1
|
Changes in synaptic proteins of the complex PSD-95/NMDA receptor/nNOS and mitochondrial dysfunction after levocabastine treatment. Neurochem Int 2021; 148:105100. [PMID: 34139299 DOI: 10.1016/j.neuint.2021.105100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/26/2021] [Accepted: 06/10/2021] [Indexed: 11/22/2022]
Abstract
Nitric oxide generation is related to the activity of certain proteins located at synaptic sites. Previous findings show that NOS activity, nNOS protein expression, respiratory parameters and mitochondrial complex activities are altered in rat cerebral cortex by administration of levocabastine, an antagonist of histamine H1 and neurotensin NTS2 receptors. ATP provision by mitochondria may play an important role in the functional interaction between synaptic proteins NMDA receptor and PSD-95 with NO synthesis. In this context, our purpose was to evaluate the effect of levocabastine administration on protein expression of PSD-95, GluN2B and iNOS, as well as on mitochondrial ATP production. Male Wistar rats received a single (i.p.) dose of levocabastine (50 μg/kg) or saline solution (controls) and were decapitated 18 h later. Mitochondrial and synaptosomal membrane fractions were isolated from cerebral cortex by differential and sucrose gradient centrifugation. Expression of synaptic proteins was evaluated by Western blot assays in synaptosomal membrane fractions. Oxygen consumption, mitochondrial membrane potential and ATP production rate were determined in fresh crude mitochondrial fractions. After levocabastine treatment, protein expression of PSD-95, GluN2B and β-actin decreased 97, 45 and 55%, respectively, whereas that of iNOS enhanced 3.5-fold versus controls. In crude mitochondrial fractions levocabastine administration reduced roughly 15% respiratory control rate as assayed with malate-glutamate or succinate as substrates, decreased mitochondrial membrane potential (21%), and ATP production rates (57%). Results suggested that levocabastine administration induces alterations in synaptic proteins of the protein complex PSD-95/NMDA receptor/nNOS and in neuron cytoskeleton. Mitochondrial bioenergetics impairment may play a role in the functional link between synaptic proteins and NO synthesis.
Collapse
|
2
|
Na +/K +-pump and neurotransmitter membrane receptors. INVERTEBRATE NEUROSCIENCE 2018; 19:1. [PMID: 30488358 PMCID: PMC6267510 DOI: 10.1007/s10158-018-0221-7] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/17/2018] [Indexed: 02/06/2023]
Abstract
Na+/K+-pump is an electrogenic transmembrane ATPase located in the outer plasma membrane of cells. The Na+/K+-ATPase pumps 3 sodium ions out of cells while pumping 2 potassium ions into cells. Both cations move against their concentration gradients. This enzyme's electrogenic nature means that it has a chronic role in stabilizing the resting membrane potential of the cell, in regulating the cell volume and in the signal transduction of the cell. This review will mainly consider the role of the Na+/K+-pump in neurons, with an emphasis on its role in modulating neurotransmitter receptor. Most of the literature on the modulation of neurotransmitter receptors refers to the situation in the mammalian nervous system, but the position is likely to be similar in most, if not all, invertebrate nervous systems.
Collapse
|
3
|
Lores-Arnaiz S, Karadayian AG, Gutnisky A, Rodríguez de Lores Arnaiz G. The low affinity neurotensin receptor antagonist levocabastine impairs brain nitric oxide synthesis and mitochondrial function by independent mechanisms. J Neurochem 2017; 143:684-696. [PMID: 28975622 DOI: 10.1111/jnc.14232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/15/2017] [Accepted: 09/21/2017] [Indexed: 12/22/2022]
Abstract
Neurotensin is known to inhibit neuronal Na+ , K+ -ATPase, an effect that is rescued by nitric oxide (NO) synthase inhibition. However, whether the neurotensinergic and the nitrergic systems are independent pathways, or are mechanistically linked, remains unknown. Here, we addressed this issue and found that the administration of low affinity neurotensin receptor (NTS2) antagonist, levocabastine (50 μg/kg, i.p.) inhibited NO synthase (NOS) activity by 74 and 42% after 18 h in synaptosomal and mitochondrial fractions isolated from the Wistar rat cerebral cortex, respectively; these effects disappeared 36 h after levocabastine treatment. Intriguingly, whereas neuronal NOS protein abundance decreased (by 56%) in synaptosomes membranes, it was enhanced (by 86%) in mitochondria 18 h after levocabastine administration. Levocabastine enhanced the respiratory rate of synaptosomes in the presence of oligomycin, but it failed to alter the spare respiratory capacity; furthermore, the mitochondrial respiratory chain (MRC) complexes I-IV activities were severely diminished by levocabastine administration. The inhibition of NOS and MRC complexes activities were also observed after incubation of synaptosomes and mitochondria with levocabastine (1 μM) in vitro. These data indicate that the NTS2 antagonist levocabastine regulates NOS expression and activity at the synapse, suggesting an interrelationship between the neurotensinergic and the nitrergic systems. However, the bioenergetics effects of NTS2 activity inhibition are likely to be independent from the regulation of NO synthesis.
