1
|
Fedele E. Anti-Amyloid Therapies for Alzheimer's Disease and the Amyloid Cascade Hypothesis. Int J Mol Sci 2023; 24:14499. [PMID: 37833948 PMCID: PMC10578107 DOI: 10.3390/ijms241914499] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Over the past 30 years, the majority of (pre)clinical efforts to find an effective therapy for Alzheimer's disease (AD) focused on clearing the β-amyloid peptide (Aβ) from the brain since, according to the amyloid cascade hypothesis, the peptide was (and it is still considered by many) the pathogenic determinant of this neurodegenerative disorder. However, as reviewed in this article, results from the numerous clinical trials that have tested anti-Aβ therapies to date indicate that this peptide plays a minor role in the pathogenesis of AD. Indeed, even Aducanumab and Lecanemab, the two antibodies recently approved by the FDA for AD therapy, as well as Donanemab showed limited efficacy on cognitive parameters in phase III clinical trials, despite their capability of markedly lowering Aβ brain load. Furthermore, preclinical evidence demonstrates that Aβ possesses several physiological functions, including memory formation, suggesting that AD may in part be due to a loss of function of this peptide. Finally, it is generally accepted that AD could be the result of many molecular dysfunctions, and therefore, if we keep chasing only Aβ, it means that we cannot see the forest for the trees.
Collapse
Affiliation(s)
- Ernesto Fedele
- Pharmacology and Toxicology Unit, Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy;
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
2
|
Jacobs N, Theunissen B. It's Groundhog Day! What Can the History of Science Say About the Crisis in Alzheimer's Disease Research? J Alzheimers Dis 2022; 90:1401-1415. [PMID: 36278350 DOI: 10.3233/jad-220569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
For years now, Alzheimer's disease (AD) research has been stuck in a Groundhog-Day scenario: an endless time loop with no breakthrough in sight. Disagreement about the validity of the field's dominant approach, based on the Amyloid Cascade Hypothesis, has led to a seemingly unresolvable trench war between proponents and critics. Our paper evaluates the recent scientific literature on AD from a historical and philosophical perspective. We show that AD research is a classic example of the boundary work at play in a field in crisis: both parties deploy historical and philosophical references to illustrate what counts as good and bad science, as proper scientific method and appropriate scientific conduct. We also show that boundary work has proved unable to point a way out of the deadlock and argue that the science system's tools for establishing scientific quality, such as peer review and the grant system, are unlikely to resolve the crisis. Rather, they consolidate the dominant model's position even more. In conclusion, we suggest that some kind of reverse boundary-work is needed that reopens the discussion on the nature of AD, an issue that has never been settled scientifically. Drawing on historical and philosophical work, we make clear that the definition of AD as a biomedical disease for which a cure can be found has consequences, not only for funding opportunities, but also for patients and their lives. A reconsideration of the desirability of these consequences may lead to different choices with respect to research priorities and patient care.
Collapse
Affiliation(s)
- Noortje Jacobs
- Erasmus MC, Department of Medical Ethics, Philosophy and History of Medicine, Rotterdam, Netherlands
| | - Bert Theunissen
- Utrecht University, Descartes Centre for the History and Philosophy of the Sciences and the Humanities, Utrecht, Netherlands
| |
Collapse
|
3
|
Stone J, Mitrofanis J, Johnstone DM, Falsini B, Bisti S, Adam P, Nuevo AB, George-Weinstein M, Mason R, Eells J. Acquired Resilience: An Evolved System of Tissue Protection in Mammals. Dose Response 2018; 16:1559325818803428. [PMID: 30627064 PMCID: PMC6311597 DOI: 10.1177/1559325818803428] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/22/2018] [Accepted: 08/29/2018] [Indexed: 12/11/2022] Open
Abstract
This review brings together observations on the stress-induced regulation of resilience mechanisms in body tissues. It is argued that the stresses that induce tissue resilience in mammals arise from everyday sources: sunlight, food, lack of food, hypoxia and physical stresses. At low levels, these stresses induce an organised protective response in probably all tissues; and, at some higher level, cause tissue destruction. This pattern of response to stress is well known to toxicologists, who have termed it hormesis. The phenotypes of resilience are diverse and reports of stress-induced resilience are to be found in journals of neuroscience, sports medicine, cancer, healthy ageing, dementia, parkinsonism, ophthalmology and more. This diversity makes the proposing of a general concept of induced resilience a significant task, which this review attempts. We suggest that a system of stress-induced tissue resilience has evolved to enhance the survival of animals. By analogy with acquired immunity, we term this system 'acquired resilience'. Evidence is reviewed that acquired resilience, like acquired immunity, fades with age. This fading is, we suggest, a major component of ageing. Understanding of acquired resilience may, we argue, open pathways for the maintenance of good health in the later decades of human life.
Collapse
Affiliation(s)
- Jonathan Stone
- Discipline of Physiology, Bosch Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - John Mitrofanis
- Discipline of Anatomy and Histology, Bosch Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Daniel M. Johnstone
- Discipline of Physiology, Bosch Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Benedetto Falsini
- Facolta’ di Medicina e Chirurgia, Fondazione Policlinico A. Gemelli, Universita’ Cattolica del S. Cuore, Rome, Italy
| | - Silvia Bisti
- Department of Biotechnical and Applied Clinical Sciences, Università degli Studi dell’Aquila, IIT Istituto Italiano di Tecnologia Genova and INBB Istituto Nazionale Biosistemi e Biostrutture, Rome, Italy
| | - Paul Adam
- School of Biological, Earth and Environmental Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Arturo Bravo Nuevo
- Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA
| | - Mindy George-Weinstein
- Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA
| | - Rebecca Mason
- Discipline of Physiology, Bosch Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Janis Eells
- College of Health Sciences, University of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
4
|
Karelina T, Demin O, Demin O, Duvvuri S, Nicholas T. Studying the Progression of Amyloid Pathology and Its Therapy Using Translational Longitudinal Model of Accumulation and Distribution of Amyloid Beta. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2017; 6:676-685. [PMID: 28913897 PMCID: PMC5658285 DOI: 10.1002/psp4.12249] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 07/28/2017] [Accepted: 08/24/2017] [Indexed: 11/16/2022]
Abstract
Long‐term effects of amyloid targeted therapy can be studied using a mechanistic translational model of amyloid beta (Aβ) distribution and aggregation calibrated on published data in mouse and human species. Alzheimer disease (AD) pathology is modeled utilizing age‐dependent pathological evolution for rate constants and several variants of explicit functions for Aβ toxicity influencing cognitive outcomes (Adas‐cog). Preventive Aβ targeted therapies were simulated to minimize the Aβ difference from healthy physiological levels. Therapeutic targeted simulations provided similar predictions for mouse and human studies. Our model predicts that: (1) at least 1 year (2 years for preclinical AD) of treatment is needed to observe cognitive effects; (2) under the hypothesis with functional importance of Aβ, a 15% decrease in Aβ (using an imaging biomarker) is related to 15–20% cognition improvement by immunotherapy. Despite negative outcomes in clinical trials, Aβ continues to remain a prospective target demanding careful assessment of mechanistic effect and duration of trial design.
Collapse
|
5
|
Sands SA, Leung-Toung R, Wang Y, Connelly J, LeVine SM. Enhanced Histochemical Detection of Iron in Paraffin Sections of Mouse Central Nervous System Tissue: Application in the APP/PS1 Mouse Model of Alzheimer's Disease. ASN Neuro 2016; 8:1759091416670978. [PMID: 27683879 PMCID: PMC5043597 DOI: 10.1177/1759091416670978] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 07/19/2016] [Accepted: 08/17/2016] [Indexed: 12/13/2022] Open
Abstract
Histochemical methods of detecting iron in the rodent brain result mainly in the labeling of oligodendrocytes, but as all cells utilize iron, this observation suggests that much of the iron in the central nervous system goes undetected. Paraffin embedding of tissue is a standard procedure that is used to prepare sections for microscopic analysis. In the present study, we questioned whether we could modify the iron histochemical procedure to enable a greater detection of iron in paraffin sections. Indeed, various modifications led to the widespread labeling of iron in mouse brain tissue (for instance, labeling of neurons and neuropil). Sites of focal concentrations, such as cytoplasmic punctate or nucleolar staining, were also observed. The modified procedures were applied to paraffin sections of a mouse model (APP/PS1) of Alzheimer's disease. Iron was revealed in the plaque core and rim. The plaque rim had a fibrillary or granular appearance, and it frequently contained iron-labeled cells. Further analysis indicated that the iron was tightly associated with the core of the plaque, but less so with the rim. In conclusion, modifications to the histochemical staining revealed new insights into the deposition of iron in the central nervous system. In theory, the approach should be transferrable to organs besides the brain and to other species, and the underlying principles should be incorporable into a variety of staining methods.
