1
|
He J, Castilla-Alcantara JC, Ortega-Calvo JJ, Harms H, Wick LY. DC Electric Fields Promote Biodegradation of Waterborne Naphthalene in Biofilter Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18234-18243. [PMID: 39353102 PMCID: PMC11483754 DOI: 10.1021/acs.est.4c02924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024]
Abstract
Biofiltration is a simple and low-cost method for the cleanup of contaminated water. However, the reduced availability of dissolved chemicals to surface-attached degrader bacteria may limit its efficient use at certain hydraulic loadings. When a direct current (DC) electric field is applied to an immersed packed bed, it invokes electrokinetic processes, such as electroosmotic water flow (EOF). EOF is a surface-charge-induced plug-flow-shaped movement of pore fluids. It acts at a nanometer distance above surfaces and allows the change of microscale pressure-driven flow profiles and, hence, the availability of dissolved contaminants to microbial degraders. In laboratory percolation columns, we assessed the effects of a weak DC electric field (E = 0.5 V·cm-1) on the biodegradation of waterborne naphthalene (NAH) by surface-attached Pseudomonas fluorescens LP6a. To vary NAH bioavailability, we used different NAH concentrations (C0 = 2.7, 5.1, or 7.8 × 10-5 mol·L-1) and Darcy velocities typical for biofiltration (U ¯ = 0.2-1.2 × 10-4 m·s-1). In DC-free controls, we observed higher specific degradation rates (qc) at higher NAH concentrations. The qc depended on U ¯ , suggesting bioavailability restrictions depending on the hydraulic residence times. DC fields consistently increased qc and resulted in linearly increasing benefits up to 55% with rising hydraulic loadings relative to controls. We explain these biodegradation benefits by EOF-altered microscale flow profiles allowing for better NAH provision to bacteria attached to the collectors even though the EOF was calculated to be 100-800 times smaller than bulk water flow. Our data suggest that electrokinetic approaches may give rise to future technical applications that allow regulating biodegradation, for example, in response to fluctuating hydraulic loadings.
Collapse
Affiliation(s)
- Jinyao He
- Department
of Applied Microbial Ecology, Helmholtz
Centre for Environmental Research UFZ, Leipzig 04318, Germany
| | - Jose Carlos Castilla-Alcantara
- Department
of Applied Microbial Ecology, Helmholtz
Centre for Environmental Research UFZ, Leipzig 04318, Germany
- Instituto
de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), Avda. Reina Mercedes 10, Seville E-41012, Spain
| | - Jose Julio Ortega-Calvo
- Instituto
de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), Avda. Reina Mercedes 10, Seville E-41012, Spain
| | - Hauke Harms
- Department
of Applied Microbial Ecology, Helmholtz
Centre for Environmental Research UFZ, Leipzig 04318, Germany
| | - Lukas Y. Wick
- Department
of Applied Microbial Ecology, Helmholtz
Centre for Environmental Research UFZ, Leipzig 04318, Germany
| |
Collapse
|
2
|
Tang P, Chen L, Zhang W, Zhou Y. Bioclogging alleviation for constructed wetland based on the interaction among biofilm growth and hydrodynamics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:18755-18763. [PMID: 36219300 DOI: 10.1007/s11356-022-23459-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Bioclogging is the most crucial operation problem of the constructed wetlands, which reduce its removal efficiency and life span. A strategy through properly increasing hydraulic loading is proposed in this study to alleviate the bioclogging for CWs. The two-dimensional porous media flow cell (2D PMFC) test indicated that a quadratic correlation was found between local biofilms growth rate and the near-wall Reynolds number (r > 0.765, p < 0.05). The biofilm growth rate declined with the flowrate when Re exceeded about 6.0. It was also found that the higher flowrate (6 mL/min) lead to the homogeneous biofilm and velocity distribution in the PMFC. The column test indicated that the highest hydraulic loading (9.2 cm/h) produced the smallest decrease in hydraulic conductivity, which was 80 times more than that of low hydraulic load (3.0 cm/h) at the end (40 days) of experiment. Moreover, the relatively homogenized distribution of biofilm was found along the column with the highest hydraulic loading, which confirmed that the proper increase in hydraulic loading can alleviate bioclogging.
Collapse
Affiliation(s)
- Ping Tang
- College of Material and Environment Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Li Chen
- College of Material and Environment Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Wenming Zhang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, T6G 2W2, Canada
| | - Yongchao Zhou
- Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, Zhejiang University, Hangzhou, China.
| |
Collapse
|
3
|
Schostag MD, Gobbi A, Fini MN, Ellegaard-Jensen L, Aamand J, Hansen LH, Muff J, Albers CN. Combining reverse osmosis and microbial degradation for remediation of drinking water contaminated with recalcitrant pesticide residue. WATER RESEARCH 2022; 216:118352. [PMID: 35358881 DOI: 10.1016/j.watres.2022.118352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Groundwater contamination by recalcitrant organic micropollutants such as pesticide residues poses a great threat to the quality of drinking water. One way to remediate drinking water containing micropollutants is to bioaugment with specific pollutant degrading bacteria. Previous attempts to augment sand filters with the 2,6-dichlorobenzamide (BAM) degrading bacterium Aminobacter niigataensis MSH1 to remediate BAM-polluted drinking water initially worked well, but the efficiency rapidly decreased due to loss of degrader bacteria. Here, we use pilot-scale augmented sand filters to treat retentate of reverse osmosis treatment, thus increasing residence time in the biofilters and potentially nutrient availability. In a first pilot-scale experiment, BAM and most of the measured nutrients were concentrated 5-10 times in the retentate. This did not adversely affect the abundances of inoculated bacteria and the general prokaryotic community of the sand filter presented only minor differences. On the other hand, the high degradation activity was not prolonged compared to the filter receiving non-concentrated water at the same residence time. Using laboratory columns, it was shown that efficient BAM degradation could be achieved for >100 days by increasing the residence time in the sand filter. A slower flow may have practical implications for the treatment of large volumes of water, however this can be circumvented when treating only the retentate water equalling 10-15% of the volume of inlet water. We therefore conducted a second pilot-scale experiment with two inoculated sand filters receiving membrane retentate operated with different residence times (22 versus 133 min) for 65 days. While the number of MSH1 in the biofilters was not affected, the effect on degradation was significant. In the filter with short residence time, BAM degradation decreased from 86% to a stable level of 10-30% degradation within the first two weeks. The filter with the long residence time initially showed >97% BAM degradation, which only slightly decreased with time (88% at day 65). Our study demonstrates the advantage of combining membrane filtration with bioaugmented filters in cases where flow rate is of high importance.
Collapse
Affiliation(s)
- Morten D Schostag
- Department of Geochemistry, Geological Survey of Denmark & Greenland (GEUS), Copenhagen, Denmark
| | - Alex Gobbi
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Mahdi Nikbakht Fini
- Center for Membrane Technology, Department of Chemistry and Bioscience, Aalborg University, Esbjerg, Denmark
| | | | - Jens Aamand
- Department of Geochemistry, Geological Survey of Denmark & Greenland (GEUS), Copenhagen, Denmark
| | - Lars Hestbjerg Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Jens Muff
- Center for Membrane Technology, Department of Chemistry and Bioscience, Aalborg University, Esbjerg, Denmark
| | - Christian N Albers
- Department of Geochemistry, Geological Survey of Denmark & Greenland (GEUS), Copenhagen, Denmark.