Collapse
Affiliation(s)
- Silvia Lores-Arnaiz
- Facultad de Farmacia y Bioquímica, Fisicoquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Bioquímica y Medicina Molecular (IBIMOL), CONICET- Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Analía G Karadayian
- Facultad de Farmacia y Bioquímica, Fisicoquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Bioquímica y Medicina Molecular (IBIMOL), CONICET- Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alicia Gutnisky
- Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Biología Celular y Neurociencias "Profesor Eduardo De Robertis" (IBCN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Georgina Rodríguez de Lores Arnaiz
- Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Biología Celular y Neurociencias "Profesor Eduardo De Robertis" (IBCN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
4
|
Rosin C, López Ordieres MG, Rodríguez de Lores Arnaiz G. Changes in [ 3H]-ouabain and [ 3H]-neurotensin binding to rat cerebral cortex membranes after administration of antipsychotic drugs haloperidol and clozapine. Peptides 2017; 89:82-89. [PMID: 27586561 DOI: 10.1016/j.peptides.2016.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/08/2016] [Accepted: 08/29/2016] [Indexed: 11/17/2022]
Abstract
Evidences indicate the relationship between neurotensinergic and dopaminergic systems. Neurotensin inhibits synaptosomal membrane Na+, K+-ATPase activity, an effect blocked by SR 48692, antagonist for high affinity neurotensin receptor (NTS1) type. Assays of high affinity [3H]-ouabain binding (to analyze K+ site of Na+, K+-ATPase) show that in vitro addition of neurotensin decreases binding. Herein potential interaction between NTS1 receptor, dopaminergic D2 receptor and Na+, K+-ATPase was studied. To test the involvement of dopaminergic D2 receptors in [3H]-ouabain binding inhibition by neurotensin, Wistar rats were administered i.p.with antipsychotic drugs haloperidol (2mg/kg) and clozapine (3, 10 and 30mg/kg). Animals were sacrificed 18h later, cerebral cortices harvested, membrane fractions prepared and high affinity [3H]-ouabain binding assayed in the absence or presence of neurotensin at a 10 micromolar concentration. No differences versus controls for basal binding or for binding inhibition by neurotensin were recorded, except after 10mg/kg clozapine. Rats were administered with neurotensin (3, 10y 30μg, i.c.v.) and 60min later, animals were sacrificed, cerebral cortices harvested and processed to obtain membrane fractions for high affinity [3H]-ouabain binding assays. Results showed a slight but statistically significant decrease in binding with the 30μg neurotensin dose. To analyze the interaction between dopaminergic D2 and NTS1 receptors, [3H]-neurotensin binding to cortical membranes from rats injected with haloperidol (2mg/kg, i.p.) or clozapine (10mg/kg) was assayed. Saturation curves and Scatchard transformation showed that the only statistically significant change occurred in Bmax after haloperidol administration. Hill number was close to the unit in all cases. Results indicated that typical and atypical antipsychotic drugs differentially modulate the interaction between neurotensin and Na+, K+-ATPase. At the same time, support the notion of an interaction among dopaminergic and neurotensinergic systems and Na+, K+-ATPase at central synapses.
Collapse
Affiliation(s)
- Carina Rosin
- Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis", Facultad de Medicina, CONICET-UBA, Universidad de Buenos Aires, Paraguay 2155, 1121-Buenos Aires, Argentina; Cátedra de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113-Buenos Aires, Argentina
| | - María Graciela López Ordieres
- Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis", Facultad de Medicina, CONICET-UBA, Universidad de Buenos Aires, Paraguay 2155, 1121-Buenos Aires, Argentina; Cátedra de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113-Buenos Aires, Argentina
| | - Georgina Rodríguez de Lores Arnaiz
- Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis", Facultad de Medicina, CONICET-UBA, Universidad de Buenos Aires, Paraguay 2155, 1121-Buenos Aires, Argentina.