Collapse
Affiliation(s)
- Scott A Sands
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, KS, USA
| | | | | | | | - Steven M LeVine
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, KS, USA
| |
Collapse
|
6
|
Wang C, Wang Z. Studying the relationship between cell cycle and Alzheimer's disease by gold nanoparticle probes. Anal Biochem 2015; 489:32-7. [PMID: 26299647 DOI: 10.1016/j.ab.2015.08.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 08/11/2015] [Accepted: 08/12/2015] [Indexed: 11/28/2022]
Abstract
In this study, a simple gold nanoparticle (GNP)-based colorimetric assay has been developed for studying the relationship between cell cycle and β-amyloid peptide (Aβ, the biomarker of Alzheimer's disease [AD]) expression level. It was found that Aβ expression of neuronal cells (e.g., SHG-44 cell line) is strongly dependent on cell cycle phases; that is, the Aβ expression level was highest when cells were arrested in the G1/S phase by thymidine and was lowest when they were arrested in the G2/M phase by nocodazole. This finding may improve the understanding of AD pathology and provide a new tool for anti-dementia drug development.
Collapse
Affiliation(s)
- Chengke Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| |
Collapse
|
7
|
Inadequate supply of vitamins and DHA in the elderly: Implications for brain aging and Alzheimer-type dementia. Nutrition 2015; 31:261-75. [DOI: 10.1016/j.nut.2014.06.016] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 05/27/2014] [Accepted: 06/04/2014] [Indexed: 12/28/2022]
|
8
|
Castellani RJ, Zhu X, Lee HG, Moreira PI, Perry G, Smith MA. Neuropathology and treatment of Alzheimer disease: did we lose the forest for the trees? Expert Rev Neurother 2014; 7:473-85. [PMID: 17492899 DOI: 10.1586/14737175.7.5.473] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Although amyloid-beta-containing senile plaques and phospho-tau containing neurofibrillary tangles are hallmark lesions of Alzheimer disease (AD), neither is specific for AD, nor even a marker of AD. Rather, they are empirical lesions that require close correlation with age and clinical signs for optimal interpretation. In essence, these lesions represent the effect rather than the cause of disease. In this review, we discuss diagnostic criteria for AD, the relationship between pathology, pathogenesis and multiple treatment approaches that have so far been disappointing, including those that presume to address pathological lesions. An acceptance that lesion-based therapies do not address etiology or rate-limiting pathogenic factors is probably necessary for the best chance of significant advances that have thus far been elusive.
Collapse
Affiliation(s)
- Rudy J Castellani
- University of Maryland, Department of Pathology, Baltimore, MD 21201, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Cheng XR, Zhou WX, Zhang YX. The behavioral, pathological and therapeutic features of the senescence-accelerated mouse prone 8 strain as an Alzheimer's disease animal model. Ageing Res Rev 2014; 13:13-37. [PMID: 24269312 DOI: 10.1016/j.arr.2013.10.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 10/10/2013] [Accepted: 10/30/2013] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) is a widespread and devastating progressive neurodegenerative disease. Disease-modifying treatments remain beyond reach, and the etiology of the disease is uncertain. Animal model are essential for identifying disease mechanisms and developing effective therapeutic strategies. Research on AD is currently being carried out in rodent models. The most common transgenic mouse model mimics familial AD, which accounts for a small percentage of cases. The senescence-accelerated mouse prone 8 (SAMP8) strain is a spontaneous animal model of accelerated aging. Many studies indicate that SAMP8 mice harbor the behavioral and histopathological signatures of AD, namely AD-like cognitive and behavioral alterations, neuropathological phenotypes (neuron and dendrite spine loss, spongiosis, gliosis and cholinergic deficits in the forebrain), β-amyloid deposits resembling senile plaques, and aberrant hyperphosphorylation of Tau-like neurofibrillary tangles. SAMP8 mice are useful in the development of novel therapies, and many pharmacological agents and approaches are effective in SAMP8 mice. SAMP8 mice are considered a robust model for exploring the etiopathogenesis of sporadic AD and a plausible experimental model for developing preventative and therapeutic treatments for late-onset/age-related AD, which accounts for the vast majority of cases.
Collapse
Affiliation(s)
- Xiao-rui Cheng
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Wen-xia Zhou
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Yong-xiang Zhang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| |
Collapse
|
10
|
Bobba A, Amadoro G, Petragallo VA, Calissano P, Atlante A. Dissecting the molecular mechanism by which NH2htau and Aβ1-42 peptides impair mitochondrial ANT-1 in Alzheimer disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:848-60. [PMID: 23583906 DOI: 10.1016/j.bbabio.2013.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 03/13/2013] [Accepted: 04/05/2013] [Indexed: 01/04/2023]
Abstract
To find out whether and how the adenine nucleotide translocator-1 (ANT-1) inhibition due to NH2htau and Aβ1-42 is due to an interplay between these two Alzheimer's peptides, ROS and ANT-1 thiols, use was made of mersalyl, a reversible alkylating agent of thiol groups that are oriented toward the external hydrophilic phase, to selectively block and protect, in a reversible manner, the -SH groups of ANT-1. The rate of ATP appearance outside mitochondria was measured as the increase in NADPH absorbance which occurs, following external addition of ADP, when ATP is produced by oxidative phosphorylation and exported from mitochondria in the presence of glucose, hexokinase and glucose-6-phosphate dehydrogenase. We found that the mitochondrial superoxide anions, whose production is induced at the level of Complex I by externally added Aβ1-42 and whose release from mitochondria is significantly reduced by the addition of the VDAC inhibitor DIDS, modify the thiol group/s present at the active site of mitochondrial ANT-1, impair ANT-1 in a mersalyl-prevented manner and abrogate the toxic effect of NH2htau on ANT-1 when Aβ1-42 is already present. A molecular mechanism is proposed in which the pathological Aβ-NH2htau interplay on ANT-1 in Alzheimer's neurons involves the thiol redox state of ANT-1 and the Aβ1-42-induced ROS increase. This result represents an important innovation because it suggests the possibility of using various strategies to protect cells at the mitochondrial level, by stabilizing or restoring mitochondrial function or by interfering with the energy metabolism providing a promising tool for treating or preventing AD.
Collapse
Affiliation(s)
- A Bobba
- Institute of Biomembranes and Bioenergetics, CNR, Bari, Italy
| | | | | | | | | |
Collapse
|
11
|
Rodrigues R, Smith MA, Wang X, Perry G, Lee HG, Zhu X, Petersen RB. Molecular neuropathogenesis of Alzheimer's disease: an interaction model stressing the central role of oxidative stress. FUTURE NEUROLOGY 2012; 7:287-305. [PMID: 23086377 DOI: 10.2217/fnl.12.27] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Alzheimer's disease (AD) exhibits a complex etiology that simultaneously manifests as a complex cellular, neurobiological, molecular, anatomic-physiological and clinical entity. Other significant psychiatric conditions, such as depression and schizophrenia, may also present with complex and concurrent clinical and/or molecular phenotypes. These neuropsychiatric pathologies also originate from both environmental and genetic factors. We analyzed the molecular phenotypes of AD and discuss them with respect to the classical theories, which we integrated into mechanisms that share molecular and/or anatomical connections. Based on these mechanisms, we propose an interaction model and discuss the model in light of studies that refute or support it. Given the spectrum of AD phenotypes, we limit the scope of our discussion to a few, which facilitates concrete analysis. In addition, the study of specific, individual pathogenic phenotypes may be critical to defining the complex mechanisms leading to AD, thereby improving strategies for developing novel therapies.
