1
|
Zhang J, Li S, Qi Y, Shen J, Leng A, Qu J. Animal-derived peptides from Traditional Chinese medicines: medicinal potential, mechanisms, and prospects. JOURNAL OF ETHNOPHARMACOLOGY 2025; 349:119872. [PMID: 40334760 DOI: 10.1016/j.jep.2025.119872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 03/14/2025] [Accepted: 04/22/2025] [Indexed: 05/09/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Animal-derived traditional Chinese medicines have a long-standing history in Chinese medicine, which exhibit unique efficacy due to similar structure and function with human tissue. As the major types of constituents that accounted for a relatively high proportion of animal-derived TCMs, peptides with molecular weight between 100 Da and hundreds of thousands of kDa have caught wide attention due to their outstanding bioavailability and excellent specificity. AIM OF THE STUDY This review aims to comprehensively delve into the up-to-date research progress in their pharmacology, mechanism, sequence composition, and therapeutic application, laying a solid foundation for future clinical treatment and scientific research. MATERIALS AND METHODS Relevant information on the peptides from animal-derived TCMs was collected from scientific literature databases including PubMed, CNKI, literature sources (Ph.D. and M.Sc. dissertations), and Web of Science by using the keywords "Peptides", "Animal", and "TCMs" for gradual screening in the past 30 years. RESULTS To date, the peptides from 27 kinds of animal-derived TCMs have been systematically combed. Their pharmacological activity and underlying mechanisms on multiple systems (nervous, circulatory, skeletal, and immune), as well as anti-tumor, antioxidative, and antimicrobial effects, have been sorted out. Besides, the potential safety issues and deficiencies (low bioavailability, imperfect quality management, and toxicity of raw materials) have also been pointed out. CONCLUSIONS Comprehensive analysis showed that low development and resource waste accompanied by the inadequate report about the pharmacological activity of most peptides from animal-derived TCMs make it have good research prospects. Although a breakthrough in the field of healthcare products has been made, the development potential for clinical products that bring surprising turnaround will be obtained if the above-mentioned confusions and current needs (improve identification technology and design reasonable dosage forms) are implemented.
Collapse
Affiliation(s)
- Jiahui Zhang
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian, 116011, China; Institute of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian, 116044, China
| | - Siyi Li
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian, 116011, China; Institute (College) of Pharmacy, Dalian Medical University, No. 9, South Road of Lvshun, Dalian, 116044, China
| | - Yueyi Qi
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian, 116011, China; Institute (College) of Pharmacy, Dalian Medical University, No. 9, South Road of Lvshun, Dalian, 116044, China
| | - Jieyu Shen
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian, 116011, China; Institute of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian, 116044, China
| | - Aijing Leng
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian, 116011, China; Department of Traditional Chinese Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian, 116011, China.
| | - Jialin Qu
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian, 116011, China; Institute of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian, 116044, China.
| |
Collapse
|
2
|
Thiel D, Bauknecht P, Jékely G, Hejnol A. A nemertean excitatory peptide/CCHamide regulates ciliary swimming in the larvae of Lineus longissimus. Front Zool 2019; 16:28. [PMID: 31333754 PMCID: PMC6617912 DOI: 10.1186/s12983-019-0326-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 06/17/2019] [Indexed: 12/13/2022] Open
Abstract
Background The trochozoan excitatory peptide (EP) and its ortholog, the arthropod CCHamide, are neuropeptides that are only investigated in very few animal species. Previous studies on different trochozoan species focused on their physiological effect in adult specimens, demonstrating a myo-excitatory effect, often on tissues of the digestive system. The function of EP in the planktonic larvae of trochozoans has not yet been studied. Results We surveyed transcriptomes from species of various spiralian (Orthonectida, Nemertea, Brachiopoda, Entoprocta, Rotifera) and ecdysozoan taxa (Tardigrada, Onychophora, Priapulida, Loricifera, Nematomorpha) to investigate the evolution of EPs/CCHamides in protostomes. We found that the EPs of several pilidiophoran nemerteans show a characteristic difference in their C-terminus. Deorphanization of a pilidiophoran EP receptor showed, that the two splice variants of the nemertean Lineus longissimus EP activate a single receptor. We investigated the expression of EP in L. longissimus larvae and juveniles with customized antibodies and found that EP positive nerves in larvae project from the apical organ to the ciliary band and that EP is expressed more broadly in juveniles in the neuropil and the prominent longitudinal nerve cords. While exposing juvenile L. longissimus specimens to synthetic excitatory peptides did not show any obvious effect, exposure of larvae to either of the two EPs increased the beat frequency of their locomotory cilia and shifted their vertical swimming distribution in a water column upwards. Conclusion Our results show that EP/CCHamide peptides are broadly conserved in protostomes. We show that the EP increases the ciliary beat frequency of L. longissimus larvae, which shifts their vertical distribution in a water column upwards. Endogenous EP may be released at the ciliary band from the projections of apical organ EP positive neurons to regulate ciliary beating. This locomotory function of EP in L. longissimus larvae stands in contrast to the repeated association of EP/CCHamides with its myo-excitatory effect in adult trochozoans and the general association with the digestive system in many protostomes. Electronic supplementary material The online version of this article (10.1186/s12983-019-0326-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel Thiel