| |
Collapse
|
4
|
Yang L, Hnatko JP, Elsey JL, Christ JA, Pennell KD, Cápiro NL, Abriola LM. Exploration of processes governing microbial reductive dechlorination in a heterogeneous aquifer flow cell. WATER RESEARCH 2021; 193:116842. [PMID: 33545437 DOI: 10.1016/j.watres.2021.116842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/30/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Although microbial reductive dechlorination (MRD) has proven to be an effective approach for in situ treatment of chlorinated ethenes, field implementation of this technology is complicated by many factors, including subsurface heterogeneity, electron donor availability, and distribution of microbial populations. This work presents a coupled experimental and mathematical modeling study designed to explore the influence of heterogeneity on MRD and to assess the suitability of microcosm-derived rate parameters for modeling complex heterogeneous systems. A Monod-based model is applied to simulate a bioremediation experiment conducted in a laboratory-scale aquifer cell packed with aquifer material from the Commerce Street Superfund site in Williston, VT. Results reveal that (uncalibrated) model application of microcosm-derived dechlorination and microbial growth rates for transformation of trichloroethene (TCE), cis-1,2-dichloroethene (cis-DCE), and vinyl chloride (VC) reproduced observed aquifer cell concentration levels and trends. Mean relative errors between predicted and measured effluent concentrations were quantified as 6.7%, 27.0%, 41.5%, 32.0% and 21.6% over time for TCE, cis-DCE, VC, ethene and total volatile fatty acids (fermentable electron donor substrate and carbon source), respectively. The time-averaged extent of MRD (i.e., ethene formation) was well-predicted (4% underprediction), with modeled MRD exhibiting increased deviation from measured values under electron donor limiting conditions (maximum discrepancy of 14%). In contrast, simulations employing a homogeneous (uniform flow) domain resulted in underprediction of MRD extent by an average of 13%, with a maximum discrepancy of 45%. Model sensitivity analysis suggested that trace amounts of natural dissolved organic carbon served as an important fermentable substrate, providing up to 69% of the reducing equivalents consumed for MRD under donor-limiting conditions. Aquifer cell port concentration data and model simulations revealed that ethene formation varied spatially within the domain and was associated with regions of longer residence times. These results demonstrate the strong influence of subsurface heterogeneity on the accuracy of MRD predictions, and highlight the importance of subsurface characterization and the incorporation of flow field uncertainty in model applications for successful design and assessment of in situ bioremediation.
Collapse
Affiliation(s)
- Lurong Yang
- Department of Civil and Environmental Engineering, Tufts University, Medford, Massachusetts, USA; Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jason P Hnatko
- Department of Civil and Environmental Engineering, Tufts University, Medford, Massachusetts, USA; ERM, Boston, Massachusetts, USA
| | - Jack L Elsey
- Department of Civil and Environmental Engineering, Tufts University, Medford, Massachusetts, USA
| | | | - Kurt D Pennell
- School of Engineering, Brown University, Providence, Rhode Island, USA
| | - Natalie L Cápiro
- Department of Civil and Environmental Engineering, Auburn University, Auburn, Alabama, USA
| | - Linda M Abriola
- Department of Civil and Environmental Engineering, Tufts University, Medford, Massachusetts, USA; School of Engineering, Brown University, Providence, Rhode Island, USA.
| |
Collapse
|
5
|
Crognale S, Cocarta DM, Streche C, D’Annibale A. Development of laboratory-scale sequential electrokinetic and biological treatment of chronically hydrocarbon-impacted soils. N Biotechnol 2020; 58:38-44. [DOI: 10.1016/j.nbt.2020.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/06/2020] [Accepted: 04/11/2020] [Indexed: 01/04/2023]
|
6
|
Saini A, Bekele DN, Chadalavada S, Fang C, Naidu R. A review of electrokinetically enhanced bioremediation technologies for PHs. J Environ Sci (China) 2020; 88:31-45. [PMID: 31862072 DOI: 10.1016/j.jes.2019.08.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/13/2019] [Accepted: 08/13/2019] [Indexed: 06/10/2023]
Abstract
Since the early 1980's there have been several different strategies designed and applied to the remediation of subsurface environment including physical, chemical and biological approaches. They have had varying degrees of success in remediating contaminants from subsurface soils and groundwater. The objective of this review is to examine the range of technologies for the remediation of contaminants, particularly petroleum hydrocarbons, in subsurfaces with a specific focus on bioremediation and electrokinetic remediation. Further, this review examines the efficiency of remediation carried out by combining bioremediation and electrokinetic remediation. Surfactants, which are slowly becoming the selected chemicals for mobilizing contaminants, are also considered in this review. The current knowledge gaps of these technologies and techniques identified which could lead to development of more efficient ways of utilizing these technologies or development of a completely new technology.
Collapse
Affiliation(s)
- Anish Saini
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, Newcastle 2308, NSW, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, Newcastle 2308, NSW, Australia
| | - Dawit Nega Bekele
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, Newcastle 2308, NSW, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, Newcastle 2308, NSW, Australia
| | - Sreenivasulu Chadalavada
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, Newcastle 2308, NSW, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, Newcastle 2308, NSW, Australia
| | - Cheng Fang
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, Newcastle 2308, NSW, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, Newcastle 2308, NSW, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, Newcastle 2308, NSW, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, Newcastle 2308, NSW, Australia.
| |
Collapse
|
7
|
Yang GCC. Integrated electrokinetic processes for the remediation of phthalate esters in river sediments: A mini-review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 659:963-972. [PMID: 31096426 DOI: 10.1016/j.scitotenv.2018.12.334] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 11/29/2018] [Accepted: 12/22/2018] [Indexed: 06/09/2023]
Abstract
Concerning the contamination of phthalate esters (PAEs) in river sediments, this mini-review introduces four recently reported novel "integrated electrokinetic (EK) processes" for the remediation purpose, namely two combined technologies of the EK process and advanced oxidation process (EK-AOP Processes) and two combined technologies of the EK process and biological process (EK-BIO Processes). The following is a comprehensive summary for these remediation processes: (1) the EK process coupled with nano-Fe3O4/S2O82- oxidation process - Test results have shown that nanoscale Fe3O4 played a significant role in activating persulfate oxidation. Even a recalcitrant compound like di(2‑ethylhexyl)phthalate (DEHP), its concentration in test sediment was reduced to 1.97 mg kg-1, far below the regulatory levels set by Taiwan EPA; (2) the EK process integrated with a novel Fenton-like process catalyzed by nanoscale schwertmannite (nano-SHM) - Test results have revealed that simultaneous injection of nano-SHM slurry and H2O2 into the anode reservoir and sediment compartment is a good practice. 70-99% in removal efficiency was obtained for various target PAEs; (3) enhanced in situ bioremediation coupled with the EK process for promoting the growth of intrinsic microorganisms by adding H2O2 as an oxygen release compound (ORC) - Test results have demonstrated that an intermittent mode of injecting lab-prepared ORC directly into the contaminant zone would be beneficial to the growth of intrinsic microorganisms in test sediment for in situ bioremediation of target PAEs; and (4) coupling of a second-generation ORC (designated 2G-ORC) with the EK-biological process - Test results have proved that 2G-ORC is long-lasting and can be directly utilized as the carbon source and oxygen source for microbial growth resulting in an enhanced biodegradation of PAEs. Except DEHP having a residual concentration of 4 μg kg-1, all other target PAEs in test sediment were totally removed by this novel combined remediation process.
