rates. Over time, this could cause spawning time to become decoupled from the timing of offspring food resources, a phenomenon referred to as trophic asynchrony. We used biological data, including body length, age, and gonad developmental stages collected from >125,000 individual Northeast Arctic cod (Gadus morhua) sampled between 59 and 73° N in 1980-2019. Combined with experimental data on oocyte growth rates, our analyses show that cod spawned progressively earlier by about a week per decade, partly due to ocean warming. It also appears that spawning time varied by more than 40 days, depending on year and spawning location. The significant plasticity in spawning time seems to be fine-tuned to the local phytoplankton spring bloom phenology. This ability to partly overcome thermal drivers and thus modulate spawning time could allow individuals to maximize fitness by closely tracking local environmental conditions important for offspring survival. Our finding highlights a new dimension for trophic match-mismatch and should be an important consideration in models used to predict phenology dynamics in a warmer climate.
Collapse
Affiliation(s)
| | | | - Geir Blom
- Department of Statistics, Directorate of Fisheries, Bergen, Norway
| | | | - Christian Lindemann
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Marine Biology Section, The Norwegian Institute for Water Research, Bergen, Norway
| | | |
Collapse
|
12
|
Bonanno G, Veneziano V. Seed dormancy, climate changes, desertification and soil use transformation threaten the Mediterranean endemic monospecific plant Petagnaea gussonei. Sci Rep 2024; 14:8235. [PMID: 38589665 PMCID: PMC11001949 DOI: 10.1038/s41598-024-58948-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/04/2024] [Indexed: 04/10/2024] Open
Abstract
This study investigated the germination capacity (endogenous factor) of Petagnaea gussonei (Spreng.) Rauschert, an endemic monospecific plant considered as a relict species of the ancient Mediterranean Tertiary flora. This investigation focused also on the temporal trends of soil-use, climate and desertification (exogenous factors) across the natural range of P. gussonei. The final germination percentage showed low values between 14 and 32%, the latter obtained with GA3 and agar at 10 °C. The rising temperatures in the study area will further increase the dormancy of P. gussonei, whose germination capacity was lower and slower at temperatures higher than 10 °C. A further limiting factor of P. gussonei is its dormancy, which seems to be morpho-physiological. Regarding climate trends, in the period 1931-2020, the average temperature increased by 0.5 °C, from 15.4 to 15.9 °C, in line with the projected climate changes throughout the twenty-first century across the Mediterranean region. The average annual rainfall showed a relatively constant value of c. 900 mm, but extreme events grew considerably in the period 1991-2020. Similarly, the land affected by desertification expanded in an alarming way, by increasing from 21.2% in 2000 to 47.3% in 2020. Soil-use changes created also a complex impacting mosaic where c. 40% are agricultural areas. The effective conservation of P. gussonei should be multilateral by relying on germplasm banks, improving landscape connectivity and vegetation cover, and promoting climate policies.
Collapse
Affiliation(s)
- Giuseppe Bonanno
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Antonino Longo 19, 95125, Catania, Italy.
| | - Vincenzo Veneziano
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Antonino Longo 19, 95125, Catania, Italy
| |
Collapse
|
13
|
Fattorini S. Upward and Poleward (but Not Phenological) Shifts in a Forest Tenebrionid Beetle in Response to Global Change in a Mediterranean Area. INSECTS 2024; 15:242. [PMID: 38667372 PMCID: PMC11049879 DOI: 10.3390/insects15040242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024]
Abstract
There is an increasing volume of literature on the impact of climate change on insects. However, there is an urgent need for more empirical research on underrepresented groups in key areas, including species for which the effects of climatic change may seem less evident. The present paper illustrates the results of a study on a common forest tenebrionid beetle, Accanthopus velikensis (Piller and Mitterpacher, 1783), at a regional scale within the Mediterranean basin. Using a large set of records from Latium (central Italy), changes in the median values of elevation, latitude, longitude, and phenology between two periods (1900-1980 vs. 1981-2022) were tested. Records of A. velikensis in the period 1981-2022 showed median values of elevation and latitude higher than those recorded in the first period. Thus, in response to rising temperatures, the species became more frequent at higher elevation and in northern places. By contrast, A. velikensis does not seem to have changed its activity pattern in response to increased temperatures, but this might be an artifact due to the inclusion of likely overwintering individuals. The results obtained for A. velikensis indicate that even thermally euryoecious species can show changes in their elevational and latitudinal distribution, and that poleward shifts can be apparent even within a small latitudinal gradient.
Collapse
Affiliation(s)
- Simone Fattorini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| |
Collapse
|
14
|
Famiglietti CA, Worden M, Anderegg LDL, Konings AG. Impacts of climate timescale on the stability of trait-environment relationships. THE NEW PHYTOLOGIST 2024; 241:2423-2434. [PMID: 38037289 DOI: 10.1111/nph.19416] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023]
Abstract
Predictive relationships between plant traits and environmental factors can be derived at global and regional scales, informing efforts to reorient ecological models around functional traits. However, in a changing climate, the environmental variables used as predictors in such relationships are far from stationary. This could yield errors in trait-environment model predictions if timescale is not accounted for. Here, the timescale dependence of trait-environment relationships is investigated by regressing in situ trait measurements of specific leaf area, leaf nitrogen content, and wood density on local climate characteristics summarized across several increasingly long timescales. We identify contrasting responses of leaf and wood traits to climate timescale. Leaf traits are best predicted by recent climate timescales, while wood density is a longer term memory trait. The use of sub-optimal climate timescales reduces the accuracy of the resulting trait-environment relationships. This study concludes that plant traits respond to climate conditions on the timescale of tissue lifespans rather than long-term climate normals, even at large spatial scales where multiple ecological and physiological mechanisms drive trait change. Thus, determining trait-environment relationships with temporally relevant climate variables may be critical for predicting trait change in a nonstationary climate system.
Collapse
Affiliation(s)
| | - Matthew Worden
- Department of Earth System Science, Stanford University, Stanford, CA, 94305, USA
| | - Leander D L Anderegg
- Department of Ecology, Evolution, & Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Alexandra G Konings
- Department of Earth System Science, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
15
|
Kloog I, Zhang X. Methods to Advance Climate Science in Respiratory Health: Satellite-Based Environmental Modeling for Temperature Exposure Assessment in Epidemiological Studies. Immunol Allergy Clin North Am 2024; 44:97-107. [PMID: 37973263 DOI: 10.1016/j.iac.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Climate change is a major concern with significant impacts on human health including respiratory outcomes, particularly through changes in air temperature. The rise in global temperature has led to an increase in heat waves and extreme weather events, which pose serious risks to respiratory health. Accurately assessing the effects of air temperature on respiratory health requires a comprehensive approach that incorporates fine-scale exposure assessment to characterize the geospatial environment impacting population health. Recent advances in open-source earth observation data have allowed for improved exposure assessment through temperature modeling.
Collapse
Affiliation(s)
- Itai Kloog
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Geography and Environmental Development, Ben-Gurion University, Beer Sheva, Israel; Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xueying Zhang
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pediatrics, The Kravis Children's Hospital, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
16
|
Liao W, Zhuo Z, Qian Q, Hu D, Xu D. Potential impact of climatic factors on the distribution of Graphium sarpedon in China. Ecol Evol 2024; 14:e10858. [PMID: 38327692 PMCID: PMC10847806 DOI: 10.1002/ece3.10858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 02/09/2024] Open
Abstract
Graphium sarpedon is a significant foliar pest of Laurel plants in China. In this study, the MaxEnt model was used to investigate the distribution of G. sarpedon and predict its potential distribution areas in China in the future (2050s and 2090s) based on three Shared Socioeconomic Pathways (SSP1-2.6, SSP2-4.5, and SSP5-8.5), and key environmental variables affecting its distribution were identified. The results showed that under the current climatic conditions, the suitable distribution areas of G. sarpedon were 92.17°-134.96° E and 18.04°-33.61° N, including Yangtze Plain (Middle and Lower), Pearl River Delta, Yangtze River Delta, and Lingnan areas. Under the future climate conditions, the total suitable distribution area of G. sarpedon decreased, but the area of medium suitable area increased. The study identified 11 key environmental variables affecting the distribution of G. sarpedon, the most critical of which was Precipitation of Warmest Quarter (bio18) and precipitation in April, May, June, and September (prec4, prec5, prec6, and prec9). This study is beneficial for monitoring and preventing the possible changes of G. sarpedon and provides theoretical references for its prevention and control.
Collapse
Affiliation(s)
- Wenkai Liao
- College of Life ScienceChina West Normal UniversityNanchongChina
| | - Zhihang Zhuo
- College of Life ScienceChina West Normal UniversityNanchongChina
| | - Qianqian Qian
- College of Life ScienceChina West Normal UniversityNanchongChina
| | - Dan Hu
- College of Life ScienceChina West Normal UniversityNanchongChina
| | - Danping Xu
- College of Life ScienceChina West Normal UniversityNanchongChina
| |
Collapse
|
17
|
Fuentes MMPB, Santos AJB, Abreu-Grobois A, Briseño-Dueñas R, Al-Khayat J, Hamza S, Saliba S, Anderson D, Rusenko KW, Mitchell NJ, Gammon M, Bentley BP, Beton D, Booth DTB, Broderick AC, Colman LP, Snape RTE, Calderon-Campuzano MF, Cuevas E, Lopez-Castro MC, Flores-Aguirre CD, Mendez de la Cruz F, Segura-Garcia Y, Ruiz-Garcia A, Fossette S, Gatto CR, Reina RD, Girondot M, Godfrey M, Guzman-Hernandez V, Hart CE, Kaska Y, Lara PH, Marcovaldi MAGD, LeBlanc AM, Rostal D, Liles MJ, Wyneken J, Lolavar A, Williamson SA, Manoharakrishnan M, Pusapati C, Chatting M, Mohd Salleh S, Patricio AR, Regalla A, Restrepo J, Garcia R, Santidrián Tomillo P, Sezgin C, Shanker K, Tapilatu F, Turkozan O, Valverde RA, Williams K, Yilmaz C, Tolen N, Nel R, Tucek J, Legouvello D, Rivas ML, Gaspar C, Touron M, Genet Q, Salmon M, Araujo MR, Freire JB, Castheloge VD, Jesus PR, Ferreira PD, Paladino FV, Montero-Flores D, Sozbilen D, Monsinjon JR. Adaptation of sea turtles to climate warming: Will phenological responses be sufficient to counteract changes in reproductive output? GLOBAL CHANGE BIOLOGY 2024; 30:e16991. [PMID: 37905464 DOI: 10.1111/gcb.16991] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 11/02/2023]
Abstract
Sea turtles are vulnerable to climate change since their reproductive output is influenced by incubating temperatures, with warmer temperatures causing lower hatching success and increased feminization of embryos. Their ability to cope with projected increases in ambient temperatures will depend on their capacity to adapt to shifts in climatic regimes. Here, we assessed the extent to which phenological shifts could mitigate impacts from increases in ambient temperatures (from 1.5 to 3°C in air temperatures and from 1.4 to 2.3°C in sea surface temperatures by 2100 at our sites) on four species of sea turtles, under a "middle of the road" scenario (SSP2-4.5). Sand temperatures at sea turtle nesting sites are projected to increase from 0.58 to 4.17°C by 2100 and expected shifts in nesting of 26-43 days earlier will not be sufficient to maintain current incubation temperatures at 7 (29%) of our sites, hatching success rates at 10 (42%) of our sites, with current trends in hatchling sex ratio being able to be maintained at half of the sites. We also calculated the phenological shifts that would be required (both backward for an earlier shift in nesting and forward for a later shift) to keep up with present-day incubation temperatures, hatching success rates, and sex ratios. The required shifts backward in nesting for incubation temperatures ranged from -20 to -191 days, whereas the required shifts forward ranged from +54 to +180 days. However, for half of the sites, no matter the shift the median incubation temperature will always be warmer than the 75th percentile of current ranges. Given that phenological shifts will not be able to ameliorate predicted changes in temperature, hatching success and sex ratio at most sites, turtles may need to use other adaptive responses and/or there is the need to enhance sea turtle resilience to climate warming.