| |
Collapse
|
5
|
The Administration of Levocabastine, a NTS2 Receptor Antagonist, Modifies Na+, K+-ATPase Properties. Neurochem Res 2016; 41:1274-80. [DOI: 10.1007/s11064-015-1823-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 12/28/2015] [Accepted: 12/30/2015] [Indexed: 10/22/2022]
|
6
|
Zhang H, Dong H, Cilz NI, Kurada L, Hu B, Wada E, Bayliss DA, Porter JE, Lei S. Neurotensinergic Excitation of Dentate Gyrus Granule Cells via Gαq-Coupled Inhibition of TASK-3 Channels. Cereb Cortex 2014; 26:977-90. [PMID: 25405940 DOI: 10.1093/cercor/bhu267] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Neurotensin (NT) is a 13-amino acid peptide and serves as a neuromodulator in the brain. Whereas NT has been implicated in learning and memory, the underlying cellular and molecular mechanisms are ill-defined. Because the dentate gyrus receives profound innervation of fibers containing NT and expresses high density of NT receptors, we examined the effects of NT on the excitability of dentate gyrus granule cells (GCs). Our results showed that NT concentration dependently increased action potential (AP) firing frequency of the GCs by the activation of NTS1 receptors resulting in the depolarization of the GCs. NT-induced enhancement of AP firing frequency was not caused indirectly by releasing glutamate, GABA, acetylcholine, or dopamine, but due to the inhibition of TASK-3 K(+) channels. NT-mediated excitation of the GCs was G protein dependent, but independent of phospholipase C, intracellular Ca(2+) release, and protein kinase C. Immunoprecipitation experiment demonstrates that the activation of NTS1 receptors induced the association of Gαq/11 and TASK-3 channels suggesting a direct coupling of Gαq/11 to TASK-3 channels. Endogenously released NT facilitated the excitability of the GCs contributing to the induction of long-term potentiation at the perforant path-GC synapses. Our results provide a cellular mechanism that helps to explain the roles of NT in learning and memory.
Collapse
Affiliation(s)
- Haopeng Zhang
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Hailong Dong
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | - Nicholas I Cilz
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Lalitha Kurada
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Binqi Hu
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Etsuko Wada
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, Tokyo, Japan
| | - Douglas A Bayliss
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - James E Porter
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Saobo Lei
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| |
Collapse
|
7
|
Activation of neurotensin receptor 1 facilitates neuronal excitability and spatial learning and memory in the entorhinal cortex: beneficial actions in an Alzheimer's disease model. J Neurosci 2014; 34:7027-42. [PMID: 24828655 DOI: 10.1523/jneurosci.0408-14.2014] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neurotensin (NT) is a tridecapeptide distributed in the CNS, including the entorhinal cortex (EC), a structure that is crucial for learning and memory and undergoes the earliest pathological alterations in Alzheimer's disease (AD). Whereas NT has been implicated in modulating cognition, the cellular and molecular mechanisms by which NT modifies cognitive processes and the potential therapeutic roles of NT in AD have not been determined. Here we examined the effects of NT on neuronal excitability and spatial learning in the EC, which expresses high density of NT receptors. Brief application of NT induced persistent increases in action potential firing frequency, which could last for at least 1 h. NT-induced facilitation of neuronal excitability was mediated by downregulation of TREK-2 K(+) channels and required the functions of NTS1, phospholipase C, and protein kinase C. Microinjection of NT or NTS1 agonist, PD149163, into the EC increased spatial learning as assessed by the Barnes Maze Test. Activation of NTS1 receptors also induced persistent increases in action potential firing frequency and significantly improved the memory status in APP/PS1 mice, an animal model of AD. Our study identifies a cellular substrate underlying learning and memory and suggests that NTS1 agonists may exert beneficial actions in an animal model of AD.
Collapse
|
8
|
Elucidating the role of neurotensin in the pathophysiology and management of major mental disorders. Behav Sci (Basel) 2014; 4:125-153. [PMID: 25379273 PMCID: PMC4219245 DOI: 10.3390/bs4020125] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/15/2014] [Accepted: 05/21/2014] [Indexed: 12/30/2022] Open
Abstract
Neurotensin (NT) is a neuropeptide that is closely associated with, and is thought to modulate, dopaminergic and other neurotransmitter systems involved in the pathophysiology of various mental disorders. This review outlines data implicating NT in the pathophysiology and management of major mental disorders such as schizophrenia, drug addiction, and autism. The data suggest that NT receptor analogs have the potential to be used as novel therapeutic agents acting through modulation of neurotransmitter systems dys-regulated in these disorders.
Collapse
|
9
|
Boules M, Li Z, Smith K, Fredrickson P, Richelson E. Diverse roles of neurotensin agonists in the central nervous system. Front Endocrinol (Lausanne) 2013; 4:36. [PMID: 23526754 PMCID: PMC3605594 DOI: 10.3389/fendo.2013.00036] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 03/06/2013] [Indexed: 01/10/2023] Open
Abstract
Neurotensin (NT) is a tridecapeptide that is found in the central nervous system (CNS) and the gastrointestinal tract. NT behaves as a neurotransmitter in the brain and as a hormone in the gut. Additionally, NT acts as a neuromodulator to several neurotransmitter systems including dopaminergic, sertonergic, GABAergic, glutamatergic, and cholinergic systems. Due to its association with such a wide variety of neurotransmitters, NT has been implicated in the pathophysiology of several CNS disorders such as schizophrenia, drug abuse, Parkinson's disease (PD), pain, central control of blood pressure, eating disorders, as well as, cancer and inflammation. The present review will focus on the role that NT and its analogs play in schizophrenia, endocrine function, pain, psychostimulant abuse, and PD.