Collapse
Affiliation(s)
- Gordon C C Yang
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
| |
Collapse
|
8
|
Jain R, Peräniemi S, Jordan N, Vogel M, Weiss S, Foerstendorf H, Lakaniemi AM. Removal and recovery of uranium(VI) by waste digested activated sludge in fed-batch stirred tank reactor. WATER RESEARCH 2018; 142:167-175. [PMID: 29870950 DOI: 10.1016/j.watres.2018.05.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 06/08/2023]
Abstract
This study demonstrated the removal and recovery of uranium(VI) in a fed-batch stirred tank reactor (STR) using waste digested activated sludge (WDAS). The batch adsorption experiments showed that WDAS can adsorb 200 (±9.0) mg of uranium(VI) per g of WDAS. The maximum adsorption of uranium(VI) was achieved even at an acidic initial pH of 2.7 which increased to a pH of 4.0 in the equilibrium state. Desorption of uranium(VI) from WDAS was successfully demonstrated from the release of more than 95% of uranium(VI) using both acidic (0.5 M HCl) and alkaline (1.0 M Na2CO3) eluents. Due to the fast kinetics of uranium(VI) adsorption onto WDAS, the fed-batch STR was successfully operated at a mixing time of 15 min. Twelve consecutive uranium(VI) adsorption steps with an average adsorption efficiency of 91.5% required only two desorption steps to elute more than 95% of uranium(VI) from WDAS. Uranium(VI) was shown to interact predominantly with the phosphoryl and carboxyl groups of the WDAS, as revealed by in situ infrared spectroscopy and time-resolved laser-induced fluorescence spectroscopy studies. This study provides a proof-of-concept of the use of fed-batch STR process based on WDAS for the removal and recovery of uranium(VI).
Collapse
Affiliation(s)
- Rohan Jain
- Tampere University of Technology, Faculty of Natural Sciences, P.O. Box 541, FI-33101 Tampere, Finland; Helmholtz-Zentrum Dresden - Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Bautzner Landstraße 400, 01328 Dresden, Germany.
| | - Sirpa Peräniemi
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70221 Kuopio, Finland
| | - Norbert Jordan
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Manja Vogel
- Helmholtz-Zentrum Dresden - Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Bautzner Landstraße 400, 01328 Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Stephan Weiss
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Harald Foerstendorf
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Aino-Maija Lakaniemi
- Tampere University of Technology, Faculty of Natural Sciences, P.O. Box 541, FI-33101 Tampere, Finland
| |
Collapse
|
9
|
Selvi A, Aruliah R. A statistical approach of zinc remediation using acidophilic bacterium via an integrated approach of bioleaching enhanced electrokinetic remediation (BEER) technology. CHEMOSPHERE 2018; 207:753-763. [PMID: 29859487 DOI: 10.1016/j.chemosphere.2018.05.144] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/17/2018] [Accepted: 05/24/2018] [Indexed: 06/08/2023]
Abstract
The aim of the present study was to isolate an indigenous acidophilic bacterium from tannery effluent contaminated sludge (TECS) sample and evaluate its potentiality towards the removal of zinc using an integrated approach of bioleaching enhanced electrokinetic remediation (BEER) technology in zinc spiked soil at an initial concentration of 1000 mg/kg. The isolated acidophilic bacterium was characterized by biochemical and 16S rRNA molecular identification and was named as Serratia marcescens SMAR1 bearing an accession no. MG742410 in NCBI database. The effect of pH and inoculum dosage of SMAR 1 strain showed an optimal growth at pH 5.0 and 4% (v/v) respectively. Based on these experimental data, a statistical analysis was done using Design Expert computer software, v11 to study the interaction between the process parameters with respect to zinc reduction as an output response. Electrokinetic experiments were conducted in a customised EK cell under optimised process conditions, employing titanium electrodes. Experiments for zinc removal were demonstrated for bioleaching, electrokinetic (EK) and BEER technology. On comparing, the integrated process was found to evidence as an excellent metal remediation option with a maximum zinc removal of 93.08% in 72 h than plain bioleaching (72.86%) and EK (56.67%) in 96 h. This is the first report of zinc removal in a short period of time using Serratia marcescens. It is therefore concluded that the BEER approach can be regarded as an effective technology in cleaning up the metal contaminated environment with an easy recovery and reuse option within short period of time.
Collapse
Affiliation(s)
- Adikesavan Selvi
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, 632115, Tamilnadu, India.
| | - Rajasekar Aruliah
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, 632115, Tamilnadu, India.
| |
Collapse
|
10
|
Contaminant concentration versus flow velocity: drivers of biodegradation and microbial growth in groundwater model systems. Biodegradation 2018; 29:211-232. [PMID: 29492777 PMCID: PMC5943387 DOI: 10.1007/s10532-018-9824-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 02/23/2018] [Indexed: 11/07/2022]
Abstract
Aromatic hydrocarbons belong to the most abundant contaminants in groundwater systems. They can serve as carbon and energy source for a multitude of indigenous microorganisms. Predictions of contaminant biodegradation and microbial growth in contaminated aquifers are often vague because the parameters of microbial activity in the mathematical models used for predictions are typically derived from batch experiments, which don’t represent conditions in the field. In order to improve our understanding of key drivers of natural attenuation and the accuracy of predictive models, we conducted comparative experiments in batch and sediment flow-through systems with varying concentrations of contaminant in the inflow and flow velocities applying the aerobic Pseudomonas putida strain F1 and the denitrifying Aromatoleum aromaticum strain EbN1. We followed toluene degradation and bacterial growth by measuring toluene and oxygen concentrations and by direct cell counts. In the sediment columns, the total amount of toluene degraded by P. putida F1 increased with increasing source concentration and flow velocity, while toluene removal efficiency gradually decreased. Results point at mass transfer limitation being an important process controlling toluene biodegradation that cannot be assessed with batch experiments. We also observed a decrease in the maximum specific growth rate with increasing source concentration and flow velocity. At low toluene concentrations, the efficiencies in carbon assimilation within the flow-through systems exceeded those in the batch systems. In all column experiments the number of attached cells plateaued after an initial growth phase indicating a specific “carrying capacity” depending on contaminant concentration and flow velocity. Moreover, in all cases, cells attached to the sediment dominated over those in suspension, and toluene degradation was performed practically by attached cells only. The observed effects of varying contaminant inflow concentration and flow velocity on biodegradation could be captured by a reactive-transport model. By monitoring both attached and suspended cells we could quantify the release of new-grown cells from the sediments to the mobile aqueous phase. Studying flow velocity and contaminant concentrations as key drivers of contaminant transformation in sediment flow-through microcosms improves our system understanding and eventually the prediction of microbial biodegradation at contaminated sites.
Collapse
|
11
|
Yang GCC, Huang SC, Jen YS, Tsai PS. Remediation of phthalates in river sediment by integrated enhanced bioremediation and electrokinetic process. CHEMOSPHERE 2016; 150:576-585. [PMID: 26733014 DOI: 10.1016/j.chemosphere.2015.12.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/11/2015] [Accepted: 12/13/2015] [Indexed: 06/05/2023]
Abstract
The objective of this study was to evaluate the feasibility of enhanced bioremediation coupling with electrokinetic process for promoting the growth of intrinsic microorganisms and removing phthalate esters (PAEs) from river sediment by adding an oxygen releasing compound (ORC). Test results are given as follows: Enhanced removal of PAEs was obtained by electrokinetics, through which the electroosmotic flow would render desorption of organic pollutants from sediment particles yielding an increased bioavailability. It was also found that the ORC injected into the sediment compartment not only would alleviate the pH value variation due to acid front and base front, but would be directly utilized as the carbon source and oxygen source for microbial growth resulting in an enhanced degradation of organic pollutants. However, injection of the ORC into the anode compartment could yield a lower degree of microbial growth due to the loss of ORC during the transport by EK. Through the analysis of molecular biotechnology it was found that both addition of an ORC and application of an external electric field can be beneficial to the growth of intrinsic microbial and abundance of microflora. In addition, the sequencing result showed that PAEs could be degraded by the following four strains: Flavobacterium sp., Bacillus sp., Pseudomonas sp., and Rhodococcus sp. The above findings confirm that coupling of enhanced bioremediation and electrokinetic process could be a viable remediation technology to treat PAEs-contaminated river sediment.