Collapse
Affiliation(s)
- M M P B Fuentes
- Marine Turtle Research, Ecology, and Conservation Group, Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, Florida, USA
| | - A J B Santos
- Marine Turtle Research, Ecology, and Conservation Group, Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, Florida, USA
| | - A Abreu-Grobois
- Unidad Academica Mazatlan, Instituto de Ciencias del Mar y Limnologia, UNAM, Mazatlan, Sinaloa, Mexico
| | - R Briseño-Dueñas
- Unidad Academica Mazatlan, Instituto de Ciencias del Mar y Limnologia, UNAM, Mazatlan, Sinaloa, Mexico
| | - J Al-Khayat
- Environmental Science Centre, Qatar University, Doha, Qatar
| | - S Hamza
- Environmental Science Centre, Qatar University, Doha, Qatar
| | - S Saliba
- Environmental Science Centre, Qatar University, Doha, Qatar
| | - D Anderson
- Gumbo Limbo Nature Center, Boca Raton, Florida, USA
| | - K W Rusenko
- Gumbo Limbo Nature Center, Boca Raton, Florida, USA
| | - N J Mitchell
- School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - M Gammon
- School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - B P Bentley
- School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts, USA
| | - D Beton
- Society for Protection of Turtles, Gonyeli, Northern Cyprus
| | - D T B Booth
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia
| | - A C Broderick
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | - L P Colman
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | - R T E Snape
- Society for Protection of Turtles, Gonyeli, Northern Cyprus
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | - M F Calderon-Campuzano
- Programa de Protección y Conservación de Tortugas Marinas, Convenio FONATUR-Instituto de Ciencias del Mar y Limnología-UNAM, Mazatlán, Sinaloa, Mexico
| | - E Cuevas
- Instituto de Investigaciones Oceanologicas, Universidad Autonoma de Baja California, Ensenada, Mexico
| | - M C Lopez-Castro
- Pronatura Península de Yucatán, A. C. Programa para la Conservación de la Tortuga Marina, Mérida, Yucatán, Mexico
| | - C D Flores-Aguirre
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - F Mendez de la Cruz
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Y Segura-Garcia
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - A Ruiz-Garcia
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - S Fossette
- School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, Australia
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia, Australia
| | - C R Gatto
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - R D Reina
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - M Girondot
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, Gif-sur-Yvette, France
| | - M Godfrey
- North Carolina Wildlife Resources Commission, Beaufort, North Carolina, USA
- Duke Marine Laboratory, Nicholas School of Environment, Duke University, Beaufort, North Carolina, USA
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | | | - C E Hart
- Centro de Investigaciones Oceánicas del Mar de Cortés-Gran Acuario de Mazatlán, Mazatlán, Mexico
| | - Y Kaska
- Department of Biology, Faculty of Science, Pamukkale University, Denizli, Turkey
| | - P H Lara
- Fundação Projeto Tamar, Florianópolis, Brazil
| | | | - A M LeBlanc
- Georgia Southern University, Statesboro, Georgia, USA
| | - D Rostal
- Georgia Southern University, Statesboro, Georgia, USA
| | - M J Liles
- Asociacion ProCosta, San Salvador, El Salvador
| | - J Wyneken
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida, USA
| | - A Lolavar
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida, USA
| | - S A Williamson
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida, USA
| | | | | | - M Chatting
- Environmental Science Centre, Qatar University, Doha, Qatar
- School of Civil Engineering, University College Dublin, Dublin, Ireland
| | - S Mohd Salleh
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - A R Patricio
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
- Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Ispa-Instituto Universitário de Ciências Psicológicas, Lisbon, Portugal
| | - A Regalla
- Instituto da Biodiversidade e das Áreas Protegidas, Dr. Alfredo Simão da Silva (IBAP), Bissau, Guinea-Bissau
| | - J Restrepo
- Sea Turtle Conservancy, Gainesville, Florida, USA
| | - R Garcia
- Sea Turtle Conservancy, Gainesville, Florida, USA
| | | | - C Sezgin
- Sea Turtle Research, Rescue and Rehabilitation Center (DEKAMER), Mugla, Turkey
| | - K Shanker
- Dakshin Foundation, Bangalore, India
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, India
| | - F Tapilatu
- Research Center of Pacific Marine Resources-University of Papua (UNIPA), Manokwari, Papua Barat, Indonesia
| | - O Turkozan
- Department of Biology, Faculty of Science, Aydın Adnan Menderes University, Aydın, Turkey
| | - R A Valverde
- Sea Turtle Conservancy, Gainesville, Florida, USA
- Biological Sciences, Southeastern Louisiana University, Hammond, Louisiana, USA
| | - K Williams
- Caretta Research Project, Savannah, Georgia, USA
| | - C Yilmaz
- Hakkari University, Vocational School of Health Services, Hakkari, Turkey
| | - N Tolen
- Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - R Nel
- Department of Zoology, Institute for Coastal and Marine Research, Nelson Mandela University, Gqeberha, South Africa
| | - J Tucek
- Department of Zoology, Institute for Coastal and Marine Research, Nelson Mandela University, Gqeberha, South Africa
| | - D Legouvello
- Department of Zoology, Institute for Coastal and Marine Research, Nelson Mandela University, Gqeberha, South Africa
| | - M L Rivas
- Department of Biology, University of Cadiz, Cadiz, Spain
| | - C Gaspar
- Te Mana O Te Moana, Moorea-Maiao, French Polynesia
| | - M Touron
- Te Mana O Te Moana, Moorea-Maiao, French Polynesia
| | - Q Genet
- Te Mana O Te Moana, Moorea-Maiao, French Polynesia
| | - M Salmon
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida, USA
| | - M R Araujo
- Ministerio de Medio Ambiente y Recursos Naturales, San Salvador, El Salvador
| | - J B Freire
- Fundação Espírito Santense de Tecnologia-FEST, Vitória, Espírito Santo, Brazil
| | | | - P R Jesus
- Econservation Estudos e Projetos Ambientais, Vitória, Espírito Santo, Brazil
| | - P D Ferreira
- Departamento de Gemologia, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brazil
| | - F V Paladino
- Purdue University Fort Wayne, Fort Wayne, Indiana, USA
| | | | - D Sozbilen
- Department of Veterinary, Acıpayam Vocational School, Pamukkale University, Denizli, Turkey
| | - J R Monsinjon
- Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER), Délégation Océan Indien (DOI), Le Port, La Réunion, France
| |
Collapse
|
18
|
Calfayan LM, Cavia R, Fraschina J, Guidobono JS, Gorosito IL, Busch M. Environmental drivers of long-term variations in the abundance of the red hocicudo mouse (Oxymycterus rufus) in Pampas agroecosystems. Integr Zool 2024; 19:37-51. [PMID: 37243424 DOI: 10.1111/1749-4877.12721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
During the 20th century, there has been an ongoing agricultural expansion and global warming, two of the main determinants influencing biodiversity changes in Argentina. The red hocicudo mouse (Oxymycterus rufus) inhabits subtropical grasslands and riparian habitats and has increased its abundance in recent years in central Argentina agroecosystems. This paper describes the long-term temporal changes in O. rufus abundance in Exaltación de la Cruz department, Buenos Aires province, Argentina, in relation to weather fluctuations and landscape features, as well as analyzes the spatio-temporal structure of captures of animals. We used generalized liner models, semivariograms, the Mantel test, and autocorrelation functions for the analysis of rodent data obtained from trappings conducted between 1984 and 2014. O. rufus showed an increase in abundance across the years of study, with its distribution depending on landscape features, such as habitat types and the distance to floodplains. Capture rates showed a spatio-temporal aggregation, suggesting expansion from previously occupied sites. O. rufus was more abundant at lower minimum temperatures in summer, higher precipitation in spring and summer, and lower precipitations in winter. Weather conditions affected O. rufus abundance, but there was local variation that differed from global patterns of climate change.