Collapse
Affiliation(s)
- Roberto Rodrigues
- Ave. Icaraí Cristal 74 (Clinic), 90.810-000 Porto Alegre, Rio Grande do Sul (RS), Brazil
| | | | | | | | | | | | | |
Collapse
|
12
|
Castellani RJ, Moreira PI, Perry G, Zhu X. The role of iron as a mediator of oxidative stress in Alzheimer disease. Biofactors 2012; 38:133-8. [PMID: 22447715 DOI: 10.1002/biof.1010] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 02/03/2012] [Indexed: 01/31/2023]
Abstract
Iron is both essential for maintaining a spectrum of metabolic processes in the central nervous system and elsewhere, and potent source of reactive oxygen species. Redox balance with respect to iron, therefore, may be critical to human neurodegenerative disease but is also in need of better understanding. Alzheimer disease (AD) in particular is associated with accumulation of numerous markers of oxidative stress; moreover, oxidative stress has been shown to precede hallmark neuropathological lesions early in the disease process, and such lesions, once present, further accumulate iron, among other markers of oxidative stress. In this review, we discuss the role of iron in the progression of AD.
Collapse
Affiliation(s)
- Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, USA.
| | | | | | | |
Collapse
|
13
|
Grasso G. The use of mass spectrometry to study amyloid-β peptides. MASS SPECTROMETRY REVIEWS 2011; 30:347-365. [PMID: 21500241 DOI: 10.1002/mas.20281] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 11/06/2009] [Accepted: 11/06/2009] [Indexed: 05/30/2023]
Abstract
Amyloid-β peptide (Aβ) varies in size from 39 to 43 amino acids and arises from sequential β- and γ-secretase processing of the amyloid precursor protein. Whereas the non-pathological role for Aβ is yet to be established, there is no disputing that Aβ is now widely regarded as central to the development of Alzheimer's disease (AD). The so named "amyloid cascade hypothesis" states that disease progression is the result of an increased Aβ burden in affected areas of the brain. To elucidate the Aβ role in AD, many analytical approaches have been proposed as suitable tools to investigate not only the total Aβ load but also many other issues that are considered crucial for AD, such as: (i) the aggregation state in which Aβ is present; (ii) its interaction with other species or metals; (iii) its ability to induce oxidative stress; and (iv) its degradative pathways. This review provides an insight into the use of mass spectrometry (MS) in the field of Aβ investigation aimed to assess its role in AD. In particular, the different MS-based approaches applied in vitro and in vivo that can provide detailed information on the above-mentioned issues are reviewed. Moreover, the advantages offered by the MS methods over all the other techniques are highlighted, together with the recent developments and uses of combined analytical approaches to detect and characterize Aβ.
Collapse
Affiliation(s)
- Giuseppe Grasso
- Chemistry Department, Università di Catania, Viale Andrea Doria 6, Catania 95125, Italy.
| |
Collapse
|
14
|
del Valle J, Duran-Vilaregut J, Manich G, Pallàs M, Camins A, Vilaplana J, Pelegrí C. Cerebral amyloid angiopathy, blood-brain barrier disruption and amyloid accumulation in SAMP8 mice. NEURODEGENER DIS 2011; 8:421-9. [PMID: 21411981 DOI: 10.1159/000324757] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 02/01/2011] [Indexed: 01/09/2023] Open
Abstract
Cerebrovascular dysfunction and β-amyloid peptide deposition on the walls of cerebral blood vessels might be an early event in the development of Alzheimer's disease. Here we studied the time course of amyloid deposition in blood vessels and blood-brain barrier (BBB) disruption in the CA1 subzone of the hippocampus of SAMP8 mice and the association between these two variables. We also studied the association between the amyloid deposition in blood vessels and the recently described amyloid clusters in the parenchyma, as well as the association of these clusters with vessels in which the BBB is disrupted. SAMP8 mice showed greater amyloid deposition in blood vessels than age-matched ICR-CD1 control mice. Moreover, at 12 months of age the number of vessels with a disrupted BBB had increased in both strains, especially SAMP8 animals. At this age, all the vessels with amyloid deposition showed BBB disruption, but several capillaries with an altered BBB showed no amyloid on their walls. Moreover, amyloid clusters showed no spatial association with vessels with amyloid deposition, nor with vessels in which the BBB had been disrupted. Finally, we can conclude that vascular amyloid deposition seems to induce BBB alterations, but BBB disruption may also be due to other factors.
Collapse
Affiliation(s)
- Jaume del Valle
- Departament de Fisiologia, Facultat de Farmàcia, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
15
|
Morphological changes in the enteric nervous system of aging and APP23 transgenic mice. Brain Res 2011; 1378:43-53. [PMID: 21241669 DOI: 10.1016/j.brainres.2011.01.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 12/22/2010] [Accepted: 01/10/2011] [Indexed: 12/31/2022]
Abstract
Gastrointestinal motility disorders often pose a debilitating problem, especially in elderly patients. In addition, they are frequently occurring co-morbidities in dementia. Whereas a failing enteric nervous system has already been shown to be involved in gastrointestinal motility disorders and in Parkinson's disease, a relationship with the neurodegenerative process of Alzheimer's disease was not yet shown. Therefore, we sought to document quantitative changes in the distribution of βIII-tubulin (general neuronal marker), Substance P, neuronal nitric oxide synthase (NOS), glial fibrillary acidic protein (GFAP) and S-100 immunoreactivity in addition to a qualitative assessment of the presence of amyloid in the small and large intestines of 6, 12 and 18-month-old wild type and transgenic Thy-1-APP23 mice. Amyloid deposits were seen in the vasculature, the mucosal and muscle layer of both heterozygous and wild type mice. Amyloidβ₁₋₄₂ could not be detected, pointing to a different amyloid composition than that found in senile plaques in the mice's brains. The finding of an increased density of βIII-tubulin-, Substance P- and NOS-IR-nerve fibres in heterozygous mice could not undoubtedly be related to amyloid deposition or to an activation of glial cells. Therefore, the alterations at the level of the enteric nervous system and the deposition of amyloid seem not primarily involved in the pathogenesis of Alzheimer's disease. At most they are secondary related to the neurodegenerative process. Additionally, our data could not show extensive neuronal or glial cell loss associated with aging, in contrast to other reports. Instead an increase in S100-IR was observed in senescent mice.
Collapse
|
16
|
Salvador GA, Uranga RM, Giusto NM. Iron and mechanisms of neurotoxicity. Int J Alzheimers Dis 2010; 2011:720658. [PMID: 21234369 PMCID: PMC3014724 DOI: 10.4061/2011/720658] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 11/10/2010] [Indexed: 01/21/2023] Open
Abstract
The accumulation of transition metals (e.g., copper, zinc, and iron) and the dysregulation of their metabolism are a hallmark in the pathogenesis of several neurodegenerative diseases. This paper will be focused on the mechanism of neurotoxicity mediated by iron. This metal progressively accumulates in the brain both during normal aging and neurodegenerative processes. High iron concentrations in the brain have been consistently observed in Alzheimer's (AD) and Parkinson's (PD) diseases. In this connection, metalloneurobiology has become extremely important in establishing the role of iron in the onset and progression of neurodegenerative diseases. Neurons have developed several protective mechanisms against oxidative stress, among them, the activation of cellular signaling pathways. The final response will depend on the identity, intensity, and persistence of the oxidative insult. The characterization of the mechanisms mediating the effects of iron-induced increase in neuronal dysfunction and death is central to understanding the pathology of a number of neurodegenerative disorders.