Collapse
Affiliation(s)
- Gordon C C Yang
- Center for Emerging Contaminants Research, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan, ROC; Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan, ROC
| | - Sheng-Chih Huang
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan, ROC.
| | - Yu-Sheng Jen
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan, ROC
| | - Pei-Shin Tsai
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan, ROC
| |
Collapse
|
12
|
Albers CN, Feld L, Ellegaard-Jensen L, Aamand J. Degradation of trace concentrations of the persistent groundwater pollutant 2,6-dichlorobenzamide (BAM) in bioaugmented rapid sand filters. WATER RESEARCH 2015; 83:61-70. [PMID: 26125500 DOI: 10.1016/j.watres.2015.06.023] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 06/14/2015] [Accepted: 06/15/2015] [Indexed: 05/12/2023]
Abstract
Groundwater is an important drinking water resource. Yet, this resource is threatened by pollution from chemicals, such as pesticides and their degradation products. To investigate the potential for remediation of groundwater polluted by trace concentrations of the pesticide residue 2,6-dichlorobenzamide (BAM), we established a pilot waterworks including two sand filters. The waterworks treated groundwater polluted with 0.2 μg/L BAM at flow conditions typical for rapid sand filters. Bioaugmentation of the sand filter with a specific BAM-degrading bacterium (Aminobacter sp. MSH1) resulted in significant BAM degradation to concentrations below the legal threshold level (0.1 μg/L), and this without adverse effects on other sand filter processes such as ammonium and iron oxidation. However, efficient degradation for more than 2-3 weeks was difficult to maintain due to loss of MSH1-bacteria, especially during backwashing. By limiting backwash procedures, the period of degradation was prolonged, but bacteria (and hence degradation activity) were still lost with time. Protozoa were observed to grow in the filters to a density that contributed significantly to the general loss of bacteria from the filters. Additionally, the concentration of easily assimilable organic carbon (AOC) in the remediated water may have been too low to sustain a sufficient population of degrader bacteria in the filter. This study shows that scaling up is not trivial and shortcomings in transferring degradation rates obtained in batch experiments to a rapid sand filter system are discussed. Further optimization is necessary to obtain and control more temporally stable systems for water purification. However, for the first time outside the laboratory and at realistic conditions a potential for the biodegradation of recalcitrant micropollutants in bioaugmented rapid sand filters is shown.
Collapse
Affiliation(s)
- Christian Nyrop Albers
- Dept. Geochemistry, Geological Survey of Denmark & Greenland, Øster Voldgade 10, DK-1350 Copenhagen, Denmark.
| | - Louise Feld
- Dept. Geochemistry, Geological Survey of Denmark & Greenland, Øster Voldgade 10, DK-1350 Copenhagen, Denmark
| | - Lea Ellegaard-Jensen
- Dept. Geochemistry, Geological Survey of Denmark & Greenland, Øster Voldgade 10, DK-1350 Copenhagen, Denmark
| | - Jens Aamand
- Dept. Geochemistry, Geological Survey of Denmark & Greenland, Øster Voldgade 10, DK-1350 Copenhagen, Denmark
| |
Collapse
|
13
|
Mena E, Ruiz C, Villaseñor J, Rodrigo MA, Cañizares P. Biological permeable reactive barriers coupled with electrokinetic soil flushing for the treatment of diesel-polluted clay soil. JOURNAL OF HAZARDOUS MATERIALS 2014; 283:131-139. [PMID: 25262485 DOI: 10.1016/j.jhazmat.2014.08.069] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 08/28/2014] [Accepted: 08/31/2014] [Indexed: 06/03/2023]
Abstract
Removal of diesel from spiked kaolin has been studied in the laboratory using coupled electrokinetic soil flushing (EKSF) and bioremediation through an innovative biological permeable reactive barriers (Bio-PRBs) positioned between electrode wells. The results show that this technology is efficient in the removal of pollutants and allows the soil to maintain the appropriate conditions for microorganism growth in terms of pH, temperature, and nutrients. At the same time, EKSF was demonstrated to be a very interesting technology for transporting pollutants, microorganisms and nutrients, although results indicate that careful management is necessary to avoid the depletion of nutrients, which are effectively transported by electro-migration. After two weeks of operation, 30% of pollutants are removed and energy consumption is under 70 kWh m(-3). Main fluxes (electroosmosis and evaporation) and changes in the most relevant parameters (nutrients, diesel, microorganisms, surfactants, moisture conductivity and pH) during treatment and in a complete post-study analysis are studied to give a comprehensive description of the most relevant processes occurring in the soil (pollutant transport and biodegradation).
Collapse
Affiliation(s)
- Esperanza Mena
- Chemical Engineering Department, Faculty of Chemical Sciences and Technologies & Research Institute for Chemical and Environmental Technology (ITQUIMA), Universidad de Castilla La Mancha, Campus Universitario s/n, 13071, Ciudad Real, Spain
| | - Clara Ruiz
- Chemical Engineering Department, Faculty of Chemical Sciences and Technologies & Research Institute for Chemical and Environmental Technology (ITQUIMA), Universidad de Castilla La Mancha, Campus Universitario s/n, 13071, Ciudad Real, Spain
| | - José Villaseñor
- Chemical Engineering Department, Faculty of Chemical Sciences and Technologies & Research Institute for Chemical and Environmental Technology (ITQUIMA), Universidad de Castilla La Mancha, Campus Universitario s/n, 13071, Ciudad Real, Spain
| | - Manuel A Rodrigo
- Chemical Engineering Department, Faculty of Chemical Sciences and Technologies & Research Institute for Chemical and Environmental Technology (ITQUIMA), Universidad de Castilla La Mancha, Campus Universitario s/n, 13071, Ciudad Real, Spain.
| | - Pablo Cañizares
- Chemical Engineering Department, Faculty of Chemical Sciences and Technologies & Research Institute for Chemical and Environmental Technology (ITQUIMA), Universidad de Castilla La Mancha, Campus Universitario s/n, 13071, Ciudad Real, Spain
| |
Collapse
|
14
|
Gill RT, Harbottle MJ, Smith JWN, Thornton SF. Electrokinetic-enhanced bioremediation of organic contaminants: a review of processes and environmental applications. CHEMOSPHERE 2014; 107:31-42. [PMID: 24875868 DOI: 10.1016/j.chemosphere.2014.03.019] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 02/18/2014] [Accepted: 03/03/2014] [Indexed: 06/03/2023]
Abstract
There is current interest in finding sustainable remediation technologies for the removal of contaminants from soil and groundwater. This review focuses on the combination of electrokinetics, the use of an electric potential to move organic and inorganic compounds, or charged particles/organisms in the subsurface independent of hydraulic conductivity; and bioremediation, the destruction of organic contaminants or attenuation of inorganic compounds by the activity of microorganisms in situ or ex situ. The objective of the review is to examine the state of knowledge on electrokinetic bioremediation and critically evaluate factors which affect the up-scaling of laboratory and bench-scale research to field-scale application. It discusses the mechanisms of electrokinetic bioremediation in the subsurface environment at different micro and macroscales, the influence of environmental processes on electrokinetic phenomena and the design options available for application to the field scale. The review also presents results from a modelling exercise to illustrate the effectiveness of electrokinetics on the supply electron acceptors to a plume scale scenario where these are limiting. Current research needs include analysis of electrokinetic bioremediation in more representative environmental settings, such as those in physically heterogeneous systems in order to gain a greater understanding of the controlling mechanisms on both electrokinetics and bioremediation in those scenarios.