Collapse
Affiliation(s)
- Laura Mariel Calfayan
- Laboratorio de Ecología de Poblaciones, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Buenos Aires, Argentina
| | - Regino Cavia
- Laboratorio de Ecología de Poblaciones, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Buenos Aires, Argentina
| | - Jimena Fraschina
- Laboratorio de Ecología de Poblaciones, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Buenos Aires, Argentina
| | - Juan Santiago Guidobono
- Laboratorio de Ecología de Poblaciones, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Buenos Aires, Argentina
| | - Irene Laura Gorosito
- Laboratorio de Ecología de Poblaciones, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Buenos Aires, Argentina
| | - María Busch
- Laboratorio de Ecología de Poblaciones, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Buenos Aires, Argentina
| |
Collapse
|
19
|
Ray AE, Tribbia DZ, Cowan DA, Ferrari BC. Clearing the air: unraveling past and guiding future research in atmospheric chemosynthesis. Microbiol Mol Biol Rev 2023; 87:e0004823. [PMID: 37914532 PMCID: PMC10732025 DOI: 10.1128/mmbr.00048-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
SUMMARY Atmospheric chemosynthesis is a recently proposed form of chemoautotrophic microbial primary production. The proposed process relies on the oxidation of trace concentrations of hydrogen (≤530 ppbv), carbon monoxide (≤90 ppbv), and methane (≤1,870 ppbv) gases using high-affinity enzymes. Atmospheric hydrogen and carbon monoxide oxidation have been primarily linked to microbial growth in desert surface soils scarce in liquid water and organic nutrients, and low in photosynthetic communities. It is well established that the oxidation of trace hydrogen and carbon monoxide gases widely supports the persistence of microbial communities in a diminished metabolic state, with the former potentially providing a reliable source of metabolic water. Microbial atmospheric methane oxidation also occurs in oligotrophic desert soils and is widespread throughout copiotrophic environments, with established links to microbial growth. Despite these findings, the direct link between trace gas oxidation and carbon fixation remains disputable. Here, we review the supporting evidence, outlining major gaps in our understanding of this phenomenon, and propose approaches to validate atmospheric chemosynthesis as a primary production process. We also explore the implications of this minimalistic survival strategy in terms of nutrient cycling, climate change, aerobiology, and astrobiology.
Collapse
Affiliation(s)
- Angelique E. Ray
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, Australia
- Australian Centre for Astrobiology, UNSW Sydney, Sydney, Australia
| | - Dana Z. Tribbia
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, Australia
- Australian Centre for Astrobiology, UNSW Sydney, Sydney, Australia
| | - Don A. Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Belinda C. Ferrari
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, Australia
- Australian Centre for Astrobiology, UNSW Sydney, Sydney, Australia
| |
Collapse
|
20
|
Hassan T, Gulzar R, Hamid M, Ahmad R, Waza SA, Khuroo AA. Plant phenology shifts under climate warming: a systematic review of recent scientific literature. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 196:36. [PMID: 38093150 DOI: 10.1007/s10661-023-12190-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023]
Abstract
Climate warming-driven temporal shifts in phenology are widely recognised as the foremost footprint of global environmental change. In this regard, concerted research efforts are being made worldwide to monitor and assess the plant phenological responses to climate warming across species, ecosystems and seasons. Here, we present a global synthesis of the recent scientific literature to assess the progress made in this area of research. To achieve this, we conducted a systematic review by following PRISMA protocol, which involved rigorous screening of 9476 studies on the topic and finally selected 215 studies for data extraction. The results revealed that woody species, natural ecosystems and plant phenological responses in spring season have been predominantly studied, with the herbaceous species, agricultural ecosystems and other seasons grossly understudied. Majority of the studies reported phenological advancement (i.e., preponement) in spring, followed by also advancement in summer but delay in autumn. Methodology-wise, nearly two -third of the studies have employed direct observational approach, followed by herbarium-based and experimental approaches, with the latter covering least temporal depth. We found a steady increase in research on the topic over the last decade with a sharp increase since 2014. The global country-wide scientific output map highlights the huge geographical gaps in this area of research, particularly in the biodiversity-rich tropical regions of the developing world. Based on the findings of this global synthesis, we identify the current knowledge gaps and suggest future directions for this emerging area of research in an increasingly warming world.
Collapse
Affiliation(s)
- Tabasum Hassan
- Centre for Biodiversity & Taxonomy, Department of Botany, University of Kashmir, Srinagar, Jammu & Kashmir, India.
| | - Ruquia Gulzar
- Centre for Biodiversity & Taxonomy, Department of Botany, University of Kashmir, Srinagar, Jammu & Kashmir, India
| | - Maroof Hamid
- Centre for Biodiversity & Taxonomy, Department of Botany, University of Kashmir, Srinagar, Jammu & Kashmir, India
| | - Rameez Ahmad
- Centre for Biodiversity & Taxonomy, Department of Botany, University of Kashmir, Srinagar, Jammu & Kashmir, India
| | - Showkat A Waza
- Mountain Crop Research Station (Sagam), SKUAST Kashmir, Anantnag, Jammu & Kashmir, India
| | - Anzar Ahmad Khuroo
- Centre for Biodiversity & Taxonomy, Department of Botany, University of Kashmir, Srinagar, Jammu & Kashmir, India
| |
Collapse
|
21
|
Blumstein DM, MacManes MD. When the tap runs dry: the physiological effects of acute experimental dehydration in Peromyscus eremicus. J Exp Biol 2023; 226:jeb246386. [PMID: 37921453 PMCID: PMC10714145 DOI: 10.1242/jeb.246386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/12/2023] [Indexed: 11/04/2023]
Abstract
Desert organisms have evolved physiological, biochemical and genomic mechanisms to survive the extreme aridity of desert environments. Studying desert-adapted species provides a unique opportunity to investigate the survival strategies employed by organisms in some of the harshest habitats on Earth. Two of the primary challenges faced in desert environments are maintaining water balance and thermoregulation. We collected data in a simulated desert environment and a captive colony of cactus mice (Peromyscus eremicus) and used lab-based experiments with real time physiological measurements; energy expenditure, water loss rate and respiratory exchange rate, to characterize the response to water deprivation. Mice without access to water had significantly lower energy expenditures and in turn, reduced water loss compared to mice with access to water after the first 24 h of the experiment. Additionally, we observed significant mass loss that is probably due to dehydration-associated anorexia a response to limit fluid loss by reducing waste and the solute load as well as allowing water reabsorption from the kidneys and gastrointestinal tract. Finally, we observed body temperature correlated with sex, with males without access to water maintaining body temperature when compared with hydrated males, whereas body temperature decreased for females without access to water, suggesting daily metabolic depression in females.
Collapse
Affiliation(s)
- Danielle M. Blumstein
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Matthew D. MacManes
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| |
Collapse
|
22
|
Kalloniati K, Christou ED, Kournopoulou A, Gittings JA, Theodorou I, Zervoudaki S, Raitsos DE. Long-term warming and human-induced plankton shifts at a coastal Eastern Mediterranean site. Sci Rep 2023; 13:21068. [PMID: 38030672 PMCID: PMC10687065 DOI: 10.1038/s41598-023-48254-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/24/2023] [Indexed: 12/01/2023] Open
Abstract
Plankton are key ecological indicators for assessing the impacts of human-induced pressures like climate change and waste-water discharge. Here, 26 years (1988-2015) of biweekly in-situ chlorophyll-a concentration, mesozooplankton biomass and remotely-sensed sea surface temperature (SST) data are utilized to investigate long-term changes of plankton biomass and timing of growth (phenology) in relation to warming, in a coastal region of the Saronikos Gulf (Aegean Sea). A Waste-Water Treatment Plant (WWTP) was established in 1995, leading to decreased nutrient concentrations circa 2004. Overall, the results indicate an interplay between warming and changes in ecological status. During higher nutrient input (1989-2004), a temporal mismatch between zooplankton and phytoplankton, and a positive zooplankton growth-SST association, are evident. Conversely, in the warmer, less mesotrophic period 2005-2015, an earlier timing of zooplankton growth (related to copepod abundance) synchronizes with phytoplankton growth, including a secondary autumn growth period. Concurrently, an abrupt negative interannual relationship between SST and mesozooplankton, and a summer biomass decrease (linked with cladoceran abundance) are observed. This work provides evidence that current warming could alter plankton abundance and phenology in nearshore Eastern Mediterranean ecosystems, suggesting shifts in plankton community composition that could trigger potential cascading effects on higher trophic levels.
Collapse
Affiliation(s)
- K Kalloniati
- Department of Biology, National and Kapodistrian University of Athens, 15772, Athens, Greece.
| | - E D Christou
- Institute of Oceanography, Hellenic Centre for Marine Research (HCMR), 19013, Anavyssos, Attica, Greece
| | - A Kournopoulou
- Department of Biology, National and Kapodistrian University of Athens, 15772, Athens, Greece
| | - J A Gittings
- Department of Biology, National and Kapodistrian University of Athens, 15772, Athens, Greece
| | - I Theodorou
- Department of Biology, National and Kapodistrian University of Athens, 15772, Athens, Greece
| | - S Zervoudaki
- Institute of Oceanography, Hellenic Centre for Marine Research (HCMR), 19013, Anavyssos, Attica, Greece
| | - D E Raitsos
- Department of Biology, National and Kapodistrian University of Athens, 15772, Athens, Greece
| |
Collapse
|
23
|
Lin Z, He M, Zhong C, Li Y, Tang S, Kang X, Wu Z. Responses of gut microbiota in crocodile lizards ( Shinisaurus crocodilurus) to changes in temperature. Front Microbiol 2023; 14:1263917. [PMID: 38033565 PMCID: PMC10684959 DOI: 10.3389/fmicb.2023.1263917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023] Open
Abstract
The gut microbiota plays an essential role in maintaining the health and fitness of the host organism. As a critical environmental variable, temperature exerts significant effects on animal survival and reproduction. Elevated temperatures can influence the composition and function of the animal gut microbiota, which may have potentially detrimental effects on the host. The crocodile lizard (Shinisaurus crocodilurus) is an ancient and currently endangered reptile species due to human hunting and habitat destruction. Given the predicted shifts in global temperatures in the next century, it is important to understand how warming affects the gut microbiota of these vulnerable lizards, which remains unclear. To determine how the microbial communities change in crocodile lizards in response to warming, we analyzed the gut microbiota under five temperature conditions (22°C, 24°C, 26°C, 28°C, and 30°C) using 16S rRNA high-throughput sequencing. Results showed that the dominant phyla, Proteobacteria and Bacteroidetes, in gut microbiota were not significantly affected by temperature variations, but increasing temperature altered the structure and increased the community richness of the gut microbiota. In addition, warming changed the abundance of Pseudomonas aeruginosa and Actinobacteria, which may have negative effects on the physiological health of the crocodile lizards. Functional prediction analysis demonstrated that the functional pathways enriched in crocodile lizards were mainly related to metabolism, with no significant differences observed in these pathways at KEGG pathway level 1 after warming. These results provide valuable insights into the ecological adaptations and regulatory mechanisms employed by crocodile lizards in response to warming, which may be of benefit for their conservation.