Collapse
Affiliation(s)
- Gabriela A Salvador
- Instituto de Investigaciones Bioquímicas Bahía Blanca, Universidad Nacional del Sur y Consejo Nacional de Investigaciones Científicas y Técnicas, 8000 Bahía Blanca, Argentina
| | | | | |
Collapse
|
17
|
Wang L, Chadwick W, Park SS, Zhou Y, Silver N, Martin B, Maudsley S. Gonadotropin-releasing hormone receptor system: modulatory role in aging and neurodegeneration. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2010; 9:651-60. [PMID: 20632963 PMCID: PMC2967575 DOI: 10.2174/187152710793361559] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 02/25/2010] [Indexed: 12/15/2022]
Abstract
Receptors for hormones of the hypothalamic-pituitary-gonadal axis are expressed throughout the brain. Age-related decline in gonadal reproductive hormones cause imbalances of this axis and many hormones in this axis have been functionally linked to neurodegenerative pathophysiology. Gonadotropin-releasing hormone (GnRH) plays a vital role in both central and peripheral reproductive regulation. GnRH has historically been known as a pituitary hormone; however, in the past few years, interest has been raised in GnRH actions at non-pituitary peripheral targets. GnRH ligands and receptors are found throughout the brain where they may act to control multiple higher functions such as learning and memory function and feeding behavior. The actions of GnRH in mammals are mediated by the activation of a unique rhodopsin-like G protein-coupled receptor that does not possess a cytoplasmic carboxyl terminal sequence. Activation of this receptor appears to mediate a wide variety of signaling mechanisms that show diversity in different tissues. Epidemiological support for a role of GnRH in central functions is evidenced by a reduction in neurodegenerative disease after GnRH agonist therapy. It has previously been considered that these effects were not via direct GnRH action in the brain, however recent data has pointed to a direct central action of these ligands outside the pituitary. We have therefore summarized the evidence supporting a central direct role of GnRH ligands and receptors in controlling central nervous physiology and pathophysiology.
Collapse
Affiliation(s)
- Liyun Wang
- Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, Biomedical Research Center, 251 Bayview Boulevard, Baltimore MD 21224
| | - Wayne Chadwick
- Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, Biomedical Research Center, 251 Bayview Boulevard, Baltimore MD 21224
| | - Soo-Sung Park
- Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, Biomedical Research Center, 251 Bayview Boulevard, Baltimore MD 21224
| | - Yu Zhou
- Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, Biomedical Research Center, 251 Bayview Boulevard, Baltimore MD 21224
| | - Nathan Silver
- Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, Biomedical Research Center, 251 Bayview Boulevard, Baltimore MD 21224
| | - Bronwen Martin
- Metabolism Unit, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Biomedical Research Center, 251 Bayview Boulevard, Baltimore MD 21224
| | - Stuart Maudsley
- Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, Biomedical Research Center, 251 Bayview Boulevard, Baltimore MD 21224
| |
Collapse
|
18
|
Casadesus G, Puig ER, Webber KM, Atwood CS, Escuer MC, Bowen RL, Perry G, Smith MA. Targeting gonadotropins: an alternative option for Alzheimer disease treatment. J Biomed Biotechnol 2010; 2006:39508. [PMID: 17047306 PMCID: PMC1559918 DOI: 10.1155/jbb/2006/39508] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Recent evidence indicates that, alongside oxidative stress, dysregulation of the cell cycle in neurons susceptible to degeneration in Alzheimer disease may play a crucial role in the initiation of the disease. As such, the role of reproductive hormones, which are closely associated with the cell cycle both during development and after birth, may be of key import. While estrogen has been the primary focus, the protective effects of hormone replacement therapy on cognition and dementia only during a “crucial period” led us to expand the study of hormonal influences to other members of the hypothalamic pituitary axis. Specifically, in this review, we focus on luteinizing hormone, which is not only increased in the sera of patients with Alzheimer disease but, like estrogen, is modulated by hormone replacement therapy and also influences cognitive behavior and pathogenic processing in animal models of the disease. Targeting gonadotropins may be a useful treatment strategy for disease targeting multiple pleiotropic downstream consequences.
Collapse
Affiliation(s)
- Gemma Casadesus
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Emma Ramiro Puig
- Departament de Fisiologia, Facultat de Farmacia, Universitat de Barcelona, Barcelona 08028, Spain
| | - Kate M. Webber
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Craig S. Atwood
- School of Medicine, University of Wisconsin and William S. Middleton Memorial Veterans Administration, Madison, WI 53705,
USA
| | - Margarida Castell Escuer
- Departament de Fisiologia, Facultat de Farmacia, Universitat de Barcelona, Barcelona 08028, Spain
| | | | - George Perry
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Mark A. Smith
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
- *Mark A. Smith:
| |
Collapse
|
19
|
Boussert S, Diez-Perez I, Kogan MJ, de Oliveira E, Giralt E. An intramolecular O-N migration reaction on gold surfaces: toward the preparation of well-defined amyloid surfaces. ACS NANO 2009; 3:3091-3097. [PMID: 19772298 DOI: 10.1021/nn900935p] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Amyloids are a family of self-aggregating proteins implicated in various central nervous system disorders, including Alzheimer's disease (AD). It is thought that prefibrillar soluble forms of amyloid peptides, including oligomers, may be the main pathogenic factor in AD. Herein we describe the fabrication of well-defined, functionalized, monomeric beta-amyloid peptide surfaces for studying protein-protein interactions. We first prepared a nonaggregating analogue of the beta-amyloid peptide and then attached it to a gold surface covered with a self-assembled monolayer (SAM) of alkanethiols. After attachment, the native form of the beta-amyloid peptide (Abeta40) was obtained by surface-level intramolecular O-N migration. The surface was characterized by atomic force microscopy (AFM) and self-assembled monolayer for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (SAMDI-TOF MS). The interaction between the surface-bound Abeta40 and monoclonal anti-Abeta40 antibody was tracked by AFM and chemiluminescence, which revealed that the Abeta40 was attached mainly in its monomeric form and that the protein-protein complex was assembled on the surface. Last, we used a proteomics approach to demonstrate the specificity of the Abeta40-functionalized surface in surface-binding experiments employing serum amyloid P (SAP) and bovine serum albumin (BSA).
Collapse
Affiliation(s)
- Stephanie Boussert
- Proteomics Platform, Barcelona Science Park, Baldiri Reixac 10, E-08028 Barcelona, Spain
| | | | | | | | | |
Collapse
|
20
|
Siedlak SL, Casadesus G, Webber KM, Pappolla MA, Atwood CS, Smith MA, Perry G. Chronic antioxidant therapy reduces oxidative stress in a mouse model of Alzheimer's disease. Free Radic Res 2009; 43:156-64. [PMID: 19160110 DOI: 10.1080/10715760802644694] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Oxidative modifications are a hallmark of oxidative imbalance in the brains of individuals with Alzheimer's, Parkinson's and prion diseases and their respective animal models. While the causes of oxidative stress are relatively well-documented, the effects of chronically reducing oxidative stress on cognition, pathology and biochemistry require further clarification. To address this, young and aged control and amyloid-beta protein precursor-over-expressing mice were fed a diet with added R-alpha lipoic acid for 10 months to determine the effect of chronic antioxidant administration on the cognition and neuropathology and biochemistry of the brain. Both wild type and transgenic mice treated with R-alpha lipoic acid displayed significant reductions in markers of oxidative modifications. On the other hand, R-alpha lipoic acid had little effect on Y-maze performance throughout the study and did not decrease end-point amyloid-beta load. These results suggest that, despite the clear role of oxidative stress in mediating amyloid pathology and cognitive decline in ageing and AbetaPP-transgenic mice, long-term antioxidant therapy, at levels within tolerable nutritional guidelines and which reduce oxidative modifications, have limited benefit.