Collapse
Affiliation(s)
- Mona Boules
- Neuropsychopharmacology Laboratory, Department of Neuroscience, Mayo Clinic FloridaJacksonville, FL, USA
- *Correspondence: Mona Boules, Neuropsychopharmacology Laboratory, Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA. e-mail:
| | - Zhimin Li
- Neuropsychopharmacology Laboratory, Department of Neuroscience, Mayo Clinic FloridaJacksonville, FL, USA
| | - Kristin Smith
- Neuropsychopharmacology Laboratory, Department of Neuroscience, Mayo Clinic FloridaJacksonville, FL, USA
| | - Paul Fredrickson
- Neuropsychopharmacology Laboratory, Department of Neuroscience, Mayo Clinic FloridaJacksonville, FL, USA
| | - Elliott Richelson
- Neuropsychopharmacology Laboratory, Department of Neuroscience, Mayo Clinic FloridaJacksonville, FL, USA
| |
Collapse
|
10
|
Rosin C, López Ordieres MG, Rodríguez de Lores Arnaiz G. Neurotensin decreases high affinity [3H]-ouabain binding to cerebral cortex membranes. ACTA ACUST UNITED AC 2011; 172:35-40. [DOI: 10.1016/j.regpep.2011.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 07/01/2011] [Accepted: 08/15/2011] [Indexed: 01/07/2023]
|
11
|
Postnatal Nitric Oxide Inhibition Modifies Neurotensin Effect on ATPase Activity. Neurochem Res 2011; 36:2278-86. [DOI: 10.1007/s11064-011-0552-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 07/05/2011] [Accepted: 07/14/2011] [Indexed: 11/26/2022]
|
12
|
Schneider P, López Ordieres M, Rodríguez de Lores Arnaiz G. Neurotensin modulates central muscarinic receptors, an effect which does not involve the high-affinity neurotensin receptor (NTS1). ACTA ACUST UNITED AC 2010; 163:37-42. [DOI: 10.1016/j.regpep.2010.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 03/29/2010] [Accepted: 04/08/2010] [Indexed: 11/25/2022]
|
13
|
Clozapine administration modifies neurotensin effect on synaptosomal membrane Na+, K+ -ATPase activity. Neurochem Res 2009; 34:2226-32. [PMID: 19562485 DOI: 10.1007/s11064-009-0018-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2009] [Indexed: 10/20/2022]
Abstract
Na+, K+-ATPase is inhibited by neurotensin, an effect which involves the peptide high affinity receptor (NTS1). Neurotensin effect on cerebral cortex synaptosomal membrane Na+, K+-ATPase activity of rats injected i.p. with antipsychotic clozapine was studied. Whereas 3.5 x 10(-6) M neurotensin decreased 44% Na+, K+-ATPase activity in the controls, the peptide failed to modify enzyme activity 30 min after a single 3.0, 10.0 and 30.0 mg/kg clozapine dose. Neurotensin decreased Na+, K+-ATPase activity 40 or 20% 18 h after 3.0 or 5.6 mg/kg clozapine administration, respectively, and lacked inhibitory effect 18 h after 17.8 and 30.0 mg/kg clozapine doses. Results indicated that the clozapine treatment differentially modifies the further effect of neurotensin on synaptosomal membrane Na+, K+-ATPase activity according to time and dose conditions employed. Taken into account that clozapine blocks the dopaminergic D2 receptor, findings obtained favor the view of an interplay among neurotensinergic receptor, dopaminergic D2 receptor and Na+, K+-ATPase at synaptic membranes.