Collapse
Affiliation(s)
- Zhengzhong Lin
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, China
| | - Mingxian He
- College of Food and Biochemical Engineering, Guangxi Science and Technology Normal University, Guangxi, China
| | - Chunying Zhong
- College of Vocational and Technical Education, Guangxi Science and Technology Normal University, Guangxi, China
| | - Yuhui Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, China
| | - Sanqi Tang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, China
| | - Xindan Kang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, China
| | - Zhengjun Wu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, China
| |
Collapse
|
24
|
He R, Shi H, Hu M, Zhou Q, Zhang Q, Dang H. Divergent effects of warming on nonstructural carbohydrates in woody plants: a meta-analysis. PHYSIOLOGIA PLANTARUM 2023; 175:e14117. [PMID: 38148215 DOI: 10.1111/ppl.14117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/18/2023] [Accepted: 12/01/2023] [Indexed: 12/28/2023]
Abstract
Nonstructural carbohydrates (NSC, including soluble sugars and starch) are essential for supporting growth and survival of woody plants, and play multifunctional roles in various ecophysiological processes that are being rapidly changed by climate warming. However, it still remains unclear whether there is a consistent response pattern of NSC dynamics in woody plants to climate warming across organ types and species taxa. Here, based on a compiled database of 52 woody plant species worldwide, we conducted a meta-analysis to investigate the effects of experimental warming on NSC dynamics. Our results indicated that the responses of NSC dynamics to warming were primarily driven by the fluctuations of starch, while soluble sugars did not undergo significant changes. The effects of warming on NSC shifted from negative to positive with the extension of warming duration, while the negative warming effects on NSC became more pronounced as warming magnitude increased. Overall, our study showed the divergent responses of NSC and its components in different organs of woody plants to experimental warming, suggesting a potentially changed carbon (C) balance in woody plants in future global warming. Thus, our findings highlight that predicting future changes in plant functions and terrestrial C cycle requires a mechanism understanding of how NSC is linked to a specific global change driver.
Collapse
Affiliation(s)
- Rui He
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Hang Shi
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Man Hu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Quan Zhou
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Quanfa Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Haishan Dang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, P.R. China
| |
Collapse
|
25
|
Hayes FP, Berger J. Snow patch refugia benefits for species of periglacial zones-Evidence from a high-elevation obligate. PNAS NEXUS 2023; 2:pgad339. [PMID: 37954161 PMCID: PMC10635665 DOI: 10.1093/pnasnexus/pgad339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/06/2023] [Indexed: 11/14/2023]
Abstract
Conserving Earth's most rapidly changing biomes necessitates understanding biological consequences of altered climes. Past species- and taxa-level responses to warming environs include numerous concentrated extirpations at the southern peripheries of distributions during the late Pleistocene. Less clear are localized capacities of cold-adapted species to mitigate thermal challenges against warming temperatures, especially through proximate behavioral and physiological adjustments. Whereas snow patches persist in periglacial zones and elsewhere, broad reductions in seasonal snow raise concerns about how and why species continue to use them. If snow patches play a functional role to combat increasing thermal demands, we predicted individuals would display an array of autonomic responses to increased temperatures modulated by wind, ambient temperature, and winter fur on and away from snow patches. We tested these predictions using a mammalian exemplar of high latitude and high elevation, mountain goats (Oreamnos americanus), using two sites in the northern Rocky Mountains, USA. Surprisingly, and contrary to expectations of reduced thermal stress, respiration rates were not decreased on snow patches but use of snow was strongly correlated with decreased metrics of insect harassment. As snow cover continues to decline in montane environs, the persistence of cold-adapted species depends on navigating concurrent changes in biotic communities and thermal environments and balancing competing pressures on behavioral and biological responses.
Collapse
Affiliation(s)
- Forest P Hayes
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, 951 Amy Van Dyken Way, Fort Collins, CO 80521, USA
| | - Joel Berger
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, 951 Amy Van Dyken Way, Fort Collins, CO 80521, USA
- Wildlife Conservation Society–Global Program, 2300 Southern Boulevard, Bronx, NY 10460, USA
| |
Collapse
|
26
|
Nagano K, Hiraiwa MK, Ishiwaka N, Seko Y, Hashimoto K, Uchida T, Sánchez-Bayo F, Hayasaka D. Global warming intensifies the interference competition by a poleward-expanding invader on a native dragonfly species. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230449. [PMID: 38026017 PMCID: PMC10663793 DOI: 10.1098/rsos.230449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023]
Abstract
Rapid climate warming has boosted biological invasions and the distribution or expansion polewards of many species: this can cause serious impacts on local ecosystems within the invaded areas. Subsequently, native species may be exposed to threats of both interspecific competition with invaders and temperature rises. However, effects of warming on interspecific interactions, especially competition between invader and native species remains unclear. To better understand the combined threats of biological invasions and warming, the effect of temperature on competitive interactions between two dragonfly species, the expanding Trithemis aurora from Southeast Asia and the Japanese native Orthetrum albistylum speciosum were assessed based on their foraging capacity. Although the stand-alone effect of temperature on foraging intake of the native dragonfly was not apparent, its intake significantly decreased with increasing temperatures when the invader T. aurora was present. Such reductions in foraging might lead to displacement of the native species through competition for food resources. This suggests that impacts of invader species against native species are expected to be more severe when interspecific competition is exacerbated by temperature rises.
Collapse
Affiliation(s)
- Koki Nagano
- Graduate School of Agriculture, Kindai University, Nakamachi 3327-204, Nara, Nara 631-8505, Japan
| | - Masayoshi K. Hiraiwa
- Faculty of Agriculture, Kindai University, Nakamachi 3327-204, Nara, Nara 631-8505, Japan
| | - Naoto Ishiwaka
- Graduate School of Agriculture, Kindai University, Nakamachi 3327-204, Nara, Nara 631-8505, Japan
| | - Yugo Seko
- Graduate School of Agriculture, Kindai University, Nakamachi 3327-204, Nara, Nara 631-8505, Japan
- National Institute for Environmental Studies (NIES), Onogawa 16-2, Tsukuba, Ibaraki 305-8506, Japan
| | - Koya Hashimoto
- National Institute for Environmental Studies (NIES), Onogawa 16-2, Tsukuba, Ibaraki 305-8506, Japan
- Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho 3, Hirosaki, Aomori 036-8561, Japan
| | - Taizo Uchida
- Faculty of Architecture and Civil Engineering, Kyushu Sangyo University, Higashi-ku, Matsukadai 2-3-1, Fukuoka, Fukuoka 813-8503, Japan
| | - Francisco Sánchez-Bayo
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Daisuke Hayasaka
- Faculty of Agriculture, Kindai University, Nakamachi 3327-204, Nara, Nara 631-8505, Japan
| |
Collapse
|
27
|
ElShahed SM, Mostafa ZK, Radwan MH, Hosni EM. Modeling the potential global distribution of the Egyptian cotton leafworm, Spodoptera littoralis under climate change. Sci Rep 2023; 13:17314. [PMID: 37828108 PMCID: PMC10570271 DOI: 10.1038/s41598-023-44441-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/08/2023] [Indexed: 10/14/2023] Open
Abstract
The Egyptian cotton leafworm, Spodoptera littoralis is a highly invasive insect pest that causes extensive damage to many of the primary food crops. Considering the recent challenges facing global food production including climate change, knowledge about the invasive potential of this pest is essential. In this study, the maximum entropy model (MaxEnt) was used to predict the current global spatial distribution of the pest and the future distribution using two representative concentration pathways (RCPs) 2.6 and 8.5 in 2050 and 2070. High AUC and TSS values indicated model accuracy and high performance. Response curves showed that the optimal temperature for the S. littoralis is between 10 and 28 °C. The pest is currently found in Africa and is widely distributed across the Middle East and throughout Southern Europe. MaxEnt results revealed that the insect will shift towards Northern Europe and the Americas. Further, China was seen to have a suitable climate. We also extrapolated the impact of these results on major producing countries and how this affects trade flow, which help decision makers to take the invasiveness of such destructive pest into their account.
Collapse
Affiliation(s)
- Sara M ElShahed
- Department of Entomology, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt.
| | - Zahia K Mostafa
- Department of Entomology, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Marwa H Radwan
- Department of Entomology, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Eslam M Hosni
- Department of Entomology, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt.
| |
Collapse
|
28
|
Blumstein DM, MacManes MD. When the tap runs dry: The physiological effects of acute experimental dehydration in Peromyscus eremicus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.03.547568. [PMID: 37461486 PMCID: PMC10349944 DOI: 10.1101/2023.07.03.547568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Desert organisms have evolved physiological, biochemical, and genomic mechanisms to survive the extreme aridity of desert environments. Studying desert-adapted species provides a unique opportunity to investigate the survival strategies employed by organisms in some of the harshest habitats on Earth. Two of the primary challenges faced in desert environments are maintaining water balance and thermoregulation. We collected data in a simulated desert environment and a captive colony of cactus mice (Peromyscus eremicus) and used lab-based experiments with real time physiological measurements to characterize the response to water-deprivation. Mice without access to water had significantly lower energy expenditures and in turn, reduced water loss compared to mice with access to water after the first 24 hours of the experiment. Additionally, we observed significant weight loss likely related to dehydration-associated anorexia a response to limit fluid loss by reducing waste and the solute load as well as allowing water reabsorption from the kidneys and gastrointestinal tract. Finally, we observed body temperature correlated with sex, with males without access to water maintaining body temperature when compared to hydrated males while body temperature decreased for females without access to water compared to hydrated, suggesting daily torpor in females.