Collapse
Affiliation(s)
- R T Gill
- Groundwater Protection and Restoration Group, University of Sheffield, Department of Civil & Structural Engineering, Kroto Research Institute, Broad Lane, Sheffield S3 7HQ, UK.
| | - M J Harbottle
- Institute of Environment and Sustainability, Cardiff University, School of Engineering, Queen's Buildings, The Parade, Cardiff CF24 3AA, UK
| | - J W N Smith
- Shell Global Solutions, Lange Kleiweg 40, 2288 GK Rijswijk, The Netherlands; Groundwater Protection and Restoration Group, University of Sheffield, Department of Civil & Structural Engineering, Kroto Research Institute, Broad Lane, Sheffield S3 7HQ, UK
| | - S F Thornton
- Groundwater Protection and Restoration Group, University of Sheffield, Department of Civil & Structural Engineering, Kroto Research Institute, Broad Lane, Sheffield S3 7HQ, UK
| |
Collapse
|
15
|
Albers CN, Jacobsen OS, Aamand J. Using 2,6-dichlorobenzamide (BAM) degrading Aminobacter sp. MSH1 in flow through biofilters--initial adhesion and BAM degradation potentials. Appl Microbiol Biotechnol 2013; 98:957-67. [PMID: 23670436 DOI: 10.1007/s00253-013-4942-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 04/18/2013] [Accepted: 04/19/2013] [Indexed: 10/26/2022]
Abstract
Micropollutants in groundwater are given significant attention by water companies and authorities due to an increasing awareness that they might be present even above the legal threshold values. As part of our investigations of the possibility to remove the common groundwater pollutant 2,6-dichlorobenzamide (BAM) by introducing the efficient BAM degrader Aminobacter sp. MSH1 into biologically active sand filters, we investigated if the strain adheres to filters containing various filter materials and if the initial adherence and subsequent degradation of BAM could be optimized. We found that most of the inoculated MSH1 cells adhered fast and that parameters like pH and ionic strength had only a minor influence on the adhesion despite huge influence on cell surface hydrophobicity. At the given growth protocol, the MSH1 strain apparently developed a subpopulation that had lost its ability to adhere to the filter materials, which was supported by attempted reinoculation of non-adhered cells. Analysis by quantitative PCR showed that most cells adhered in the top of the filters and that some of these were lost from the filters during initial operation, while insignificant losses occurred after 1 day of operation. The inoculated filters were found to degrade 2.7 μg/L BAM to below 0.1 μg/L at a 1.1-h residence time with insignificant formation of known degradation products. In conclusion, most filter materials and water types should be feasible for inoculation with the MSH1 strain, while more research into degradation at low concentrations and temperatures is needed before this technology is ready for use at actual waterworks.
Collapse
Affiliation(s)
- Christian Nyrop Albers
- Department Geochemistry, Geological Survey of Denmark & Greenland, Ø. Voldgade 10, 1350, Copenhagen, Denmark,
| | | | | |
Collapse
|
16
|
Thullner M, Fischer A, Richnow HH, Wick LY. Influence of mass transfer on stable isotope fractionation. Appl Microbiol Biotechnol 2012; 97:441-52. [PMID: 23143531 DOI: 10.1007/s00253-012-4537-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 10/19/2012] [Accepted: 10/22/2012] [Indexed: 11/27/2022]
Abstract
Biodegradation of contaminants is a common remediation strategy for subsurface environments. To monitor the success of such remediation means a quantitative assessment of biodegradation at the field scale is required. Nevertheless, the reliable quantification of the in situ biodegradation process it is still a major challenge. Compound-specific stable isotope analysis has become an established method for the qualitative analysis of biodegradation in the field and this method is also proposed for a quantitative analysis. However, to use stable isotope data to obtain quantitative information on in situ biodegradation requires among others knowledge on the influence of mass transfer processes on the observed stable isotope fractionation. This paper reviews recent findings on the influence of mass transfer processes on stable isotope fractionation and on the quantitative interpretation of isotope data. Focus will be given on small-scale mass transfer processes controlling the bioavailability of contaminants. Such bioavailability limitations are known to affect the biodegradation rate and have recently been shown to affect stable isotope fractionation, too. Theoretical as well as experimental studies addressing the link between bioavailability and stable isotope fractionation are reviewed and the implications for assessing biodegradation in the field are discussed.
Collapse
Affiliation(s)
- Martin Thullner
- Department of Environmental Microbiology, UFZ-Helmholtz Centre for Environmental Research, Permoserstr. 15, 30418 Leipzig, Germany.
| | | | | | | |
Collapse
|
17
|
Hanzel J, Thullner M, Harms H, Wick LY. Walking the tightrope of bioavailability: growth dynamics of PAH degraders on vapour-phase PAH. Microb Biotechnol 2011; 5:79-86. [PMID: 21951380 PMCID: PMC3815274 DOI: 10.1111/j.1751-7915.2011.00300.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Microbial contaminant degradation may either result in the utilization of the compound for growth or act as a protective mechanism against its toxicity. Bioavailability of contaminants for nutrition and toxicity has opposite consequences which may have resulted in quite different bacterial adaptation mechanisms; these may particularly interfere when a growth substrate causes toxicity at high bioavailability. Recently, it has been demonstrated that a high bioavailability of vapour‐phase naphthalene (NAPH) leads to chemotactic movement of NAPH‐degrading Pseudomonas putida (NAH7) G7 away from the NAPH source. To investigate the balance of toxic defence and substrate utilization, we tested the influence of the cell density on surface‐associated growth of strain PpG7 at different positions in vapour‐phase NAPH gradients. Controlled microcosm experiments revealed that high cell densities increased growth rates close (< 2 cm) to the NAPH source, whereas competition for NAPH decreased the growth rates at larger distances despite the high gas phase diffusivity of NAPH. At larger distance, less microbial biomass was likewise sustained by the vapour‐phase NAPH. Such varying growth kinetics is explained by a combination of bioavailability restrictions and NAPH‐based inhibition. To account for this balance, a novel, integrated ‘Best Equation’ describing microbial growth influenced by substrate availability and inhibition is presented.
Collapse
Affiliation(s)
- Joanna Hanzel
- UFZ - Helmholtz Centre for Environmental Research, Department of Environmental Microbiology, 04318 Leipzig, Germany
| | | | | | | |
Collapse
|
18
|
Yadav BK, Hassanizadeh SM. An Overview of Biodegradation of LNAPLs in Coastal (Semi)-arid Environment. WATER, AIR, AND SOIL POLLUTION 2011; 220:225-239. [PMID: 21949451 PMCID: PMC3153656 DOI: 10.1007/s11270-011-0749-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 01/14/2011] [Indexed: 05/13/2023]
Abstract
Contamination of soil and water due to the release of light non-aqueous phase liquids (LNAPLs) is a ubiquitous problem. The problem is more severe in arid and semi-arid coastal regions where most of the petroleum production and related refinery industries are located. Biological treatment of these organic contaminated resources is receiving increasing interests and where applicable, can serve as a cost-effective remediation alternative. The success of bioremediation greatly depends on the prevailing environmental variables, and their remediation favoring customization requires a sound understanding of their integrated behavior on fate and transport of LNAPLs under site-specific conditions. The arid and semi-arid coastal sites are characterized by specific environmental extremes; primarily, varying low and high temperatures, high salinity, water table dynamics, and fluctuating soil moisture content. An understanding of the behavior of these environmental variables on biological interactions with LNAPLs would be helpful in customizing the bioremediation for restoring problematic sites in these regions. Therefore, this paper reviews the microbial degradation of LNAPLs in soil-water, considering the influences of prevailing environmental parameters of arid and semi-arid coastal regions. First, the mechanism of biodegradation of LNAPLs is discussed briefly, followed by a summary of popular kinetic models used by researchers for describing the degradation rate of these hydrocarbons. Next, the impact of soil moisture content, water table dynamics, and soil-water temperature on the fate and transport of LNAPLs are discussed, including an overview of the studies conducted so far. Finally, based on the reviewed information, a general conclusion is presented with recommendations for future research subjects on optimizing the bioremediation technique in the field under the aforesaid environmental conditions. The present review will be useful to better understand the feasibility of bioremediation technology, in general, and its applicability for remediating LNAPLs polluted lands under aforesaid environments, in particular.