Collapse
|
14
|
Pereyra-Alfonso S, Del Valle Armanino M, Vázquez C, Peña C, Rodríguez de Lores Arnaiz G. High-affinity neurotensin receptor is involved in phosphoinositide turnover increase by inhibition of sodium pump in neonatal rat brain. Neurochem Res 2008; 33:2206-13. [PMID: 18758956 DOI: 10.1007/s11064-008-9672-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2007] [Accepted: 03/13/2008] [Indexed: 10/21/2022]
Abstract
Phosphoinositide (PI) metabolism is enhanced in neonatal brain by activation of neurotransmitter receptors and by inhibition of the sodium pump with ouabain or endogenous inhibitor termed endobain E. Peptide neurotensin inhibits synaptosomal membrane Na(+), K(+)-ATPase activity, an effect blocked by SR 48692, a selective antagonist for high-affinity neurotensin receptor (NTS1). The purpose of this study was to evaluate potential participation of NTS1 receptor on PI hydrolysis enhancement by sodium pump inhibition. Cerebral cortex miniprisms from neonatal Wistar rats were preloaded with [(3)H]myoinositol in buffer during 60 min and further preincubated for 0 min or 30 min in the absence or presence of SR 48692. Then, ouabain or endobain E were added and incubation proceeded during 20 or 60 min. Reaction was stopped with chloroform/methanol and [(3)H]inositol-phosphates (IPs) accumulation was quantified in the water phase. After 60-min incubation with ouabain, IPs accumulation values reached roughly 500% or 860% in comparison with basal values (100%), if the preincubation was omitted or lasted 30 min, respectively. Values were reduced 50% in the presence of SR 48692. In 20-min incubation experiments, IPs accumulation by ouabain versus basal was 300% or 410% if preincubation was 0 min or 30 min, respectively, an effect blocked 23% or 32% with SR 48692. PI hydrolysis enhancement by endobain E was similarly blocked by SR 48692, being this effect higher when sample incubation with the endogenous inhibitor lasted 60 min versus 20 min. Present results indicate that PI hydrolysis increase by sodium pump inhibition with ouabain or endobain E is partially diminished by SR 48692. It is therefore suggested that NTS1 receptor may be involved in cell signaling system mediated by PI turnover.
Collapse
Affiliation(s)
- Susana Pereyra-Alfonso
- Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis", Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, 1121, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
15
|
Mijatovic T, Van Quaquebeke E, Delest B, Debeir O, Darro F, Kiss R. Cardiotonic steroids on the road to anti-cancer therapy. Biochim Biophys Acta Rev Cancer 2007; 1776:32-57. [PMID: 17706876 DOI: 10.1016/j.bbcan.2007.06.002] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Revised: 06/19/2007] [Accepted: 06/21/2007] [Indexed: 01/04/2023]
Abstract
The sodium pump, Na(+)/K(+)-ATPase, could be an important target for the development of anti-cancer drugs as it serves as a versatile signal transducer, it is a key player in cell adhesion and its aberrant expression and activity are implicated in the development and progression of different cancers. Cardiotonic steroids, known ligands of the sodium pump have been widely used for the treatment of heart failure. However, early epidemiological evaluations and subsequent demonstration of anti-cancer activity in vitro and in vivo have indicated the possibility of developing this class of compound as chemotherapeutic agents in oncology. Their development to date as anti-cancer agents has however been impaired by a narrow therapeutic margin resulting from their potential to induce cardiovascular side-effects. The review will thus discuss (i) sodium pump structure, function, expression in diverse cancers and its chemical targeting and that of its sub-units, (ii) reported in vitro and in vivo anti-cancer activity of cardiotonic steroids, (iii) managing the toxicity of these compounds and the limitations of existing preclinical models to adequately predict the cardiotoxic potential of new molecules in man and (iv) the potential of chemical modification to reduce the cardiovascular side-effects and improve the anti-cancer activity of new molecules.
Collapse
|
16
|
Arora S. Role of neuropeptides in appetite regulation and obesity--a review. Neuropeptides 2006; 40:375-401. [PMID: 16935329 DOI: 10.1016/j.npep.2006.07.001] [Citation(s) in RCA: 296] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Revised: 06/17/2006] [Accepted: 07/07/2006] [Indexed: 01/27/2023]
Abstract
Obesity represents the most prevalent nutritional problem worldwide which in the long run predisposes to development of diabetes mellitus, hypertension, endometrial carcinoma, osteoarthritis, gall stones and cardiovascular diseases. Despite significant reductions in dietary fat consumption, the prevalence of obesity is on a rise and is taking on pandemic proportions. Obesity develops when energy intake exceeds energy expenditure over time. Recently, a close evolutionary relationship between the peripheral and hypothalamic neuropeptides has become apparent. The hypothalamus being the central feeding organ mediates regulation of short-term and long-term dietary intake via synthesis of various orexigenic and anorectic neuropeptides. The structure and function of many hypothalamic peptides (neuropeptide Y (NPY), melanocortins, agouti-related peptide (AGRP), cocaine and amphetamine regulated transcript (CART), melanin concentrating hormone (MCH), orexins have been characterized in rodent models The peripheral neuropeptides such as cholecystokinin (CCK), ghrelin, peptide YY (PYY3-36), amylin, bombesin regulate important gastrointestinal functions such as motility, secretion, absorption, provide feedback to the central nervous system on availability of nutrients and may play a part in regulating food intake. The pharmacological potential of several endogenous peripheral peptides released prior to, during and/or after feeding are being explored. Long-term regulation is provided by the main circulating hormones leptin and insulin. These systems implicated in hypothalamic appetite regulation provide potential targets for treatment of obesity which could potentially pass into clinical development in the next 5 years. This review summarizes various effects and interrelationship of these central and peripheral neuropeptides in metabolism, obesity and their potential role as targets for treatment of obesity.