Collapse
Affiliation(s)
- Danielle M Blumstein
- University of New Hampshire, Molecular, Cellular, and Biomedical Sciences Department, Durham, NH 03824
| | - Matthew D MacManes
- University of New Hampshire, Molecular, Cellular, and Biomedical Sciences Department, Durham, NH 03824
| |
Collapse
|
29
|
Rubenstein MA, Weiskopf SR, Bertrand R, Carter SL, Comte L, Eaton MJ, Johnson CG, Lenoir J, Lynch AJ, Miller BW, Morelli TL, Rodriguez MA, Terando A, Thompson LM. Climate change and the global redistribution of biodiversity: substantial variation in empirical support for expected range shifts. ENVIRONMENTAL EVIDENCE 2023; 12:7. [PMID: 39294691 PMCID: PMC11378804 DOI: 10.1186/s13750-023-00296-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 02/12/2023] [Indexed: 09/21/2024]
Abstract
BACKGROUND Among the most widely predicted climate change-related impacts to biodiversity are geographic range shifts, whereby species shift their spatial distribution to track their climate niches. A series of commonly articulated hypotheses have emerged in the scientific literature suggesting species are expected to shift their distributions to higher latitudes, greater elevations, and deeper depths in response to rising temperatures associated with climate change. Yet, many species are not demonstrating range shifts consistent with these expectations. Here, we evaluate the impact of anthropogenic climate change (specifically, changes in temperature and precipitation) on species' ranges, and assess whether expected range shifts are supported by the body of empirical evidence. METHODS We conducted a Systematic Review, searching online databases and search engines in English. Studies were screened in a two-stage process (title/abstract review, followed by full-text review) to evaluate whether they met a list of eligibility criteria. Data coding, extraction, and study validity assessment was completed by a team of trained reviewers and each entry was validated by at least one secondary reviewer. We used logistic regression models to assess whether the direction of shift supported common range-shift expectations (i.e., shifts to higher latitudes and elevations, and deeper depths). We also estimated the magnitude of shifts for the subset of available range-shift data expressed in distance per time (i.e., km/decade). We accounted for methodological attributes at the study level as potential sources of variation. This allowed us to answer two questions: (1) are most species shifting in the direction we expect (i.e., each observation is assessed as support/fail to support our expectation); and (2) what is the average speed of range shifts? REVIEW FINDINGS We found that less than half of all range-shift observations (46.60%) documented shifts towards higher latitudes, higher elevations, and greater marine depths, demonstrating significant variation in the empirical evidence for general range shift expectations. For the subset of studies looking at range shift rates, we found that species demonstrated significant average shifts towards higher latitudes (average = 11.8 km/dec) and higher elevations (average = 9 m/dec), although we failed to find significant evidence for shifts to greater marine depths. We found that methodological factors in individual range-shift studies had a significant impact on the reported direction and magnitude of shifts. Finally, we identified important variation across dimensions of range shifts (e.g., greater support for latitude and elevation shifts than depth), parameters (e.g., leading edge shifts faster than trailing edge for latitude), and taxonomic groups (e.g., faster latitudinal shifts for insects than plants). CONCLUSIONS Despite growing evidence that species are shifting their ranges in response to climate change, substantial variation exists in the extent to which definitively empirical observations confirm these expectations. Even though on average, rates of shift show significant movement to higher elevations and latitudes for many taxa, most species are not shifting in expected directions. Variation across dimensions and parameters of range shifts, as well as differences across taxonomic groups and variation driven by methodological factors, should be considered when assessing overall confidence in range-shift hypotheses. In order for managers to effectively plan for species redistribution, we need to better account for and predict which species will shift and by how much. The dataset produced for this analysis can be used for future research to explore additional hypotheses to better understand species range shifts.
Collapse
Affiliation(s)
| | - Sarah R Weiskopf
- U.S. Geological Survey (USGS), National Climate Adaptation Science Center, Reston, USA.
| | | | - Shawn L Carter
- U.S. Geological Survey (USGS), National Climate Adaptation Science Center, Reston, USA
| | - Lise Comte
- School of Biological Sciences, Illinois State University, Normal, USA
| | | | - Ciara G Johnson
- Department of Environmental Science & Policy, George Mason University, Fairfax, USA
| | | | - Abigail J Lynch
- U.S. Geological Survey (USGS), National Climate Adaptation Science Center, Reston, USA
| | - Brian W Miller
- North Central Climate Adaptation Science Center, USGS, Boulder, USA
| | | | - Mari Angel Rodriguez
- U.S. Geological Survey (USGS), National Climate Adaptation Science Center, Reston, USA
| | - Adam Terando
- Southeast Climate Adaptation Science Center, USGS, Raleigh, USA
| | - Laura M Thompson
- U.S. Geological Survey (USGS), National Climate Adaptation Science Center, Reston, USA
| |
Collapse
|
30
|
Ortis G, Marini L, Cavaletto G, Mazzon L. Increasing temperatures affect multiyear life cycle of the outbreak bush-cricket Barbitistes vicetinus (Orthoptera, Tettigoniidae). INSECT SCIENCE 2023; 30:530-538. [PMID: 35758173 DOI: 10.1111/1744-7917.13094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 06/01/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Although outbreaks of rare species are unusual, several insect species have become emerging pests probably due to the ongoing environmental changes. Barbitistes vicetinus was first described in 1993 as an endemic bush-cricket of north-east Italy and was considered rare until 2008, when it became an established pest, causing severe damages to forests and crops. The possible role of temperature in changing its life cycle has still to be fully understood. Here, we explored the effect of summer temperature on egg diapause and the effect of winter temperature on egg survival. Field observations showed that the proportion of embryos that can complete development at the end of summer ranged from zero to nearly 90% depending on summer temperatures. A substantial shift in the rate of development from 20% to nearly 80% occurred in a thermal range of about 1 °C. On the contrary, overwinter egg survival was high and constant (90%) across a wide range of winter temperatures that go well beyond both the cold and warm thermal limits of the current species range. Overall, the results suggest a potential key role of summer temperature warming on the outbreak propensity of this species that is able to switch from a multiyear to an annual life cycle with just a 1-2 °C warming.
Collapse
Affiliation(s)
- Giacomo Ortis
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padua, Legnaro, Italy
| | - Lorenzo Marini
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padua, Legnaro, Italy
| | - Giacomo Cavaletto
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padua, Legnaro, Italy
| | - Luca Mazzon
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padua, Legnaro, Italy
| |
Collapse
|
31
|
Cui M, Yang B, Ren G, Yu H, Dai Z, Li J, Ran Q, Stevanato P, Wan J, Du D. Effects of Warming, Phosphorous Deposition, and Both Treatments on the Growth and Physiology of Invasive Solidago canadensis and Native Artemisia argyi. PLANTS (BASEL, SWITZERLAND) 2023; 12:1370. [PMID: 36987058 PMCID: PMC10051919 DOI: 10.3390/plants12061370] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
Anthropogenic climate change and species invasion are two major threats to biodiversity, affecting the survival and distribution of many species around the world. Studying the responses of invasive species under climate change can help better understand the ecological and genetic mechanisms of their invasion. However, the effects of warming and phosphorus deposition on the phenotype of native and invasive plants are unknown. To address the problem, we applied warming (+2.03 °C), phosphorus deposition (4 g m-2 yr-1 NaH2PO4), and warming × phosphorus deposition to Solidago canadensis and Artemisia argyi to measure the direct effects of environmental changes on growth and physiology at the seedling stage. Our results reveal that the physiology parameters of A. argyi and S. canadensis did not change significantly with the external environment. Under phosphorus deposition, S. canadensis had higher plant height, root length, and total biomass compared to A. argyi. Interestingly, warming has an inhibitory effect on the growth of both A. argyi and S. canadensis, but overall, the reduction in total biomass for S. canadensis (78%) is significantly higher than A. argyi (52%). When the two plants are treated with warming combined with phosphorus deposition, the advantage gained by S. canadensis from phosphorus deposition is offset by the negative effects of warming. Therefore, under elevated phosphorus, warming has a negative effect on the invasive S. canadensis and reduces its growth advantage.
Collapse
Affiliation(s)
- Miaomiao Cui
- Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Bin Yang
- Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Guangqian Ren
- Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
- Department of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Haochen Yu
- Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhicong Dai
- Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
- Department of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jian Li
- Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qiong Ran
- School of Management, Chongqing University of Technology, Chongqing 400050, China
| | - Piergiorgio Stevanato
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35122 Padova, Italy
| | - Justin Wan
- Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Daolin Du
- Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
32
|
Carrell JD, Phinney AI, Mueller K, Bean B. Multiscale ecological niche modeling exhibits varying climate change impacts on habitat suitability of Madrean Pine-Oak trees. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1086062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023] Open
Abstract
Anthropogenic climate change and increasing greenhouse gas emissions are expected to globally impact the biological function, community structure, and spatial distribution of biodiversity. Many existing studies explore the effect of climate change on biodiversity, generally at a single spatial scale. This study explores the potential effects of climate change on the habitat suitability of seven tree species at two distinct spatial scales: the Coronado National Forest (CNF), a local management area, and the Sierra Madre Occidental (SMO), an ecoregional extent. Habitat suitability was determined by extrapolating Ecological Niche Models (ENMs) based on citizen-science tree occurrence records into future climatic conditions using projected 30-year normals for two anthropogenic emissions scenarios through the end of the century. These ENMs, examined at a spatial resolution of 1 km2, are constructed using a mean average ensemble of three commonly used machine learning algorithms. The results show that habitat suitability is expected to decrease for all seven tree species at varying degrees. Results also show that climate-forcing scenario choice appears to be far less important for understanding changes in species habitat suitability than the spatial scale of modeling extent. Additionally, we observed non-linear changes in tree species habitat suitability within the SMO and CNF dependent on forest community type, latitude, and elevational gradient. The paper concludes with a discussion of the necessary steps to verify the estimated alters of these tree species under climate change. Most importantly, provides a framework for characterizing habitat suitability across spatial scales.
Collapse
|
33
|
Love SJ, Schweitzer JA, Bailey JK. Climate-driven convergent evolution in riparian ecosystems on sky islands. Sci Rep 2023; 13:2817. [PMID: 36797341 PMCID: PMC9935884 DOI: 10.1038/s41598-023-29564-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 02/07/2023] [Indexed: 02/18/2023] Open
Abstract
Climate-induced evolution will determine population persistence in a changing world. However, finding natural systems in which to study these responses has been a barrier to estimating the impact of global change on a broad scale. We propose that isolated sky islands (SI) and adjacent mountain chains (MC) are natural laboratories for studying long-term and contemporary climatic pressures on natural populations. We used greenhouse common garden trees to test whether populations on SI exposed to hot and dry climates since the end of the Pleistocene have phenotypically diverged from populations on MC, and if SI populations have converged in these traits. We show: (1) populations of Populus angustifolia from SI have diverged from MC, and converged across SI, in reproductive and productivity traits, (2) these traits (cloning and aboveground biomass, respectively) are significantly correlated, suggesting a genetic linkage between them, and (3) the trait variation is driven by both natural selection and genetic drift. These shifts represent potentially beneficial phenotypes for population persistence in a changing world. These results suggest that the SI-MC comparison is a natural laboratory, as well as a predictive framework, for studying long-term responses to climate change across the globe.