Collapse
Affiliation(s)
- Brijesh Kumar Yadav
- Department of Civil Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016 India
| | - S. Majid Hassanizadeh
- Environmental Hydrogeology Group, Faculty of Geosciences, Utrecht University, Budapestlaan 4, P.O. Box 80021, 3508 TA Utrecht, The Netherlands
| |
Collapse
|
19
|
Haest PJ, Philips J, Springael D, Smolders E. The reactive transport of trichloroethene is influenced by residence time and microbial numbers. JOURNAL OF CONTAMINANT HYDROLOGY 2011; 119:89-98. [PMID: 20952091 DOI: 10.1016/j.jconhyd.2010.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 08/31/2010] [Accepted: 09/21/2010] [Indexed: 05/30/2023]
Abstract
The dechlorination rate in a flow-through porous matrix can be described by the species specific dechlorination rate observed in a liquid batch unless mass transport limitations prevail. This hypothesis was examined by comparing dechlorination rates in liquid batch with that in column experiments at various flow rates (3-9-12 cm day(-1)). Columns were loaded with an inoculated sand and eluted with a medium containing 1mM trichloroethene (TCE) for 247 days. Dechlorination in the column treatments increased with decreasing flow rate, illustrating the effect of the longer residence time. Zeroth order TCE or cis-DCE degradation rates were 4-7 folds larger in columns than in corresponding batch systems which could be explained by the higher measured Geobacter and Dehalococcoides numbers per unit pore volume in the columns. The microbial numbers also explained the variability in dechlorination rate among flow rate treatments marked by a large elution of the dechlorinating species' yield as flow increased. Stop flow events did not reveal mass transport limitations for dechlorination. We conclude that flow rate effects on reactive transport of TCE in this coarse sand are explained by residence time and by microbial transport and that mass transport limitations in this porous matrix are limited.
Collapse
Affiliation(s)
- P J Haest
- Division Soil and Water Management, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | | | | | | |
Collapse
|
20
|
Gong R, Lu C, Wu WM, Cheng H, Gu B, Watson DB, Criddle CS, Kitanidis PK, Brooks SC, Jardine PM, Luo J. Estimating kinetic mass transfer by resting-period measurements in flow-interruption tracer tests. JOURNAL OF CONTAMINANT HYDROLOGY 2010; 117:37-45. [PMID: 20638152 DOI: 10.1016/j.jconhyd.2010.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 06/03/2010] [Accepted: 06/08/2010] [Indexed: 05/29/2023]
Abstract
Flow-interruption tracer test is an effective approach to identify kinetic mass transfer processes for solute transport in subsurface media. By switching well pumping and resting, one may alter the dominant transport mechanism and generate special concentration patterns for identifying kinetic mass transfer processes. In the present research, we conducted three-phase (i.e., pumping, resting, and pumping) field-scale flow-interruption tracer tests using a conservative tracer bromide in a multiple-well system installed at the US Department of Energy Site, Oak Ridge, TN. A novel modeling approach based on the resting-period measurements was developed to estimate the mass transfer parameters. This approach completely relied on the measured breakthrough curves without requiring detailed aquifer characterization and solving transport equations in nonuniform, transient flow fields. Additional measurements, including hydraulic heads and tracer concentrations in large pumping wells, were taken to justify the assumption that mass transfer processes dominated concentration change during resting periods. The developed approach can be conveniently applied to any linear mass transfer model. Both first-order and multirate mass transfer models were applied to analyze the breakthrough curves at various monitoring wells. The multirate mass transfer model was capable of jointly fitting breakthrough curve behavior, showing the effectiveness and flexibility for incorporating aquifer heterogeneity and scale effects in upscaling effective mass transfer models.
Collapse
Affiliation(s)
- R Gong
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0355, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Rodríguez-Garrido B, Lú-Chau TA, Feijoo G, Macías F, Monterrroso MC. Reductive dechlorination of α-, β-, γ-, and δ-hexachlorocyclohexane isomers with hydroxocobalamin, in soil slurry systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:7063-7069. [PMID: 20715766 DOI: 10.1021/es1012438] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The present study was carried out to test the viability of a method of reductive dehalogenation of α-, β-, γ-, and δ-hexachlorocyclohexane (HCH) in soil slurry systems. The soil slurries were maintained under anaerobic conditions, with titanium(III) citrate as a reducing agent and hydroxocobalamin (vitamin B(12a)) as a catalyzing agent. Experiments were carried out with two soil samples with markedly different characteristics (particularly regarding organic matter content), at a small scale and larger reactor scale. HCH concentration was monitored throughout the 24 h duration of the tests. In the low organic matter soil HCH isomers degraded rapidly, in both the small scale and reactor systems, and undetectable levels (<0.5%) were reached within 5 h. However, complete degradation of HCH isomers was not achieved in soil with high organic matter content, and there were differences between the results obtained in the small scale and reactor systems. In the small scale system, the levels of degradation reached 93, 88, 94, and 91%, for α-, β-, γ-, and δ-HCH, respectively, and the nondegraded HCH was sorbed in the soil. In the reactor system, the reaction stopped after two hours (no more than 65% of any of the isomers was degraded).
Collapse
Affiliation(s)
- B Rodríguez-Garrido
- Instituto de Investigaciones Agrobiológicas de Galicia, CSIC. Apdo. 122. Santiago de Compostela, E-15780, Spain.
| | | | | | | | | |
Collapse
|
22
|
Hesse F, Harms H, Attinger S, Thullner M. Linear exchange model for the description of mass transfer limited bioavailability at the pore scale. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:2064-71. [PMID: 20175545 DOI: 10.1021/es902489q] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Reactive transport simulations are a common approach for the quantitative assessment of contaminant biodegradation in the subsurface. To use knowledge on microbial kinetics for the simulation of in situ biodegradation, the mass transfer processes controlling the bioavailability of the contaminants need to be described appropriately. A common approach to account for this problem is using a linear exchange model controlling the link between bulk and bioavailable concentration. Assuming that the subsequent degradation is controlled by the bioavailable concentration, only, these two steps can be combined to an analytical expression for the overall reaction rate know as the Best-Equation. In our work, we evaluate this approach for its ability to describe biodegradation kinetics limited by pore-scale mass transfer. Results from explicit numerical and analytical simulations of mass transport and reactive consumption at the pore scale are used to test the accuracy of results obtained using the Best-Equation. Our analysis shows that strictly spoken the Best-Equation is not valid. However, a good approximation can be achieved with errors of less than 6% in cases of moderate bioavailability and much lower errors in cases of either low or high bioavailability. These results support the description of mass transfer processes used in many reactive transport models. Furthermore, we present a method to obtain an accurate estimate of the unknown rate parameter controlling the diffusive mass transfer processes at the pore scale.