Collapse
Affiliation(s)
- Sandra L Siedlak
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Mangialasche F, Polidori MC, Monastero R, Ercolani S, Camarda C, Cecchetti R, Mecocci P. Biomarkers of oxidative and nitrosative damage in Alzheimer's disease and mild cognitive impairment. Ageing Res Rev 2009; 8:285-305. [PMID: 19376275 DOI: 10.1016/j.arr.2009.04.002] [Citation(s) in RCA: 347] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 04/07/2009] [Accepted: 04/08/2009] [Indexed: 10/20/2022]
Abstract
Alzheimer's disease (AD) is the most common type of dementia in the elderly. Products of oxidative and nitrosative stress (OS and NS, respectively) accumulate with aging, which is the main risk factor for AD. This provides the basis for the involvement of OS and NS in AD pathogenesis. OS and NS occur in biological systems due to the dysregulation of the redox balance, caused by a deficiency of antioxidants and/or the overproduction of free radicals. Free radical attack against lipids, proteins, sugars and nucleic acids leads to the formation of bioproducts whose detection in fluids and tissues represents the currently available method for assessing oxidative/nitrosative damage. Post-mortem and in-vivo studies have demonstrated an accumulation of products of free radical damage in the central nervous system and in the peripheral tissues of subjects with AD or mild cognitive impairment (MCI). In addition to their individual role, biomarkers for OS and NS in AD are associated with altered bioenergetics and amyloid-beta (Abeta) metabolism. In this review we discuss the main results obtained in the field of biomarkers of oxidative/nitrosative stress in AD and MCI in humans, in addition to their potential role as a tool for diagnosis, prognosis and treatment efficacy in AD.
Collapse
|
22
|
Zhao H, Zhu J, Cui K, Xu X, O'Brien M, Wong KK, Kesari S, Xia W, Wong STC. Bioluminescence imaging reveals inhibition of tumor cell proliferation by Alzheimer's amyloid beta protein. Cancer Cell Int 2009; 9:15. [PMID: 19480719 PMCID: PMC2701410 DOI: 10.1186/1475-2867-9-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Accepted: 06/01/2009] [Indexed: 01/27/2023] Open
Abstract
Background Cancer and Alzheimer's disease (AD) are two seemingly distinct diseases and rarely occur simultaneously in patients. To explore molecular determinants differentiating pathogenic routes towards AD or cancer, we investigate the role of amyloid β protein (Aβ) on multiple tumor cell lines that are stably expressing luciferase (human glioblastoma U87; human breast adenocarcinoma MDA-MB231; and mouse melanoma B16F). Results Quantification of the photons emitted from the MDA-MB231 or B16F cells revealed a significant inhibition of cell proliferation by the conditioning media (CM) derived from amyloid precursor protein (APP) over-expressing cells. The inhibition of U87 cells was observed only after the media was conditioned for longer than 2 days with APP over-expressing cells. Conclusion Our results suggest that Aβ plays an inhibitory role in tumor cell proliferation; this effect could depend on the type of tumor cells and amount of Aβ.
Collapse
Affiliation(s)
- Hong Zhao
- Center for Biotechnology and Informatics, The Methodist Hospital Research Institute and Department of Radiology, The MethodistHospital, Weill Cornell Medical College, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Baruch-Suchodolsky R, Fischer B. Aβ40, either Soluble or Aggregated, Is a Remarkably Potent Antioxidant in Cell-Free Oxidative Systems. Biochemistry 2009; 48:4354-70. [DOI: 10.1021/bi802361k] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Rozena Baruch-Suchodolsky
- Department of Chemistry, Gonda-Goldschmied Medical Research Center, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Bilha Fischer
- Department of Chemistry, Gonda-Goldschmied Medical Research Center, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
24
|
Su B, Wang X, Nunomura A, Moreira PI, Lee HG, Perry G, Smith MA, Zhu X. Oxidative stress signaling in Alzheimer's disease. Curr Alzheimer Res 2009; 5:525-32. [PMID: 19075578 DOI: 10.2174/156720508786898451] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Multiple lines of evidence demonstrate that oxidative stress is an early event in Alzheimer's disease (AD), occurring prior to cytopathology, and therefore may play a key pathogenic role in AD. Oxidative stress not only temporally precedes the pathological lesions of the disease but also activates cell signaling pathways, which, in turn, contribute to lesion formation and, at the same time, provoke cellular responses such as compensatory upregulation of antioxidant enzymes found in vulnerable neurons in AD. In this review, we provide an overview of the evidence of oxidative stress and compensatory responses that occur in AD, particularly focused on potential sources of oxidative stress and the roles and mechanism of activation of stress-activated protein kinase pathways.
Collapse
Affiliation(s)
- B Su
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
What initiates the formation of senile plaques? The origin of Alzheimer-like dementias in capillary haemorrhages. Med Hypotheses 2008; 71:347-59. [DOI: 10.1016/j.mehy.2008.04.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Revised: 03/24/2008] [Accepted: 04/03/2008] [Indexed: 01/18/2023]
|
26
|
Portelius E, Zetterberg H, Gobom J, Andreasson U, Blennow K. Targeted proteomics in Alzheimer's disease: focus on amyloid-beta. Expert Rev Proteomics 2008; 5:225-37. [PMID: 18466053 DOI: 10.1586/14789450.5.2.225] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Diagnosis and monitoring of sporadic Alzheimer's disease (AD) have long depended on clinical examination of individuals with end-stage disease. However, upcoming anti-AD therapies are optimally initiated when individuals show very mild signs of neurodegeneration. There is a developing consensus for cerebrospinal fluid amyloid-beta (Abeta) as a core biomarker for the mild cognitive impairment stage of AD. Abeta is directly involved in the pathogenesis of AD or tightly correlated with other primary pathogenic factors. It is produced from amyloid precursor protein (APP) by proteolytic processing that depends on the beta-site APP-cleaving enzyme 1 and the gamma-secretase complex, and is degraded by a broad range of proteases. This review summarizes targeted proteomic studies of Abeta in biological fluids and identifies clinically useful markers of disrupted Abeta homeostasis in AD. The next 5 years will see a range of novel assays developed on the basis of these results. From a longer perspective, establishment of the most effective combinations of different biomarkers and other diagnostic modalities may be foreseen.
Collapse
Affiliation(s)
- Erik Portelius
- Institute of Neuroscience & Physiology, Department of Psychiatry & Neurochemistry, The Sahlgrenska Academy at Göteborg University, Mölndal, Sweden.
| | | | | | | | | |
Collapse
|
27
|
Bate C, Williams A. Do prion-induced changes in membrane cholesterol trigger neurodegeneration? FUTURE NEUROLOGY 2008. [DOI: 10.2217/14796708.3.4.367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Clive Bate
- Royal Veterinary College, Department of Pathology and Infectious Diseases, Hawkshead, Hertfordshire, AL9 7TA, UK
| | - Alun Williams
- Royal Veterinary College, Department of Pathology and Infectious Diseases, Hawkshead, Hertfordshire, AL9 7TA, UK
| |
Collapse
|
28
|
Fisher A. Cholinergic treatments with emphasis on m1 muscarinic agonists as potential disease-modifying agents for Alzheimer's disease. Neurotherapeutics 2008; 5:433-42. [PMID: 18625455 PMCID: PMC5084245 DOI: 10.1016/j.nurt.2008.05.002] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The only prescribed drugs for treatment of Alzheimer's disease (AD) are acetylcholinesterase inhibitors (e.g., donepezil, rivastigmine, galantamine, and tacrine) and memantine, an NMDA antagonist. These drugs ameliorate mainly the symptoms of AD, such as cognitive impairments, rather than halting or preventing the causal neuropathology. There is currently no cure for AD and there is no way to stop its progression, yet there are numerous therapeutic approaches directed against various pathological hallmarks of AD that are extensively being pursued. In this context, the three major hallmark characteristics of AD (i.e., the CNS cholinergic hypofunction, formation of beta-amyloid plaques, and tangles containing hyperphosphorylated tau proteins) are apparently linked. Such linkages may have therapeutic implications, and this review is an attempt to analyze these versus the advantages and drawbacks of some cholinergic compounds, such as acetylcholinesterase inhibitors, M1 muscarinic agonists, M2 antagonists, and nicotinic agonists. Among the reviewed treatments, M1 selective agonists emerge, in particular, as potential disease modifiers.
Collapse
Affiliation(s)
- Abraham Fisher
- Israel Institute for Biological Research, PO Box 19, Ness-Ziona, Israel.
| |
Collapse
|
29
|
Fogal B, Hewett SJ. Interleukin-1beta: a bridge between inflammation and excitotoxicity? J Neurochem 2008; 106:1-23. [PMID: 18315560 DOI: 10.1111/j.1471-4159.2008.05315.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Interleukin-1 (IL-1) is a proinflammatory cytokine released by many cell types that acts in both an autocrine and/or paracrine fashion. While IL-1 is best described as an important mediator of the peripheral immune response during infection and inflammation, increasing evidence implicates IL-1 signaling in the pathogenesis of several neurological disorders. The biochemical pathway(s) by which this cytokine contributes to brain injury remain(s) largely unidentified. Herein, we review the evidence that demonstrates the contribution of IL-1beta to the pathogenesis of both acute and chronic neurological disorders. Further, we highlight data that leads us to propose IL-1beta as the missing mechanistic link between a potential beneficial inflammatory response and detrimental glutamate excitotoxicity.