Collapse
Affiliation(s)
- S J Love
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Dabney Hall, 1416 Circle Dr, Knoxville, TN, 37996, USA.
| | - J A Schweitzer
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Dabney Hall, 1416 Circle Dr, Knoxville, TN, 37996, USA
| | - J K Bailey
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Dabney Hall, 1416 Circle Dr, Knoxville, TN, 37996, USA
| |
Collapse
|
34
|
Zhu W, Zhao T, Zhao C, Li C, Xie F, Liu J, Jiang J. How will warming affect the growth and body size of the largest extant amphibian? More than the temperature-size rule. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160105. [PMID: 36370793 DOI: 10.1016/j.scitotenv.2022.160105] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/02/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Declining body size is a universal ecological response to global warming in ectotherms. Ectotherms grow faster but mature at a smaller size at higher temperatures. This phenomenon is known as the temperature-size rule (TSR). However, we know little about the details of the relationship between temperature and size. Here, this issue was studied in the Chinese giant salamander (Andrias davidianus), one of the largest extant amphibians and a flagship species of conservation in China. Warm-acclimated A. davidianus larvae (25 °C) had accelerated development but little superiority in body growth when compared to their 15 °C counterparts when fed with red worm. This predicts a drastic decrease in adult body size with warming. However, a fish diet (more abundant lipid and protein) improved the growth performance at 25 °C. The underlying mechanism was studied. Warm-acclimated larvae had enlarged livers but shortened tails (fat depot). Their livers suffered from energy deficiencies and decreased protein levels, even when protein synthesis and energy metabolism were transcriptionally upregulated. This could be a direct explanation for their poor growth performance. Further analyses revealed a metabolic disorder resembling mammal glycogen storage disease in warm-acclimated larvae, indicating deficiency in glycogen catabolism. This speculation is consistent with their increased lipid and amino acid catabolism and explained the poor energy conditions of the warm-acclimated larvae. Additionally, a deficiency in glycogen metabolism explains the different efficiency of worm and fish diets in supporting the growth of warm-acclimated larvae, even when both diets were provided sufficiently. In conclusion, our results suggest that the relationship between temperature and body size can be flexible, which is a significant finding in terms of the TSR. The underlying metabolic and nutrient mechanisms were revealed. This knowledge can help deepen our understanding of the consequences of warming and can contribute to the conservation of A. davidianus.
Collapse
Affiliation(s)
- Wei Zhu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Tian Zhao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Chunlin Zhao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Cheng Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Feng Xie
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Jiongyu Liu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Jianping Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
35
|
Carriel OA, Diagonel G, Boas LKV, de Oliveira RC, Branco CCZ. The temperature increase due to climate warming can affect the photosynthetic responses of aquatic macrophytes from tropical lotic ecosystems. Trop Ecol 2023. [DOI: 10.1007/s42965-022-00289-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
36
|
Wu N, Guo K, Suren AM, Riis T. Lake morphological characteristics and climatic factors affect long-term trends of phytoplankton community in the Rotorua Te Arawa lakes, New Zealand during 23 years observation. WATER RESEARCH 2023; 229:119469. [PMID: 36527869 DOI: 10.1016/j.watres.2022.119469] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Monitoring the long-term dynamics of lake phytoplankton can help understand their natural temporal variability, as well as assess potential impacts of interventions aimed at improving lake ecological condition. However, investigating long-term changes in lake ecosystems has received scant attention. In the present study, we analyzed a long-term dataset of phytoplankton communities collected from 1990 to 2013 from eleven of the 12 Rotorua Te Arawa lakes in New Zealand, to explore their responses to changing abiotic conditions. We used a sequential algorithm to examine the likelihood of regime shifts in abiotic and biotic factors during the study period that could be attributable to lake interventions. Our analysis suggests that lake interventions have improved the abiotic factors, whereas the response of biotic factors was less clear. Total phosphorus levels were implicated in the decline in lake condition, including in two lakes subject to lake interventions, and in four control lakes. Both abiotic and biotic factors showed diverse trends (e.g., increase, decrease or no change), and abiotic factors had more regime shifts than biotic factors. Shifts in biotic indices also displayed time lags to shifts in abiotic factors. Long-term responses of abiotic and biotic factors were also influenced by lake morphological characteristics and climatic variables. This latter finding underscores the importance of considering lake morphological characteristics and climate changes when planning management practices. A sound understanding of resilience and threshold of phytoplankton shifts to environmental changes are needed to assess the effectiveness of previous management strategies and prioritize the future conservation efforts toward water quality goals.
Collapse
Affiliation(s)
- Naicheng Wu
- Department of Geography and Spatial Information Techniques, Ningbo University, 315211 Ningbo, China.
| | - Kun Guo
- Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China
| | - Alastair M Suren
- Bay of Plenty Regional Council, 5 Quay St, 3120 Whakatane, New Zealand
| | - Tenna Riis
- Department of Biology, Aarhus University, Ole Worms Allé 1, 8000 Aarhus C, Denmark
| |
Collapse
|
37
|
Détrée C, Navarro JM, Garrido I, Bruning P, Leclerc JC. Evaluation of Sub-Antarctic and Antarctic sea urchins' thermal reaction norm through righting behavior and comparison with in situ measurements. J Therm Biol 2023; 112:103496. [PMID: 36796881 DOI: 10.1016/j.jtherbio.2023.103496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023]
Abstract
Sea urchin's survival may depend on their capacity to recover proper orientation rapidly and effectively after inversion, enabling escape from predator and preventing desiccation. This righting behavior has been used as a repeatable and reliable indicator to assess echinoderms performance across environmental conditions, including thermal sensitivity and thermal stress. The current study aims at evaluating and comparing the thermal reaction norm for righting behavior (time for righting (TFR) and capacity to self-right) of three common sea urchins from high latitude, the Patagonian sea urchins Loxechinus albus and Pseudechinus magellanicus, and the Antarctic sea urchin Sterechinus neumayeri. In addition, to infer the ecological implications of our experiments, we compared laboratory-based and in situ TFR of these three species. We observed that populations of the Patagonian sea urchins L. albus and P. magellanicus presented similar trend of righting behavior, overly accelerating with increasing temperature (from 0 to 22°C). Little variations and high inter-individual variability were observed below 6°C in the Antarctic sea urchin TFR, and righting success strongly decreased between 7 and 11°C. For the three species, TFR was lower in in situ experiments compared to the laboratory. Overall, our results suggest that the populations of Patagonian sea urchin exhibit a wide thermal tolerance and, based on S. neumayeri's TFR, aligning with the narrow thermal tolerance of Antarctic benthos. Finally, the differences between laboratory and in situ experiments highlights the importance of considering the complexity of marine environments for future predictions.
Collapse
Affiliation(s)
- Camille Détrée
- Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile; Instituto Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.
| | - Jorge M Navarro
- Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile; Instituto Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Ignacio Garrido
- Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile; Laboratorio Costero de Recursos Acuaticos de Calfuco (LCRAC), Instituto Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Department of Biology and Quebec-Ocean Institute, Laval University, Québec, QC, Canada
| | - Paulina Bruning
- Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile; Laboratorio Costero de Recursos Acuaticos de Calfuco (LCRAC), Instituto Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Department of Biology and Quebec-Ocean Institute, Laval University, Québec, QC, Canada
| | - Jean-Charles Leclerc
- Sorbonne Université, CNRS, UMR 7144 AD2M, Station Biologique de Roscoff, Place Georges Teissier, 29680, Roscoff, France
| |
Collapse
|
38
|
Temporal variation in the summer diet of the weddell seal, leptonychotes weddellii, at hope bay, antarctic peninsula. Polar Biol 2023. [DOI: 10.1007/s00300-022-03104-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
39
|
Gonçalves GSR, Cerqueira PV, Silva DP, Gomes LB, Leão CF, de Andrade AFA, Santos MPD. Multi-temporal ecological niche modeling for bird conservation in the face of climate change scenarios in Caatinga, Brazil. PeerJ 2023; 11:e14882. [PMID: 36874965 PMCID: PMC9979838 DOI: 10.7717/peerj.14882] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/20/2023] [Indexed: 03/02/2023] Open
Abstract
Background Global shifts in climatic patterns have been recorded over the last decades. Such modifications mainly correspond to increased temperatures and rainfall regime changes, which are becoming more variable and extreme. Methods We aimed to evaluate the impact of future changes in climatic patterns on the distribution of 19 endemic or threatened bird taxa of the Caatinga. We assessed whether current protected areas (PAs) are adequate and whether they will maintain their effectiveness in the future. Also, we identified climatically stable areas that might work as refugia for an array of species. Results We observed that 84% and 87% of the bird species of Caatinga analyzed in this study will face high area losses in their predicted range distribution areas in future scenarios (RCP4.5 and RCP8.5, respectively). We also observed that the current PAs in Caatinga are ineffective in protecting these species in both present and future scenarios, even when considering all protection area categories. However, several suitable areas can still be allocated for conservation, where there are vegetation remnants and a high amount of species. Therefore, our study paves a path for conservation actions to mitigate current and future extinctions due to climate change by choosing more suitable protection areas.