Collapse
Affiliation(s)
- Sarika Arora
- Department of Biochemistry, Lady Hardinge Medical College, Shaheed Bhagat Singh Marg, Connaught Place, New Delhi, Delhi 110 001, India.
| |
Collapse
|
17
|
Boules M, Fredrickson P, Richelson E. Neurotensin agonists as an alternative to antipsychotics. Expert Opin Investig Drugs 2006; 14:359-69. [PMID: 15882113 DOI: 10.1517/13543784.14.4.359] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Neurotensin (NT) is a 13 amino acid neuropeptide that is found in the central nervous system and in the gastrointestinal tract. In brain, this peptide is prominently associated anatomically with dopaminergic, as well as other neurotransmitter systems. Based on animal studies, already decades old, researchers have hypothesised that NT receptor agonists will have antipsychotic properties in patients. However, to date no one has obtained a non-peptide NT receptor agonist. Therefore, there has been great interest in obtaining peptide analogues of NT, that, unlike NT resist degradation by peptidases and cross the blood-brain barrier, yet have the pharmacological characteristics of native NT, for therapeutic use in the treatment of schizophrenia, as well as other neuropsychiatric diseases such as Parkinson's disease and addiction to psychostimulants. In this review, we present the rationale for development of NT receptor agonists for treatment of certain central nervous system diseases, as well as a review of those peptide agonists that are in early stages of development.
Collapse
Affiliation(s)
- Mona Boules
- Neuropsychopharmacology Laboratory and Nicotine Dependence Center, Mayo Foundation for Medical Education and Research, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | | | | |
Collapse
|
18
|
Pivovarov AS, Foreman RC, Walker RJ. Involvement of Na,K-pump in SEPYLRFamide-mediated reduction of cholinosensitivity in Helix neurons. ACTA ACUST UNITED AC 2006; 138:103-12. [PMID: 17049630 PMCID: PMC1869048 DOI: 10.1016/j.regpep.2006.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Revised: 05/22/2006] [Accepted: 08/17/2006] [Indexed: 01/14/2023]
Abstract
SEPYLRFamide acts as an inhibitory modulator of acetylcholine (ACh) receptors in Helix lucorum neurones. Ouabain, a specific inhibitor of Na,K-pump, (0.1 mM, bath application) decreased the ACh-induced inward current (ACh-current) and increased the leak current. Ouabain decreased the modulatory SEPYLRFamide effect on the ACh-current. There was a correlation between the effects of ouabain on the amplitude of the ACh-current and on the modulatory peptide effect. Ouabain and SEPYLRFamide inhibited the activity of Helix aspersa brain Na,K-ATPase. Activation of Na,K-pump by intracellular injection of 3 M Na acetate or 3 M NaCl reduced the modulatory peptide effect on the ACh-current. An inhibitor of Na/Ca-exchange, benzamil (25 muM, bath application), and an inhibitor of Ca(2+)-pump in the endoplasmic reticulum, thapsigargin (TG, applied intracellularly), both prevented the effect of ouabain on SEPYLRFamide-mediated modulatory effect. Another inhibitor of Ca(2+)-pump in the endoplasmic reticulum, cyclopiazonic acid (applied intracellularly), did not prevent the effect of ouabain on SEPYLRFamide-mediated modulatory effect. These results indicate that Na,K-pump is responsible for the SEPYLRFamide-mediated inhibition of ACh receptors in Helix neurons. Na/Ca-exchange and intracellular Ca(2+) released from internal pools containing TG-sensitive Ca(2+)-pump are involved in the Na,K-pump pathway for the SEPYLRFamide-mediated inhibition of ACh receptors.