Collapse
Affiliation(s)
- Birgit Fogal
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
30
|
Casadesus G, Rolston RK, Webber KM, Atwood CS, Bowen RL, Perry G, Smith MA. Menopause, estrogen, and gonadotropins in Alzheimer's disease. Adv Clin Chem 2008; 45:139-53. [PMID: 18429496 DOI: 10.1016/s0065-2423(07)00006-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
For decades, Alzheimer's disease (AD) has been linked to aging, gender, and menopause. Not surprisingly, this led most investigators to focus on the role of estrogen. While undoubtedly important, estrogen is unlikely the key determinant of disease pathogenesis. Rather, it appears that estrogen may work in conjunction with a novel determinant of disease pathogenesis, namely gonadotropins. The fact that gonadotropins, specifically luteinizing hormone, play a pivotal role in disease is apparent from significant etiological, epidemiological, and pathological evidences. Moreover, targeting gonadotropins appears to have beneficial actions as a therapeutic regimen.
Collapse
Affiliation(s)
- Gemma Casadesus
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Bate C, Marshall V, Colombo L, Diomede L, Salmona M, Williams A. Docosahexaenoic and eicosapentaenoic acids increase neuronal death in response to HuPrP82–146 and Aβ1–42. Neuropharmacology 2008; 54:934-43. [DOI: 10.1016/j.neuropharm.2008.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 12/11/2007] [Accepted: 02/01/2008] [Indexed: 11/29/2022]
|
32
|
Shah RS, Lee HG, Xiongwei Z, Perry G, Smith MA, Castellani RJ. Current approaches in the treatment of Alzheimer's disease. Biomed Pharmacother 2008; 62:199-207. [DOI: 10.1016/j.biopha.2008.02.005] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Accepted: 02/19/2008] [Indexed: 12/21/2022] Open
|
33
|
Wang X, Su B, Perry G, Smith MA, Zhu X. Insights into amyloid-beta-induced mitochondrial dysfunction in Alzheimer disease. Free Radic Biol Med 2007; 43:1569-73. [PMID: 18037122 DOI: 10.1016/j.freeradbiomed.2007.09.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 08/21/2007] [Accepted: 09/11/2007] [Indexed: 12/20/2022]
Abstract
Amyloid-beta has long been implicated in the pathogenesis of Alzheimer disease. The focus was initially on the extracellular fibrillar deposits of amyloid-beta but more recently has shifted to intracellular oligomeric forms of amyloid-beta. Unfortunately, the mechanism(s) by which either extracellular or intracellular amyloid-beta induces neuronal toxicity remains unclear. That said, a number of recent studies indicate that mitochondria might be an important target of amyloid-beta. Neurons rely heavily on mitochondria for energy and it is well established that mitochondrial dysfunction might be an important target of amyloid-beta. Mechanistically, amyloid-beta aggregates in mitochondria to impair function, leading to energy hypometabolism and elevated reactive oxygen species production. Additionally, amyloid-beta affects the balance of mitochondrial fission/fusion and mitochondrial transport, negatively impacting a host of cellular functions of neurons. Here, we review the role that amyloid-beta plays in mitochondrial structure and function of neurons and the importance of this in the pathogenesis of Alzheimer disease.
Collapse
Affiliation(s)
- Xinglong Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|
34
|
Castellani RJ, Moreira PI, Liu G, Dobson J, Perry G, Smith MA, Zhu X. Iron: the Redox-active center of oxidative stress in Alzheimer disease. Neurochem Res 2007; 32:1640-5. [PMID: 17508283 DOI: 10.1007/s11064-007-9360-7] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Accepted: 04/17/2007] [Indexed: 01/24/2023]
Abstract
Although iron is essential in maintaining the function of the central nervous system, it is a potent source of reactive oxygen species. Excessive iron accumulation occurs in many neurodegenerative diseases including Alzheimer disease (AD), Parkinson's disease, and Creutzfeldt-Jakob disease, raising the possibility that oxidative stress is intimately involved in the neurodegenerative process. AD in particular is associated with accumulation of numerous markers of oxidative stress; moreover, oxidative stress has been shown to precede hallmark neuropathological lesions early in the disease process, and such lesions, once present, further accumulate iron, among other markers of oxidative stress. In this review, we discuss the role of iron in the progression of AD.
Collapse
|
35
|
Casadesus G, Smith MA, Basu S, Hua J, Capobianco DE, Siedlak SL, Zhu X, Perry G. Increased isoprostane and prostaglandin are prominent in neurons in Alzheimer disease. Mol Neurodegener 2007; 2:2. [PMID: 17241462 PMCID: PMC1785381 DOI: 10.1186/1750-1326-2-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Accepted: 01/22/2007] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Inflammation and oxidative stress are both involved in the pathogenesis of Alzheimer disease and have been shown to be reciprocally linked. One group of molecules that have been directly associated with inflammation and the production of free radicals are the prostaglandin 13,14-dihydro 15-keto PGF2alpha and the isoprostane 8-iso-PGF2alpha. RESULTS To further delineate the role of inflammatory and oxidative parameters in Alzheimer disease, in this study we evaluated the amount and localization of 13,14-dihydro 15-keto PGF2alpha and 8-iso-PGF2alpha in hippocampal post mortem tissue samples from age-matched Alzheimer disease and control patients. Our results demonstrate increased levels of 13,14-dihydro 15-keto PGF2alpha and 8-iso-PGF2alpha in the hippocampal pyramidal neurons of Alzheimer disease patients when compared to control patients. CONCLUSION These data not only support the shared mechanistic involvement of free radical damage and inflammation in Alzheimer disease, but also indicate that multiple pathogenic "hits" are likely necessary for both the development and propagation of Alzheimer disease.
Collapse
Affiliation(s)
- Gemma Casadesus
- Department of Neuroscience, Case Western Reserve University, Cleveland, Ohio, USA
| | - Mark A Smith
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Samar Basu
- Faculty of Medicine, Uppsala University, Uppsala, Sweden
| | - Jing Hua
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Dae E Capobianco
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Sandra L Siedlak
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Xiongwei Zhu
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - George Perry
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
- College of Sciences, University of Texas at San Antonio, Texas, USA
| |
Collapse
|
36
|
Lee HG, Zhu X, Nunomura A, Perry G, Smith MA. Amyloid-beta vaccination: testing the amyloid hypothesis?: heads we win, tails you lose! THE AMERICAN JOURNAL OF PATHOLOGY 2006; 169:738-9. [PMID: 16936250 PMCID: PMC1698831 DOI: 10.2353/ajpath.2006.060633] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Hyoung-gon Lee
- Department of Pathology, Case Western Reserve University, 2103 Cornell Rd., Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|
37
|
|
38
|
Casadesus G, Garrett MR, Webber KM, Hartzler AW, Atwood CS, Perry G, Bowen RL, Smith MA. The estrogen myth: potential use of gonadotropin-releasing hormone agonists for the treatment of Alzheimer's disease. Drugs R D 2006; 7:187-93. [PMID: 16752944 DOI: 10.2165/00126839-200607030-00004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Estrogen and other sex hormones have received a great deal of attention for their speculative role in Alzheimer's disease (AD), but at present a direct connection between estrogen and the pathogenesis of AD remains elusive and somewhat contradictory. For example, on one hand there is a large body of evidence suggesting that estrogen is neuroprotective and improves cognition, and that hormone replacement therapy (HRT) at the onset of menopause reduces the risk of developing AD decades later. However, on the other hand, studies such as the Women's Health Initiative demonstrate that HRT initiated in elderly women increases the risk of dementia. While estrogen continues to be investigated, the disparity of findings involving HRT has led many researchers to examine other hormones of the hypothalamic-pituitary-gonadal axis such as luteinising hormone (LH) and follicle-stimulating hormone. In this review, we propose that LH, rather than estrogen, is the paramount player in the pathogenesis of AD. Notably, both men and women experience a 3- to 4-fold increase in LH with aging, and LH receptors are found throughout the brain following a regional pattern remarkably similar to those neuron populations affected in AD. With respect to disease, serum LH level is increased in women with AD relative to non-diseased controls, and levels of LH in the brain are also elevated in AD. Mechanistically, we propose that elevated levels of LH may be a fundamental instigator responsible for the aberrant reactivation of the cell cycle that is seen in AD. Based on these aforementioned aspects, clinical trials underway with leuprolide acetate, a gonadotropin-releasing hormone agonist that ablates serum LH levels, hold great promise as a ready means of treatment in individuals afflicted with AD.