Collapse
Affiliation(s)
| | - Pablo Vieira Cerqueira
- Laboratório de Biogeografia da Conservação e Macroecologia, Universidade Federal do Pará, Belém, Brazil
| | - Daniel Paiva Silva
- Departamento de Biologia, Instituto Federal Goiano, Urutaí, Goiás, Brazil
| | - Letícia Braga Gomes
- Laboratório de Biogeografia da Conservação e Macroecologia, Universidade Federal do Pará, Belém, Brazil
| | - Camila Ferreira Leão
- Laboratório de Biogeografia da Conservação e Macroecologia, Universidade Federal do Pará, Belém, Brazil
| | | | | |
Collapse
|
40
|
Hua J, Tian S, Lu S, Zhu Z, Huang X, Tao J, Li J, Xu J. COVID-19 lockdown has indirect, non-equivalent effects on activity patterns of Reeves's Pheasant ( Syrmaticus reevesii) and sympatric species. AVIAN RESEARCH 2023; 14:100092. [PMID: 37155432 PMCID: PMC10014503 DOI: 10.1016/j.avrs.2023.100092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/16/2023] [Accepted: 03/02/2023] [Indexed: 05/10/2023]
Abstract
The outbreak of the COVID-19 pandemic has brought massive shifts in human activities through a global blockade, directly affecting wildlife survival. However, the indirect impacts of changes in human activities are often easily overlooked. We conducted surveys of Reeves's Pheasant (Syrmaticus reevesii) and its sympatric species by camera traps in forest-type nature reserves in three different scenarios: pre-lockdown, lockdown and post-lockdown. An increase in livestock activities observed during the lockdown and post-lockdown period in our study area provided us an opportunity to investigate the indirect impact of the lockdown on wildlife. The pre-lockdown period was used as a baseline to compare any changes in trends of relative abundance index, activity patterns and temporal spacing of targeted species and livestock. During the lockdown period, the relative abundance index of livestock increased by 50% and there was an increase in daytime activity. Reeves's Pheasant showed avoidance responses to almost all sympatric species and livestock in three different periods, and the livestock avoidance level of Reeves's Pheasant during the lockdown period was significantly and positively correlated with the relative abundance index of livestock. Species-specific changes in activity patterns of study species were observed, with reduced daytime activities of Hog Badger and Raccoon Dog during and after the confinement periods. This study highlights the effect of the COVID-19 lockdown on the responses of wildlife by considering the changes in their temporal and spatial use before, during and after lockdown. The knowledge gained on wildlife during reduced human mobility because of the pandemic aids in understanding the effect of human disturbances and developing future conservation strategies in the shared space, to manage both wildlife and livestock.
Collapse
Affiliation(s)
- Junqin Hua
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Shan Tian
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Shuai Lu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Ziqiang Zhu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Xinjie Huang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Jisong Tao
- Henan Liankangshan National Nature Reserve, Xinyang, 464000, China
| | - Jianqiang Li
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Jiliang Xu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
41
|
Grey KA, Foden WB, Midgley GF. Bioclimatic controls of CO2 assimilation near range limits of the CAM succulent tree Aloidendron dichotomum. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7434-7449. [PMID: 36066187 DOI: 10.1093/jxb/erac343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Aloidendron dichotomum appears to be undergoing the early stages of a range shift in response to anthropogenic climate change in south-western Africa. High mortality has been recorded in warmer populations, while population expansions have been recorded in cooler poleward parts of its range. This study aimed to determine the key environmental controls on A. dichotomum photosynthesis in areas of population expansion, to inform the potential attribution of directional population expansion to anthropogenic warming. Nocturnal acid accumulation and CO2 assimilation were measured in individuals growing under a range of temperature and watering treatments in a greenhouse experiment. In addition, nocturnal acid accumulation and phosphoenolpyruvate carboxylase activity were quantified in two wild populations at the most southerly and south-easterly range extents. Multiple lines of evidence confirmed that A. dichotomum performs Crassulacean acid metabolism. Total nocturnal acid accumulation was highest at night-time temperatures of ~21.5 °C, regardless of soil water availability, and night-time CO2 assimilation rates increased with leaf temperature, suggesting a causal link to the cool southern range limit. Leaf acidity at the start of the dark period was highly predictive of nocturnal acid accumulation in all individuals, implicating light availability during the day as an important determinant of nocturnal acid accumulation.
Collapse
Affiliation(s)
- Kerry-Anne Grey
- Global Change Biology Group, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
- School for Climate Studies, Stellenbosch University, Stellenbosch, South Africa
| | - Wendy B Foden
- Global Change Biology Group, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
- South African National Parks, Cape Town, South Africa
- Climate Change Specialist Group, Species Survival Commission, International Union for Conservation of Nature, Gland, Switzerland
| | - Guy F Midgley
- Global Change Biology Group, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
- School for Climate Studies, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
42
|
Santamarina S, Montesinos D, Alfaro‐Saiz E, Acedo C. Drought affects the performance of native oak seedlings more strongly than competition with invasive crested wattle seedlings. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:1297-1305. [PMID: 35344631 PMCID: PMC10078637 DOI: 10.1111/plb.13416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Two of the most important processes threatening vulnerable plant species are competitive displacement by invasive alien species and water stress due to global warming. Quercus lusitanica, an oak shrub species with remarkable conservation interest, could be threatened by the expansion of the invasive alien tree Paraserianthes lophantha. However, it is unclear how competition would interact with predicted reductions in water availability due to global climate change. We set up a full factorial experiment to examine the direct interspecific competition between P. lophantha and Q. lusitanica seedlings under control and water-limited conditions. We measured seed biomass, germination, seedling emergence, leaf relative growth rate, biomass, root/shoot ratio, predawn shoot water potential and mortality to assess the individual and combined effects of water stress and interspecific competition on both species. Our results indicate that, at seedling stage, both species experience competitive effects and responses. However, water stress exhibited a stronger overall effect than competition. Although both species responded strongly to water stress, the invasive P. lophantha exhibited significantly less drought stress than the native Q. lusitanica based on predawn shoot water potential measurements. The findings of this study suggest that the competition with invasive P. lophantha in the short term must not be dismissed, but that the long-term conservation of the native shrub Q. lusitanica could be compromised by increased drought as a result of global change. Our work sheds light on the combined effects of biological invasions and climate change that can negatively affect vulnerable plant species.
Collapse
Affiliation(s)
- S. Santamarina
- Research Team Taxonomy and Biodiversity Conservation TaCoBiDepartment of Biodiversity and Environmental ManagementUniversity of LeónLeónSpain
- Centre for Functional EcologyDepartment of Life SciencesUniversity of CoimbraCoimbraPortugal
- Present address:
Department of Biodiversity and Environmental ManagementFaculty of Biological and Environmental SciencesUniversity of LeónCampus de VegazanaLeón24071Spain
| | - D. Montesinos
- Centre for Functional EcologyDepartment of Life SciencesUniversity of CoimbraCoimbraPortugal
- Australian Tropical HerbariumJames Cook UniversitySmithfieldQueenslandAustralia
| | - E. Alfaro‐Saiz
- Research Team Taxonomy and Biodiversity Conservation TaCoBiDepartment of Biodiversity and Environmental ManagementUniversity of LeónLeónSpain
- Herbarium LEB Jaime Andrés RodríguezCRAI ExperimentalUniversity of LeónLeónSpain
| | - C. Acedo
- Research Team Taxonomy and Biodiversity Conservation TaCoBiDepartment of Biodiversity and Environmental ManagementUniversity of LeónLeónSpain
| |
Collapse
|
43
|
Climate Change Impact on Potential Distribution of an Endemic Species Abies marocana Trabut. EKOLÓGIA (BRATISLAVA) 2022. [DOI: 10.2478/eko-2022-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Abstract
Global warming is becoming a major concern affecting many components of the biodiversity at a global scale and disproportionately affecting the integrity of ecosystems, particularly the habitat of endemic species. Understanding its impacts on most vulnerable species is essential to improve knowledge on the ecology of these species and for their long-term management and conservation. Abies marocana Trabut (Moroccan fir), a remarkable forest tree of the Mediterranean basin, is an endangered species that is present in discreet small areas of the Rif Mountains, which is highly vulnerable to the ongoing climate warming and facing severe anthropogenic pressures. For conservation and management purposes, our work focused on improving understanding of the impacts of future climate change on the distribution of this species through its habitat suitability modeling. The maximum entropy approach was used, which achieved good predictive abilities. Habitat suitability was identified and then predicted under current and future climate conditions. A significant change and a gradual regression of the habitat suitability to A. marocana was shown under different future climate scenarios. The magnitude of the simulated changes is important and tends to have negative consequences for Moroccan fir conservation. For this purpose, outputs from models are useful to improve our knowledge about the ecology of A. marocana, and predictive maps produced under current and future climate conditions constitute reflection tools available to scientists and managers to better integrate actual and future climate impacts into existing and upcoming management strategies to prevent any future locale extinction.
Collapse
|
44
|
Mendoza-Fernández AJ, Fernández-Ceular Á, Alcaraz-Segura D, Ballesteros M, Peñas J. The Fate of Endemic Species Specialized in Island Habitat under Climate Change in a Mediterranean High Mountain. PLANTS (BASEL, SWITZERLAND) 2022; 11:3193. [PMID: 36501233 PMCID: PMC9739314 DOI: 10.3390/plants11233193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Mediterranean high-mountain endemic species are particularly vulnerable to climatic changes in temperature, precipitation and snow-cover dynamics. Sierra Nevada (Spain) is a biodiversity hotspot in the western Mediterranean, with an enormous plant species richness and endemicity. Moehringia fontqueri is a threatened endemic plant restricted to north-facing siliceous rocks along a few ridges of the eastern Sierra Nevada. To guide conservation actions against climate change effects, here we propose the simultaneous assessment of the current reproductive success and the possible species' range changes between current and future climatic conditions, assessing separately different subpopulations by altitude. Reproductive success was tested through the seed-set data analysis. The species' current habitat suitability was modeled in Maxent using species occurrences, topographic, satellite and climatic variables. Future habitat suitability was carried out for two climatic scenarios (RCP 2.6 and 8.5). The results showed the lowest reproductive success at the lowest altitudes, and vice versa at the highest altitudes. Habitat suitability decreased by 80% from current conditions to the worst-case scenario (RCP 8.5). The lowest subpopulations were identified as the most vulnerable to climate change effects while the highest ones were the nearest to future suitable habitats. Our simultaneous assessment of reproductive success and habitat suitability aims to serve as a model to guide conservation, management and climate change mitigation strategies through adaptive management to safeguard the persistence of the maximum genetic pool of Mediterranean high-mountain plants threatened by climate change.