Collapse
Affiliation(s)
- Arkady S. Pivovarov
- Department of Higher Nervous Activity, Biological Faculty, Moscow Lomonosov State University, Leninskie Gory, dom 1, korpus 12, Moscow 119992, Russia
| | - Richard C. Foreman
- School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton S016 7PX, England, UK
| | - Robert J. Walker
- School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton S016 7PX, England, UK
- Corresponding author. Tel.: +44 23 8059 4343; fax: +44 23 8059 4459. E-mail address: (R.J. Walker)
| |
Collapse
|
19
|
López Ordieres MG, Rodríguez de Lores Arnaiz G. The inhibitory effect of neurotensin on synaptosomal membrane Na+, K+-ATPase is altered by antipsychotic administration. ACTA ACUST UNITED AC 2005; 129:177-82. [PMID: 15927714 DOI: 10.1016/j.regpep.2005.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2004] [Accepted: 02/04/2005] [Indexed: 10/25/2022]
Abstract
Synaptosomal membrane Na+, K+-ATPase is inhibited by neurotensin, an effect which involves its high affinity receptor (NTS1) [Lopez Ordieres MG, Rodriguez de Lores Arnaiz, G. Peptides 2000; 21:571-576.]. Herein, the effect of neurotensin on synaptosomal membrane Na+, K+-ATPase of rats 18 h after i.p. administration of antipsychotic haloperidol (2 mg/kg) or clozapine (10 mg/kg) was studied. Basal enzyme activity after these treatments did not differ from that in vehicle-treated rats. It was observed that 3.5 x 10(-6) M neurotensin reduced roughly 40% cerebral cortex Na+, K+-ATPase from vehicle-injected rats, produced no effect on the enzyme from rats injected with haloperidol but enhanced 26% that from rats injected with clozapine. The peptide decreased 40% striatal Na+, K+-ATPase from vehicle-injected rats or from rats injected with clozapine, whereas it failed to alter this enzyme activity from rats injected with haloperidol. Haloperidol and clozapine (1 x 10(-6) M) added in vitro failed to alter Na+, K+-ATPase activity in cerebral cortex synaptosomal membranes. Results obtained after antipsychotic administration may well offer an alternative explanation for the particular side effects recorded in therapeutics by typical (haloperidol) versus atypical (clozapine) antipsychotic drugs.
Collapse
Affiliation(s)
- María G López Ordieres
- Instituto de Biología Celular y Neurociencias Prof. E. De Robertis, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, 1121-Buenos Aires, Argentina
| | | |
Collapse
|
20
|
Yu Y, Jawa A, Pan W, Kastin AJ. Effects of peptides, with emphasis on feeding, pain, and behavior A 5-year (1999-2003) review of publications in Peptides. Peptides 2004; 25:2257-89. [PMID: 15572212 DOI: 10.1016/j.peptides.2004.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Accepted: 09/21/2004] [Indexed: 11/28/2022]
Abstract
Novel effects of naturally occurring peptides are continuing to be discovered, and their mechanisms of actions as well as interactions with other substances, organs, and systems have been elucidated. Synthetic analogs may have actions similar or antagonistic to the endogenous peptides, and both the native peptides and analogs have potential as drugs or drug targets. The journal Peptides publishes many leading articles on the structure-activity relationship of peptides as well as outstanding reviews on some families of peptides. Complementary to the reviews, here we extract information from the original papers published during the past five years in Peptides (1999-2003) to summarize the effects of different classes of peptides, their modulation by other chemicals and various pathophysiological states, and the mechanisms by which the effects are exerted. Special attention is given to peptides related to feeding, pain, and other behaviors. By presenting in condensed form the effects of peptides which are essential for systems biology, we hope that this summary of existing knowledge will encourage additional novel research to be presented in Peptides.
Collapse
Affiliation(s)
- Yongmei Yu
- Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | | | | | | |
Collapse
|
21
|
Kokko KP, Hadden MK, Orwig KS, Mazella J, Dix TA. In vitro analysis of stable, receptor-selective neurotensin[8-13] analogues. J Med Chem 2003; 46:4141-8. [PMID: 12954066 DOI: 10.1021/jm0300633] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A set of neurotensin[8-13] (NT[8-13]) analogues featuring substitution of non-natural cationic amino acids in the Arg(8) position have been synthesized and tested for binding potencies against the three cloned human NT receptors (hNTR-1, hNTR-2, hNTR-3), functional agonism of the hNTR1 and for rat serum stability. Three distinct classes of peptides have been identified: Class 1 features alkyl-Arg analogues at Arg(8), Class 2 features alpha-azido-cationic amino acids at Arg(8), and Class 3 feature modified Arg(8) and Tyr(11) residues. Most of the peptides maintain or exceed the binding potency of NT[8-13] to hNTR-1. Class 2 analogues exceed the binding potency of NT[8-13] to hNTR-2 with KK19 binding with higher affinity to hNTR-2 than hNTR-1. Peptides with enhanced binding potencies for hNTR-3 were not found. All analogues are functional agonists of the hNTR1 receptor as indicated by phosphoinositide (PI) determination. Serum stability increased with peptide classification where the half-life of Class 1 < Class 2 < Class 3 which are stable to rat serum for > 24 h.