Collapse
Affiliation(s)
- Falk Hesse
- Department of Computational Hydrosystems, UFZ-Hlelmholtz Centre for Environmental Research, Leipzig, Germany.
| | | | | | | |
Collapse
|
23
|
von der Schulenburg DAG, Pintelon TRR, Picioreanu C, Van Loosdrecht MCM, Johns ML. Three-dimensional simulations of biofilm growth in porous media. AIChE J 2009. [DOI: 10.1002/aic.11674] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
24
|
Thullner M, Kampara M, Richnow HH, Harms H, Wick LY. Impact of bioavailability restrictions on microbially induced stable isotope fractionation. 1. Theoretical calculation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:6544-51. [PMID: 18800528 DOI: 10.1021/es702782c] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The microbial degradation of organic substrates often exhibits a fractionation of stable isotopes which leads to an enrichment of the heavier isotope in the remaining substrate. The use of this effect to quantify the amount of biodegraded substrate in contaminated aquifers requires that the isotope fractionation factor is constant in time and space. In many natural and engineered systems the bioavailable concentration at the location of the enzymes differs from the average bulk concentration of the substrate. When enzymatically driven substrate degradation is coupled to a preceding transport step controlling the bioavailability of the substrate, the observed isotope fractionation becomes a function of the bulk substrate concentration. The sensitivity of the observed isotope fractionation factor toward such substrate concentration changes depends on the ratio of bulk substrate concentration and Michaelis-Menten constant and on the ratio between the specific affinity of the microorganisms toward the substrate and the first order rate constant of the bioavailability limiting transport process. Highest sensitivities toward substrate concentration were found for combinations of high substrate concentration with low substrate bioavailability (i.e., high ratios of substrate concentration and Michaelis-Menten constant, and high ratios of specific affinity and transport rate constant). As a consequence, changes in concentration and isotopic composition of a bioavailability limited substrate in batch experiments should not exhibit a linear relation in a Rayleigh plot, and the slope of the Rayleigh plot should show a decreasing trend with concentration decrease. When using isotope fractionation to quantify biodegradation along groundwater flow paths, changes in observed isotope fractionation might occur while contaminant concentration decreases along a flow path.
Collapse
Affiliation(s)
- Martin Thullner
- Departments of Environmental Microbiology and Isotope Biogeochemistry, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany.
| | | | | | | | | |
Collapse
|
25
|
Boult S, Hand VL, Vaughan DJ. Microbial controls on metal mobility under the low nutrient fluxes found throughout the subsurface. THE SCIENCE OF THE TOTAL ENVIRONMENT 2006; 372:299-305. [PMID: 17049583 DOI: 10.1016/j.scitotenv.2006.08.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Revised: 08/17/2006] [Accepted: 08/31/2006] [Indexed: 05/12/2023]
Abstract
Laboratory simulations and field studies of the shallow subsurface have shown that microbes and their extracellular products can influence the mobility of toxic metals from waste disposal sites. Modelling the transport of contaminants in groundwater may, therefore, require the input of microbial ecology data in addition to geochemical data, thus increasing the costs and the uncertainty of predictions. However, whether microbial effects on contaminant mobility occur extensively in the natural subsurface is unknown because the conditions under which they have been observed hitherto are generally unrepresentative of the average subsurface environment. Here, we show that microbial activity affects the mobility of a toxic trace metal (Cu) under the relatively low nutrient fluxes that dominate subsurface systems. More particularly, we show that under these low nutrient conditions, microbes and microbial products can immobilize metal but may themselves be subject to subsequent mobilization, thus complicating the pattern of metal storage and release. Our results show that the capability of microbes in the subsurface to change both the capacity of porous media to store metal, and the behaviour of metal that is released, is not restricted to the well researched environments close to sites of waste disposal. We anticipate our simulations will be a starting point for generating input data for transport models, and specifying the mechanism of metal remobilisation in environments more representative of the subsurface generally.
Collapse
Affiliation(s)
- Stephen Boult
- Williamson Research Centre for Molecular Environmental Science, and School of Earth, Atmospheric and Environmental Sciences, The University of Manchester, Manchester M13 9PL, UK.
| | | | | |
Collapse
|
26
|
Antizar-Ladislao B, Galil NI. Enhanced in situ bioremediation of phenol in bioestimulated unsaturated and saturated sand-bed columns. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2006; 78:2447-55. [PMID: 17243244 DOI: 10.2175/106143006x115417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Biodegradation of phenol was observed in unsaturated sandbed columns, in which phenol concentration declined from 298 mg phenol/kg sand to less than 1 mg/kg after 21 days. In saturated sand-bed columns, phenol concentration declined from 230 mg phenol/kg to less than 1 mg/kg after 37 days. Pseudo-first-order phenol biodegradation rates were in the range 0.25 days(-1) (R2 = 0.9) to 0.66 days(-1) (R2 = 0.85) and 0.08 days(-1) (R2 = 0.68) to 0.14 days(-1) (R2 = 0.84) in the unsaturated and saturated sand-bed columns, respectively. Unsaturated columns presented a higher biomass density (21.5 mg/g) in the sand-bed and lower biomass concentration in the aqueous phase (3.5 NTU) compared with the saturated columns (6.4 mg/g and 14.0 NTU). A high concentration of phenol releases in the sand-bed columns resulted in an initial inhibition of microbial activity and destabilization of the attached biomass.
Collapse
Affiliation(s)
- Blanca Antizar-Ladislao
- Faculty of Civil and Environmental Engineering, Technion-Israel Institute of Technology, Haifa, Israel.
| | | |
Collapse
|
27
|
Luo Q, Wang H, Zhang X, Fan X, Qian Y. In situ bioelectrokinetic remediation of phenol-contaminated soil by use of an electrode matrix and a rotational operation mode. CHEMOSPHERE 2006; 64:415-22. [PMID: 16406052 DOI: 10.1016/j.chemosphere.2005.11.064] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Revised: 11/22/2005] [Accepted: 11/23/2005] [Indexed: 05/06/2023]
Abstract
In situ bioremediation is a safe and cost-effective technology for the cleanup of contaminated sites, but its remediation rate is usually very slow. This study attempted to accelerate the process of bioremediation by employing non-uniform electrokinetic transport processes to mix organic pollutants and degrading bacteria in soils under in situ conditions (namely, in situ bioelectrokinetic remediation) by use of an electrode matrix and a rotational operation mode. A bench-scale non-uniform electrokinetic system with periodic polarity-reversal was developed for this purpose, and tested by using a sandy loam spiked with phenol as a model organic pollutant. The results demonstrated that non-uniform electrokinetic processes could enhance the in situ biodegradation of phenol in the soil, the efficiency of which depended upon the operational mode of the electric field. Compared with the unidirectional operation and the bidirectional operation, the rotational operation could effectively stimulate the biodegradation of phenol in the soil if adopting appropriate time intervals of polarity-reversal and electrode matrixes. A reversal interval of 3.0 h and a square-shaped electrode matrix with four electrode couples appeared appropriate for the in situ biodegradation of phenol, at which a maximum phenol removal of 58% was achieved in 10d and the bioremediation rate was increased about five times as compared to that with no electric field applied. The results also showed that adopting a small polarity-reversal interval and an appropriate electrode array could produce a high and uniform removal of phenol from the soil. It is believed that in situ bioelectrokinetic remediation holds the potential for field application.
Collapse
Affiliation(s)
- Qishi Luo
- Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084, PR China.
| | | | | | | | | |
Collapse
|
28
|
Pot V, Simůnek J, Benoit P, Coquet Y, Yra A, Martínez-Cordón MJ. Impact of rainfall intensity on the transport of two herbicides in undisturbed grassed filter strip soil cores. JOURNAL OF CONTAMINANT HYDROLOGY 2005; 81:63-88. [PMID: 16169123 DOI: 10.1016/j.jconhyd.2005.06.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Revised: 06/13/2005] [Accepted: 06/19/2005] [Indexed: 05/04/2023]
Abstract
Two series of displacement experiments with isoproturon and metribuzin herbicides were performed on two undisturbed grassed filter strip soil cores, under unsaturated steady-state flow conditions. Several rainfall intensities (0.070, 0.147, 0.161, 0.308 and 0.326 cm h(-1)) were used. A water tracer (bromide) was simultaneously injected in each displacement experiment. A descriptive analysis of experimental breakthrough curves of bromide and herbicides combined with a modeling analysis showed an impact of rainfall intensity on the solute transport. Two contrasting physical non-equilibrium transport processes occurred. Multiple (three) porosity domains contributed to flow at the highest rainfall intensities, including preferential flow through macropore pathways. Macropores were not active any longer at intermediate and lowest velocities, and the observed preferential transport was described using dual-porosity-type models with a zero or low flow in the matrix domain. Chemical non-equilibrium transport of herbicides was found at all rainfall intensities. Significantly higher estimated values of degradation rate parameters as compared to batch data were correlated with the degree of non-equilibrium sorption. Experimental breakthrough curves were analyzed using different physical and chemical equilibrium and non-equilibrium transport models: convective-dispersive model (CDE), dual-porosity model (MIM), dual-permeability model (DP), triple-porosity, dual permeability model (DP-MIM); each combined with both chemical instantaneous and kinetic sorption.