Collapse
Affiliation(s)
- Antonio J. Mendoza-Fernández
- Department of Biology and Geology, CEIMAR, CecoUAL, University of Almería, 04120 Almería, Spain
- Department of Botany, University of Granada, 18071 Granada, Spain
| | | | - Domingo Alcaraz-Segura
- Department of Botany, University of Granada, 18071 Granada, Spain
- Andalusian Center for the Assessment and Monitoring of Global Change (CAESCG), University of Almería, 04120 Almería, Spain
- iEcolab, Inter-University Institute for Earth System Research, University of Granada, 18006 Granada, Spain
| | - Miguel Ballesteros
- Department of Botany, University of South Bohemia, CZ-37005 České Budějovice, Czech Republic
| | - Julio Peñas
- Department of Botany, University of Granada, 18071 Granada, Spain
- Andalusian Center for the Assessment and Monitoring of Global Change (CAESCG), University of Almería, 04120 Almería, Spain
| |
Collapse
|
45
|
Ouyang X, Lin H, Bai S, Chen J, Chen A. Simulation the potential distribution of Dendrolimus houi and its hosts, Pinus yunnanensis and Cryptomeria fortunei, under climate change in China. FRONTIERS IN PLANT SCIENCE 2022; 13:1054710. [PMID: 36452097 PMCID: PMC9703064 DOI: 10.3389/fpls.2022.1054710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/26/2022] [Indexed: 06/17/2023]
Abstract
Due to climate change, it is significant to explore the impact of rising temperatures on the distribution of Dendrolimus houi Lajonquiere (Lepidoptera) and its host plants, Pinus yunnanensis and Cryptomeria fortunei, and to simulate their suitable future distribution areas in order to provide a theoretical basis for the monitoring of, and early warning about, D. houi and the formulation of effective prevention and control policies. Based on the known distribution areas of, and relevant climate data for, D. houi, P. yunnanensis, and C. fortunei, their suitable habitat in China was predicted using the ENMeval data package in order to adjust the maximum entropy (MaxEnt) model parameters. The results showed that the regularization multiplier was 0.5 when the feature combination was LQHPT, with a MaxEnt model of lowest complexity and excellent prediction accuracy. The main climate variable affecting the geographical distribution of D. houi, P. yunnanensis, and C. fortunei is temperature, specifically including isothermality, temperature seasonality, maximum temperature of warmest month, minimum temperature of warmest month, average temperature of coldest quarter. The potential suitable distribution areas for P. yunnanensis and D. houi were similar under climate change, mainly distributed in southwest China, while C. fortunei was mainly distributed in southeast China. Under different future-climate scenarios, the areas suitable for the three species will increase, except for P. yunnanensis in the 2070s under Shared Socioeconomic Pathway 5-8.5. With climate change, all three species were found to have a tendency to migrate to higher latitudes and higher altitudes. The centroids of the areas suitable for P. yunnanensis and D. houi will migrate to the northwest and the centroids of the areas suitable for C. fortunei will migrate to the northeast.
Collapse
Affiliation(s)
- Xianheng Ouyang
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Haiping Lin
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Shihao Bai
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Chen
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Anliang Chen
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
46
|
Kauppi L, Villnäs A. Marine heatwaves of differing intensities lead to distinct patterns in seafloor functioning. Proc Biol Sci 2022; 289:20221159. [DOI: 10.1098/rspb.2022.1159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Marine heatwaves (MHWs) are increasing in frequency and intensity due to climate change. Several well-documented effects of heatwaves on community structure exist, but examples of their effect on functioning of species, communities or ecosystems remain scarce. We tested the effects of short-term, moderate and strong MHWs on macrofauna bioturbation and associated solute fluxes as examples of ecosystem functioning. We also measured macrofaunal excretion rates to assess effects of temperature on macrofauna metabolism. For this experiment, we used unmanipulated sediment cores with natural animal communities collected from a muddy location at 32 m depth in the northern Baltic Sea. Despite the mechanistic effect of bioturbation remaining unchanged between the treatments, there were significant differences in oxygen consumption, solute fluxes and excretion. Biogeochemical and biological processes were boosted by the moderate heatwave, whereas biogeochemical cycling seemed to decrease under a strong heatwave. A prolonged, moderate heatwave could possibly lead to resource depletion if primary production cannot meet the demands of benthic consumption. By contrast, decreased degradation activities under strong heatwaves could lead to a build-up of organic material and potentially hypoxia. The strong variability and the complexity of the response highlight the context dependency of these processes complicating future predictions.
Collapse
Affiliation(s)
- Laura Kauppi
- Tvärminne Zoological Station, University of Helsinki, J.A. Palménin tie 260, FI-10900 Hanko, Finland
| | - Anna Villnäs
- Tvärminne Zoological Station, University of Helsinki, J.A. Palménin tie 260, FI-10900 Hanko, Finland
- Baltic Sea Centre, Stockholm University, Stockholm 114 19, Sweden
| |
Collapse
|
47
|
Modi A, Roxy MK, Ghosh S. Gap-filling of ocean color over the tropical Indian Ocean using Monte-Carlo method. Sci Rep 2022; 12:18395. [PMID: 36319724 PMCID: PMC9626647 DOI: 10.1038/s41598-022-22087-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/10/2022] [Indexed: 01/01/2023] Open
Abstract
Continuous remote-sensed daily fields of ocean color now span over two decades; however, it still remains a challenge to examine the ocean ecosystem processes, e.g., phenology, at temporal frequencies of less than a month. This is due to the presence of significantly large gaps in satellite data caused by clouds, sun-glint, and hardware failure; thus, making gap-filling a prerequisite. Commonly used techniques of gap-filling are limited to single value imputation, thus ignoring the error estimates. Though convenient for datasets with fewer missing pixels, these techniques introduce potential biases in datasets having a higher percentage of gaps, such as in the tropical Indian Ocean during the summer monsoon, the satellite coverage is reduced up to 40% due to the seasonally varying cloud cover. In this study, we fill the missing values in the tropical Indian Ocean with a set of plausible values (here, 10,000) using the classical Monte-Carlo method and prepare 10,000 gap-filled datasets of ocean color. Using the Monte-Carlo method for gap-filling provides the advantage to estimate the phenological indicators with an uncertainty range, to indicate the likelihood of estimates. Quantification of uncertainty arising due to missing values is critical to address the importance of underlying datasets and hence, motivating future observations.
Collapse
Affiliation(s)
- Aditi Modi
- grid.417983.00000 0001 0743 4301Centre for Climate Change Research, Indian Institute of Tropical Meteorology, Pune, India ,grid.417971.d0000 0001 2198 7527IDP in Climate Studies, Indian Institute of Technology, Bombay, India
| | - M. K. Roxy
- grid.417983.00000 0001 0743 4301Centre for Climate Change Research, Indian Institute of Tropical Meteorology, Pune, India
| | - Subimal Ghosh
- grid.417971.d0000 0001 2198 7527IDP in Climate Studies, Indian Institute of Technology, Bombay, India ,grid.417971.d0000 0001 2198 7527Department of Civil Engineering, Indian Institute of Technology, Bombay, India
| |
Collapse
|
48
|
Alvi AF, Sehar Z, Fatma M, Masood A, Khan NA. Strigolactone: An Emerging Growth Regulator for Developing Resilience in Plants. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11192604. [PMID: 36235470 PMCID: PMC9571818 DOI: 10.3390/plants11192604] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 05/21/2023]
Abstract
Improving plant resilience to changing environmental conditions is the primary focus of today's scientific research globally. It is essential to find various strategies for the better survival of plants with higher resistance potential to climate change. Strigolactones (SLs) are multifunctional β-carotene derivative molecules that determine a range of plant growth and development aspects, such as root architecture, shoot branching, chlorophyll synthesis, and senescence. SLs facilitate strong defense responses against drought, salinity, heavy metal, nutrient starvation, and heat stress. The SLs trigger other hormonal-responsive pathways and determine plant resilience against stressful environments. This review focuses on the mechanisms regulated by SLs and interaction with other plant hormones to regulate plant developmental processes and SLs' influence on the mitigation of plant damage under abiotic stresses. A better understanding of the signaling and perception of SLs may lead to the path for the sustainability of plants in the changing environmental scenario. The SLs may be considered as an opening door toward sustainable agriculture.
Collapse
|
49
|
Benabou A, Moukrim S, Lahssini S, Aboudi AE, Menzou K, Elmalki M, Madihi ME, Rhazi L. Impact of climate change on potential distribution of Quercus suber in the conditions of North Africa. BIOSYSTEMS DIVERSITY 2022. [DOI: 10.15421/012231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Climate change, which is expected to continue in the future, is increasingly becoming a major concern affecting many components of the biodiversity and human society. Understanding its impacts on forest ecosystems is essential for undertaking long-term management and conservation strategies. This study was focused on modeling the potential distribution of Quercus suber in the Maamora Forest, the world’s largest lowland cork oak forest, under actual and future climate conditions and identifying the environmental factors associated with this distribution. Maximum Entropy approach was used to train a Species Distribution Model and future predictions were based on different greenhouse gas emission scenarios (Representative Concentration Pathway RCPs). The results showed that the trained model was highly reliable and reflected the actual and future distributions of Maamora’s cork oak. It showed that the precipitation of the coldest and wettest quarter and the annual temperature range are the environmental factors that provide the most useful information for Q. suber distribution in the study area. The computed results of cork oak’s habitat suitability showed that predicted suitable areas are site-specific and seem to be highly dependent on climate change. The predicted changes are significant and expected to vary (decline of habitat suitability) in the future under the different emissions pathways. It indicates that climate change may reduce the suitable area for Q. suber under all the climate scenarios and the severity of projected impacts is closely linked to the magnitude of the climate change. The percent variation in habitat suitability indicates negative values for all the scenarios, ranging –23% to –100%. These regressions are projected to be more important under pessimist scenario RCP8.5. Given these results, we recommend including the future climate scenarios in the existing management strategies and highlight the usefulness of the produced predictive suitability maps under actual and future climate for the protection of this sensitive forest and its key species – cork oak, as well as for other forest species.
Collapse
|
50
|
Jensen EL, Leigh DM. Using temporal genomics to understand contemporary climate change responses in wildlife. Ecol Evol 2022; 12:e9340. [PMID: 36177124 PMCID: PMC9481866 DOI: 10.1002/ece3.9340] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/02/2022] [Accepted: 08/27/2022] [Indexed: 11/29/2022] Open
Abstract
Monitoring the evolutionary responses of species to ongoing global climate change is critical for informing conservation. Population genomic studies that use samples from multiple time points ("temporal genomics") are uniquely able to make direct observations of change over time. Consequently, only temporal studies can show genetic erosion or spatiotemporal changes in population structure. Temporal genomic studies directly examining climate change effects are currently rare but will likely increase in the coming years due to their high conservation value. Here, we highlight four key genetic indicators that can be monitored using temporal genomics to understand how species are responding to climate change. All indicators crucially rely on having a suitable baseline that accurately represents the past condition of the population, and we discuss aspects of study design that must be considered to achieve this.
Collapse
Affiliation(s)
- Evelyn L. Jensen
- School of Natural and Environmental SciencesNewcastle UniversityNewcastle Upon TyneUK
| | | |
Collapse
|