Collapse
Affiliation(s)
- Kyle P Kokko
- Department of Pharmaceutical Sciences, Medical University of South Carolina, 280 Calhoun Street, P.O. Box 250140, Charleston, South Carolina 29425-2303, USA
| | | | | | | | | |
Collapse
|
22
|
López Ordieres MG, Rodríguez de Lores Arnaiz G. Neurotensin effect on Na+, K+-ATPase is CNS area- and membrane-dependent and involves high affinity NT1 receptor. Neurochem Res 2002; 27:1555-61. [PMID: 12512960 DOI: 10.1023/a:1021612825025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have previously shown that peptide neurotensin inhibits cerebral cortex synaptosomal membrane Na+, K+-ATPase, an effect fully prevented by blockade of neurotensin NT1 receptor by antagonist SR 48692. The work was extended to analyze neurotensin effect on Na+, K+-ATPase activity present in other synaptosomal membranes and in CNS myelin and mitochondrial fractions. Results indicated that, besides inhibiting cerebral cortex synaptosomal membrane Na+, K+-ATPase, neurotensin likewise decreased enzyme activity in homologous striatal membranes as well as in a commercial preparation obtained from porcine cerebral cortex. However, the peptide failed to alter either Na+, K+-ATPase activity in cerebellar synaptosomal and myelin membranes or ATPase activity in mitochondrial preparations. Whenever an effect was recorded with the peptide, it was blocked by antagonist SR 48692, indicating the involvement of the high affinity neurotensin receptor (NT1), as well as supporting the contention that, through inhibition of ion transport at synaptic membrane level, neurotensin plays a regulatory role in neurotransmission.
Collapse
Affiliation(s)
- María Graciela López Ordieres
- Instituto de Biología Celular y Neurociencias Prof. E. De Robertis, PROBICENE-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, 1121-Buenos Aires, Argentina
| | | |
Collapse
|
23
|
López Ordieres MG, Rodríguez de Lores Arnaiz G. K(+)-p-nitrophenylphosphatase inhibition by neurotensin involves high affinity neurotensin receptor: influence of potassium concentration and enzyme phosphorylation. REGULATORY PEPTIDES 2001; 101:183-7. [PMID: 11495695 DOI: 10.1016/s0167-0115(01)00286-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Neurotensin (NT), a 13-amino acid peptide, is widely distributed in the brain and peripheral tissues of several mammalian species including man. In adult rat brain NT can bind to two distinct sites, one of high and the other of low affinity, corresponding to NT(1) and NT(2) receptor, respectively; structurally unrelated to these two, a third NT receptor (NT(3)) has been described. We have previously shown that Na(+), K(+)-ATPase is inhibited by NT when using ATP as substrate. In order to determine whether K(+)-stimulated dephosphorylation of this enzyme is involved, we tested NT effect by using p-nitrophenylphosphate, a non-natural substrate. K(+)-p-nitrophenylphosphatase activity was inhibited 42% by NT at 8.6 x 10(-6) M using an incubation medium containing 2 mM KCl but was unaffected in the presence of 5 or 20 mM KCl; however, with such KCl concentrations, NT was enabled to inhibit enzyme activity ( congruent with 35%) provided a suitable ATP:NaCl mixture (0.6:45.0 mM) was added. Mg(2+)-p-nitrophenylphosphatase activity remained unaltered at all conditions tested. Since SR 48692, a selective non-peptide NT(1) antagonist, abolished NT effect, involvement of NT(1) receptor in enzyme inhibition is suggested.
Collapse
Affiliation(s)
- M G López Ordieres
- Cátedra de Farmacología, Facultad de Farmacia, Universidad de Buenos Aires, Paraguay 2155, 1121-Buenos Aires, Argentina
| | | |
Collapse
|
24
|
Abstract
Oxidative metabolism is very active in brain, where large amounts of chemical energy as ATP molecules are consumed, mostly required to maintain cellular Na+/K+ gradients through the participation of the sodium pump (Na+,K+-ATPase), whose activity is selectively and potently inhibited by the alkaloid ouabain. Na+/K+ gradients are involved in nerve impulse propagation, in neurotransmitter release and cation homeostasis in the nervous system. Likewise, enzyme activity modulation is crucial for maintaining normal blood pressure and cardiovascular contractility as well as renal sodium excretion. The present article reviews the progress in disclosing putative ouabain-like substances, examines their denomination according to different research teams, tissue or biological fluid sources, extraction and purification, assays, biological properties and chemical and biophysical features. When data is available, comparison with ouabain itself is mentioned. Likewise, their potential action in normal physiology as well as in experimental and human pathology is summarized.
Collapse
Affiliation(s)
- G Rodríguez de Lores Arnaiz
- Instituto de Biología Celular y Neurociencias Prof. Eduardo De Robertis, PROBICENE-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Paraguay, Buenos Aires, Argentina.
| |
Collapse
|