Collapse
Affiliation(s)
- Gemma Casadesus
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Lee HG, Perry G, Zhu X, Nunomura A, Smith MA. Amyloid-beta, BACE, and oxidative stress in Alzheimer's disease, a commentary on "The different aggregation state of beta-amyloid 1-42 mediates different effects on oxidative stress, neurodegeneration and BACE-1 expression". Free Radic Biol Med 2006; 41:188-9. [PMID: 16814097 DOI: 10.1016/j.freeradbiomed.2006.03.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Accepted: 03/09/2006] [Indexed: 11/19/2022]
Affiliation(s)
- Hyoung-gon Lee
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|
40
|
Alzheimer' s disease, oxidative stress and gammahydroxybutyrate. Neurobiol Aging 2006; 28:1340-60. [PMID: 16837107 DOI: 10.1016/j.neurobiolaging.2006.06.008] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2006] [Revised: 05/14/2006] [Accepted: 06/12/2006] [Indexed: 12/21/2022]
Abstract
Although the cause of Alzheimer's disease is unknown, oxidative stress, energy depletion, excitotoxicity and vascular endothelial pathology are all considered to play a part in its pathogenesis. In reaction to these adverse events, the Alzheimer brain appears to deploy a highly conserved biological response to tissue stress. Oxidative metabolism is turned down, the expression of antioxidative enzymes is increased and intermediary metabolism is shifted in the direction of the pentose phosphate shunt to promote reductive detoxification, repair and biosynthesis. Gathering evidence suggests that the release of beta-amyloid and the formation of neurofibrillary tangles, the two hallmarks of Alzheimer's disease, are components of this protective response. Gammahydroxybutyrate (GHB), an endogenous short chain fatty acid, may be able to buttress this response. GHB can reduce glucose utilization, shift intermediary metabolism in the direction the pentose phosphate shunt and generate NADPH, a key cofactor in the activity of many antioxidative and reductive enzymes. GHB has been shown to spare cerebral energy utilization, block excitotoxicity and maintain vascular integrity in the face of impaired perfusion. Most important, GHB has repeatedly been shown to prevent the tissue damaging effects of oxidative stress. It may therefore be possible to utilize GHB to strengthen the brain's innate defences against the pathological processes operating in the Alzheimer brain and, in this way, stem the advance of Alzheimer's disease.
Collapse
|
41
|
Lee HG, Zhu X, Takeda A, Perry G, Smith MA. Emerging evidence for the neuroprotective role of α-synuclein. Exp Neurol 2006; 200:1-7. [PMID: 16780837 DOI: 10.1016/j.expneurol.2006.04.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 04/26/2006] [Accepted: 04/28/2006] [Indexed: 12/21/2022]
Affiliation(s)
- Hyoung-gon Lee
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|
42
|
Castellani RJ, Lee HG, Perry G, Smith MA. Antioxidant protection and neurodegenerative disease: the role of amyloid-beta and tau. Am J Alzheimers Dis Other Demen 2006; 21:126-30. [PMID: 16634469 PMCID: PMC10833251 DOI: 10.1177/153331750602100213] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In Alzheimer's disease (AD), the major components of senile plaques and neurofibrillary tangles, amyloid-beta and tau, respectively, are thought by many to play a key role in disease initiation and progression. However, herein we propose that rather than being initiators of disease pathogenesis, the lesions that characterize AD, senile plaques and neurofibrillary pathology, occur consequent to oxidative stress and, importantly, function as a primary line of antioxidant defense. Importantly, this paradigm shift in thinking about the role of lesions in disease also provides an explanation for the appearance of both amyloid-beta and tau in control individuals given the increased levels of oxidative stress associated with the aged brain. In AD, oxidative stress is not only high but chronic and is superimposed upon an age-related vulnerable environment. Therefore, one would predict, successfully, an increased lesion load in patients with AD above and beyond that seen in normal aging. The notion that amyloid-beta and tau accumulations indicate adaptation and, likely, physiological processes sheds light on the pathological expression of disease and calls into question the rationale of current therapeutic efforts targeted toward lesion removal.
Collapse
Affiliation(s)
- Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
43
|
Webber KM, Raina AK, Marlatt MW, Zhu X, Prat MI, Morelli L, Casadesus G, Perry G, Smith MA. The cell cycle in Alzheimer disease: a unique target for neuropharmacology. Mech Ageing Dev 2006; 126:1019-25. [PMID: 15936057 DOI: 10.1016/j.mad.2005.03.024] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2003] [Revised: 03/21/2005] [Accepted: 03/25/2005] [Indexed: 10/25/2022]
Abstract
Several hypotheses have been proposed attempting to explain the pathogenesis of Alzheimer disease including, among others, theories involving amyloid deposition, tau phosphorylation, oxidative stress, metal ion dysregulation and inflammation. While there is strong evidence suggesting that each one of these proposed mechanisms contributes to disease pathogenesis, none of these mechanisms are able to account for all the physiological changes that occur during the course of the disease. For this reason, we and others have begun the search for a causative factor that predates known features found in Alzheimer disease, and that might therefore be a fundamental initiator of the pathophysiological cascade. We propose that the dysregulation of the cell cycle that occurs in neurons susceptible to degeneration in the hippocampus during Alzheimer disease is a potential causative factor that, together with oxidative stress, would initiate all known pathological events. Neuronal changes supporting alterations in cell cycle control in the etiology of Alzheimer disease include the ectopic expression of markers of the cell cycle, organelle kinesis and cytoskeletal alterations including tau phosphorylation. Such mitotic alterations are not only one of the earliest neuronal abnormalities in the disease, but as discussed herein, are also intimately linked to all of the other pathological hallmarks of Alzheimer disease including tau protein, amyloid beta protein precursor and oxidative stress, and even risk factors such as mutations in the presenilin genes. Therefore, therapeutic interventions targeted toward ameliorating mitotic changes would be predicted to have a profound and positive impact on Alzheimer disease progression.
Collapse
Affiliation(s)
- Kate M Webber
- Institute of Pathology, Case Western Reserve University, 2085 Adelbert Road, Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Webber KM, Casadesus G, Perry G, Atwood CS, Bowen R, Smith MA. Gender differences in Alzheimer disease: the role of luteinizing hormone in disease pathogenesis. Alzheimer Dis Assoc Disord 2006; 19:95-9. [PMID: 15942328 DOI: 10.1097/01.wad.0000165512.90864.3f] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Epidemiological data reporting the predisposition of women to Alzheimer disease has provided researchers with an important clue as to the identity of the driving pathogenic force and lead many to question the potential role of sex steroids, namely estrogen, in disease pathogenesis. However, while estrogen has become the primary focus of research in the field, inconclusive data regarding estrogen replacement therapy has lead some researchers to begin investigating the effects of the other hormones of the hypothalamic-pituitary-gonadal (HPG) axis on the aging brain. Certain hormones of the HPG axis, namely the gonadotropins (luteinizing hormone and follicle-stimulating hormone), are not only involved in regulating reproductive function via a complex feedback loop but are also known to cross the blood-brain barrier. Recently, we proposed that an increase in gonadotropin concentrations, not the decrease in steroid hormone (eg, estrogen) production following menopause/andropause, is a potentially primary causative factor for the development of Alzheimer disease. In this review, we examine how the gonadotropins may play a central and determining role in modulating the susceptibility to, and progression of, Alzheimer disease. Based on this, we suggest that therapeutic interventions targeted at gonadotropins may both prevent disease in those patients currently asymptomatic or may halt, and even reverse, disease in those currently afflicted.