Collapse
Affiliation(s)
- V Pot
- UMR INRA-INA P-G, Unité Environnement et Grandes Cultures, BP01, 78850 Thiverval-Grignon, France.
| | | | | | | | | | | |
Collapse
|
29
|
Luo Q, Zhang X, Wang H, Qian Y. Mobilization of phenol and dichlorophenol in unsaturated soils by non-uniform electrokinetics. CHEMOSPHERE 2005; 59:1289-98. [PMID: 15857640 DOI: 10.1016/j.chemosphere.2004.11.043] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2004] [Revised: 11/12/2004] [Accepted: 11/16/2004] [Indexed: 05/02/2023]
Abstract
The poor mobility of organic pollutants in contaminated sites frequently results in slow remediation processes. Organics, especially hydrophobic compounds, are generally retained strongly in soil matrix as a result of sorption, sequestration, or even formation into non-aqueous-phase liquids and their mobility is thus greatly reduced. The objective of this study was to evaluate the feasibility of using non-uniform electrokinetic transport processes to enhance the mobility of organic pollutants in unsaturated soils with no injection reagents. Phenol and 2,4-dichlorophenol (2,4-DCP), and kaolin and a natural sandy loam soil were selected as model organics and soils, respectively. The results showed that non-uniform electrokinetics can accelerate the desorption and movement of phenol and 2,4-DCP in unsaturated soils. Electromigration and electroosmotic flow were the main driving forces, and their role in the mobilization of phenol and 2,4-DCP varied with soil pH. The movement of 2,4-DCP in the sandy loam towards the anode (about 1.0 cmd(-1)V(-1)) was 1.0-1.5 cmd(-1)V(-1) slower than that in the kaolin soil, but about 0.5 cmd(-1)V(-1) greater than that of phenol in the sandy loam. When the sandy loam was adjusted to pH 9.3, the movement of phenol and 2,4-DCP towards the anode was about twice and five times faster than that at pH 7.7, respectively. The results also demonstrated that the movement of phenol and 2,4-DCP in soils can be easily controlled by regulating the operational mode of electric field. It is believed that non-uniform electrokinetics has the potential for practical application to in situ remediation of organics-contaminated sites.
Collapse
Affiliation(s)
- Qishi Luo
- Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084, PR China.
| | | | | | | |
Collapse
|
30
|
Abstract
Bacterial chemotaxis has the potential to increase the rate of degradation of chemoattractants, but its influence on degradation of hydrophobic attractants initially dissolved in a non-aqueous-phase liquid (NAPL) has not been examined. We studied the effect of chemotaxis by Pseudomonas putida G7 on naphthalene mass transfer and degradation in a system in which the naphthalene was dissolved in a model NAPL. Chemotaxis by wild-type P. putida G7 increased the rates of naphthalene desorption and degradation relative to rates observed with nonchemotactic and nonmotile mutant strains. While biodegradation alone influenced the rate of substrate desorption by increasing the concentration gradient against which desorption occurred, chemotaxis created an even steeper gradient as the cells accumulated near the NAPL source. The extent to which chemotaxis affected naphthalene desorption and degradation depended on the initial bacterial and naphthalene concentrations, reflecting the influences of these variables on concentration gradients and on the relative rates of mass transfer and biodegradation. The results of this study suggest that chemotaxis can substantially increase the rates of mass transfer and degradation of NAPL-associated hydrophobic pollutants.
Collapse
Affiliation(s)
- Aaron M J Law
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.
| | | |
Collapse
|
31
|
Höhener P, Duwig C, Pasteris G, Kaufmann K, Dakhel N, Harms H. Biodegradation of petroleum hydrocarbon vapors: laboratory studies on rates and kinetics in unsaturated alluvial sand. JOURNAL OF CONTAMINANT HYDROLOGY 2003; 66:93-115. [PMID: 14516943 DOI: 10.1016/s0169-7722(03)00005-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Predictions of natural attenuation of volatile organic compounds (VOCs) in the unsaturated zone rely critically on information about microbial biodegradation kinetics. This study aims at determining kinetic rate laws for the aerobic biodegradation of a mixture of 12 volatile petroleum hydrocarbons and methyl tert-butyl ether (MTBE) in unsaturated alluvial sand. Laboratory column and batch experiments were performed at room temperature under aerobic conditions, and a reactive transport model for VOC vapors in soil gas coupled to Monod-type degradation kinetics was used for data interpretation. In the column experiment, an acclimatization of 23 days took place before steady-state diffusive vapor transport through the horizontal column was achieved. Monod kinetic parameters Ks and vmax could be derived from the concentration profiles of toluene, m-xylene, n-octane, and n-hexane, because substrate saturation was approached with these compounds under the experimental conditions. The removal of cyclic alkanes, isooctane, and 1,2,4-trimethylbenzene followed first-order kinetics over the whole concentration range applied. MTBE, n-pentane, and chlorofluorocarbons (CFCs) were not visibly degraded. Batch experiments suggested first-order disappearance rate laws for all VOCs except n-octane, which decreased following zero-order kinetics in live batch experiments. For many compounds including MTBE, disappearance rates in abiotic batch experiments were as high as in live batches indicating sorption. It was concluded that the column approach is preferable for determining biodegradation rate parameters to be used in risk assessment models.
Collapse
Affiliation(s)
- Patrick Höhener
- Swiss Federal Institute of Technology (EPFL), ENAC-ISTE-LPE, CH-1015 Lausanne, Switzerland.
| | | | | | | | | | | |
Collapse
|
32
|
Antizar-Ladislao B, Galil NI. Simulation of bioremediation of chlorophenols in a sandy aquifer. WATER RESEARCH 2003; 37:238-244. [PMID: 12465806 DOI: 10.1016/s0043-1354(02)00106-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Bioremediation of consecutive spills of phenol, 2-chlorophenol (2-MCP), 2,4,6-trichlorophenol (2,4,6-TCP) and pentachlororphenol as single pollutants was investigated in eight pilot plant scale sand columns system (100 cm l, 6 cm ID), simulating the conditions, which could be created in the saturated zone of a pristine aquifer following an accidental spill. Bioremediation in this study consisted of re-circulating local groundwater through the polluted site in a controlled manner following a closed-loop configuration. Intrinsic microbial development was enhanced by adding the necessary nutrients. Consecutive accidental spills of 480-mg phenol/kg soil; 140-mg 2-MCP/kg; 14-mg 2,4,6-TCP/kg soil and 17-mg pentachlorophenol (PCP)/kg soil under saturated conditions and a continuous specific discharge of 0.56 cm min(-1) were simulated. Degradation curves demonstrated first-order kinetics. Biodegradation rates (k1) were influenced by consecutive exposures. Calculated rate constants for biodegradation for sole substrate experiments were in the range of 0.06-0.15 day(-1), 0.21-1.20 day(-1), 0.04-2.28 day(-1) and 0.01-0.03 day(-1) for phenol, 2-MCP, 2,4,6-TCP and PCP, respectively. The acclimation of the aquifer to simulated consecutive accidental spills was found to be directly proportional to the cumulative load of each single chlorophenol. A relationship between the octanol water partitioning (Kow) values and the experimental degradation rates (k1) was found.
Collapse
Affiliation(s)
- B Antizar-Ladislao
- Division of Environmental and Water Resources Engineering, Faculty of Civil Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel.
| | | |
Collapse
|