Collapse
Affiliation(s)
- Kate M Webber
- Institute of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | |
Collapse
|
45
|
Klajnert B, Cortijo-Arellano M, Bryszewska M, Cladera J. Influence of heparin and dendrimers on the aggregation of two amyloid peptides related to Alzheimer’s and prion diseases. Biochem Biophys Res Commun 2006; 339:577-82. [PMID: 16310169 DOI: 10.1016/j.bbrc.2005.11.053] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Accepted: 11/10/2005] [Indexed: 11/23/2022]
Abstract
Amyloid plaques composed of proteinaceous aggregates are commonly found in brains affected by Alzheimer's disease and spongiform encephalopaties. A structural homology has been recently described for the Alzheimer's peptide Abeta1-28 and the segment of the prion protein Prp185-208. In the present paper, further elements in common are reported: the aggregation processes are in both cases enhanced by the model glucosaminoglycan heparin and dendrimers can modulate the aggregation process by affecting the nucleation rate at low concentrations and the elongation rate at high concentrations. Nucleation and elongation rate constants are derived from fittings to a nucleation dependent polymerization model.
Collapse
Affiliation(s)
- Barbara Klajnert
- Department of General Biophysics, University of Lodz, ul. Banacha 12/16, Lodz 90-237, Poland
| | | | | | | |
Collapse
|
46
|
Lee HG, Castellani RJ, Zhu X, Perry G, Smith MA. Amyloid-beta in Alzheimer's disease: the horse or the cart? Pathogenic or protective? Int J Exp Pathol 2005; 86:133-8. [PMID: 15910547 PMCID: PMC2517413 DOI: 10.1111/j.0959-9673.2005.00429.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
While the pathogenesis of Alzheimer's disease (AD) is unclear, amyloid-beta plaques remain major lesions in the brain of individuals with AD. Likewise, amyloid-beta is one of the best-studied proteins relating to the pathogenesis of AD. Indeed, the pathological diagnosis of AD tends to be congruous with the quantity of amyloid-beta. However, it is important to recognize that pathological diagnosis merely represents the association of a pattern of pathological changes with a clinical phenotype. Therefore, it should be acknowledged that, although amyloid-beta detection and semiquantification have some diagnostic utility, the simple presence of amyloid plaques, as with proteinaceous accumulations in essentially all neurodegenerative diseases, does not presume aetiology. Thus, in this review, we discuss the role of amyloid-beta in the pathogenesis of AD and provide an alternative view to the widely accepted dogma.
Collapse
Affiliation(s)
- Hyoung-Gon Lee
- Institute of Pathology, Case Western Reserve University, 2085 Adelbert Road, Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|
47
|
Hirata K, Yamaguchi H, Takamura Y, Takagi A, Fukushima T, Iwakami N, Saitoh A, Nakagawa M, Yamada T. A novel neurotrophic agent, T-817MA [1-{3-[2-(1-benzothiophen-5-yl) ethoxy] propyl}-3-azetidinol maleate], attenuates amyloid-beta-induced neurotoxicity and promotes neurite outgrowth in rat cultured central nervous system neurons. J Pharmacol Exp Ther 2005; 314:252-9. [PMID: 15798005 DOI: 10.1124/jpet.105.083543] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Progressive neuronal loss in Alzheimer's disease (AD) is considered to be a consequence of the neurotoxic properties of amyloid-beta peptides (A beta). T-817MA (1-{3-[2-(1-benzothiophen-5-yl) ethoxy] propyl}-3-azetidinol maleate) was screened as a candidate therapeutic agent for the treatment of AD based on its neuroprotective potency against A beta-induced neurotoxicity and its effect of enhancing axonal regeneration in the sciatic nerve axotomy model. The neuroprotective effect of T-817MA against A beta(1-42) or oxidative stress-induced neurotoxicity was assessed using a coculture of rat cortical neurons with glia. T-817MA (0.1 and 1 microM) was strongly protective against A beta(1-42)-induced (10 microM for 48 h) or H2O2-induced (100 microM for 24 h) neuronal death. T-817MA suppressed the decrease of GSH levels induced by H2O2 exposure (30 microM for 4 h) in cortical neuron culture; therefore, T-817MA was likely to alleviate oxidative stress. Besides the neuroprotective effect, T-817MA (0.1 and 1 microM) promoted neurite outgrowth in hippocampal slice cultures and reaggregation culture of rat cortical neurons. T-817MA also increased the growth-associated protein 43 content in the reaggregation culture of cortical neurons. These findings suggest that T-817MA exerts neuroprotective effect and promotes neurite outgrowth in rat primary cultured neurons. Based on these neurotrophic features, T-817MA may have a potential for disease modification and be useful for patients with neurodegenerative diseases, such as AD.
Collapse
Affiliation(s)
- Kazunari Hirata
- Research Laboratories, Toyama Chemical Co., Ltd, 2-4-1 Shimookui, Toyama, 930-8508, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Smith MA, Nunomura A, Lee HG, Zhu X, Moreira PI, Avila J, Perry G. Chronological primacy of oxidative stress in Alzheimer disease. Neurobiol Aging 2005; 26:579-80. [PMID: 15708430 DOI: 10.1016/j.neurobiolaging.2004.09.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Accepted: 09/07/2004] [Indexed: 11/21/2022]
Affiliation(s)
- Mark A Smith
- Institute of Pathology, Case Western Reserve University, 2085 Adelbert Road, Cleveland, OH 44106, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Amyloid-beta (Abeta) has for a long time been thought to play a central role in the pathogenesis of Alzheimer disease (AD). Analysis of available data indicates that Abeta possesses properties of a metal-binding apolipoprotein influencing lipid transport and metabolism. Protection of lipoproteins from oxidation by transition metals, synaptic activity and role in the acute phase response represent plausible physiological functions of Abeta. However, these important biochemical qualities which may critically influence the development of AD, have been largely ignored by mainstream AD researchers, making Abeta appear to be a "black sheep" in a "good apolipoprotein" family. New studies are needed to shed further light on the physiological role of Abeta in lipid metabolism in the brain.
Collapse
Affiliation(s)
- Anatol Kontush
- INSERM Unité 551, Hôpital de la Pitié, Pavilion Benjamin Delessert, 83, Bd de l'Hôpital, 75651 Paris Cedex 13, France.
| |
Collapse
|
50
|
Lee HG, Casadesus G, Zhu X, Takeda A, Perry G, Smith MA. Challenging the amyloid cascade hypothesis: senile plaques and amyloid-beta as protective adaptations to Alzheimer disease. Ann N Y Acad Sci 2004; 1019:1-4. [PMID: 15246983 DOI: 10.1196/annals.1297.001] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Ever since their initial description over a century ago, senile plaques and their major protein component, amyloid-beta, have been considered key contributors to the pathogenesis of Alzheimer disease. However, counter to the popular view that amyloid-beta represents an initiator of disease pathogenesis, we herein challenge dogma and propose that amyloid-beta occurs secondary to neuronal stress and, rather than causing cell death, functions as a protective adaptation to the disease. By analogy, individuals suffering from altitude sickness nearly always have elevated levels of hemoglobin. However, while hemoglobin is toxic to cells in culture and increased erythropoiesis at sea level can be deadly, it is clear that the increases in hemoglobin occurring at altitude are beneficial. Amyloid, like hemoglobin, may also be beneficial, in this case, following neuronal stress or disease. Although controversial, a protective function for amyloid-beta is supported by all of the available literature to date and also explains why many aged individuals, despite the presence of high numbers of senile plaques, show little or no cognitive decline. With this in mind, we suspect that current therapeutic efforts targeted toward lowering amyloid-beta production or removal of deposited amyloid-beta will only serve to exacerbate the disease process.
Collapse
Affiliation(s)
- Hyoung-Gon Lee
- Institute of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | |
Collapse
|