- 1Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006 Bergen, Norway
| | - Philipp Bauknecht
- 2Max Planck Institute for Developmental Biology, Spemannstraße 35, 72076 Tübingen, Germany
| | - Gáspár Jékely
- 2Max Planck Institute for Developmental Biology, Spemannstraße 35, 72076 Tübingen, Germany.,3Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD UK
| | - Andreas Hejnol
- 1Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006 Bergen, Norway
| |
Collapse
|
3
|
Ahn SJ, Martin R, Rao S, Choi MY. Neuropeptides predicted from the transcriptome analysis of the gray garden slug Deroceras reticulatum. Peptides 2017; 93:51-65. [PMID: 28502716 DOI: 10.1016/j.peptides.2017.05.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 05/04/2017] [Accepted: 05/06/2017] [Indexed: 12/28/2022]
Abstract
The gray garden slug, Deroceras reticulatum (Gastropoda: Pulmonata), is one of the most common terrestrial molluscs. Research for this slug has focused mainly on its ecology, biology, and management due to the severe damage it causes on a wide range of vegetables and field crops. However, little is known about neuropeptides and hormonal signalings. This study, therefore, aimed to establish the transcriptome of D. reticulatum and to identify a comprehensive repertoire of neuropeptides in this slug. Illumina high-throughput sequencing of the whole body transcriptome of D. reticulatum generated a total of 5.9 billion raw paired-end reads. De novo assembly by Trinity resulted in 143,575 transcripts and further filtration selected 120,553 unigenes. Gene Ontology (GO) terms were assigned to 30,588 unigenes, composed of biological processes (36.9%), cellular components (30.2%) and molecular functions (32.9%). Functional annotation by BLASTx revealed 39,987 unigenes with hits, which were further categorized into important functional groups based on sequence abundance. Neuropeptides, ion channels, ribosomal proteins, G protein-coupled receptors, detoxification, immunity and cytoskeleton-related sequences were dominant among the transcripts. BLAST searches and PCR amplification were used to identify 65 putative neuropeptide precursor genes from the D. reticulatum transcriptome, which include achatin, AKH, allatostatin A, B and C, allatotropin, APGWamide, CCAP, cerebrin, conopressin, cysteine-knot protein hormones (bursicon alpha/beta and GPA2/GPB5), elevenin, FCAP, FFamide, FVamide (enterin, fulicin, MIP and PRQFVamide), GGNG, GnRH, insulin, NdWFamide, NKY, PKYMDT, PRXamide (myomodulin, pleurin and sCAP), RFamide (CCK/SK, FMRFamide, FxRIamide, LFRFamide, luqin and NPF), and tachykinin. Over 330 putative peptides were encoded by these precursors. Comparative analysis among different molluscan species clearly revealed that, while D. reticulatum neuropeptide sequences are conserved in Mollusca, there are also some unique features distinct from other members of this species. This is the first transcriptome-wide report of neuropeptides in terrestrial slugs. Our results provide comprehensive transcriptome data of the gray garden slug, with a more detailed focus on the rich repertoire of putative neuropeptide sequences, laying the foundation for molecular studies in this terrestrial slug pest.
Collapse
Affiliation(s)
- Seung-Joon Ahn
- USDA-ARS Horticultural Crops Research Unit,3420 NW Orchard Avenue, Corvallis, OR, 97330, USA; Department of Crop and Soil Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Ruth Martin
- USDA-ARS Forage Seed and Cereal Research Unit, 3450 SW Campus Way, Corvallis, OR, 97331, USA
| | - Sujaya Rao
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Man-Yeon Choi
- USDA-ARS Horticultural Crops Research Unit,3420 NW Orchard Avenue, Corvallis, OR, 97330, USA.
| |
Collapse
|
4
|
Morishita F, Furukawa Y, Kodani Y, Minakata H, Horiguchi T, Matsushima O. Molecular cloning of precursors for TEP-1 and TEP-2: The GGNG peptide-related peptides of a prosobranch gastropod, Thais clavigera. Peptides 2015; 68:72-82. [PMID: 25451871 DOI: 10.1016/j.peptides.2014.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 10/17/2014] [Accepted: 10/17/2014] [Indexed: 11/15/2022]
Abstract
TEP (Thais excitatory peptide)-1 and TEP-2 are molluscan counterparts of annelidan GGNG-peptides, identified in a neogastropod, Thais clavigera (Morishita et al., 2006). We have cloned two cDNAs encoding TEP-1 and TEP-2 precursor protein, respectively, by the standard molecular cloning techniques. Predicted TEP-1 precursor protein consists of 161 amino acids, while predicted TEP-2 precursor protein has 118 amino acids. Only a single copy of TEP was found on the respective precursor. The semi-quantitative RT-PCR showed that expression of TEP-1 was high in sub-esophageal, pleural, pedal and visceral ganglia, while it was low in supra-esophageal ganglion. By contrast, expression level of TEP-2 was high in pedal and visceral ganglia. In situ hybridization visualized different subsets of TEP-1 and TEP-2 expressing neurons in Thais ganglia. For example, supra-esophageal ganglion contained many TEP-2 expressing neuron, but not TEP-1 expressing ones. These results suggest that expression of TEP-1 and TEP-2 is differently regulated in the Thais ganglia.
Collapse
Affiliation(s)
- Fumihiro Morishita
- Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan.
| | - Yasuo Furukawa
- Division of Human Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Yu Kodani
- Division of Human Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Hiroyuki Minakata
- Suntory Foundation for Life Sciences, 1-1-1 Wakayamadai, Shimamoto, Osaka 618-8503, Japan
| | - Toshihiro Horiguchi
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 Japan
| | - Osamu Matsushima
- Department of Global Environment Studies, Faculty of Environmental Studies, Hiroshima Institute of Technology, 2-1-1 Miyake, Saeki-ku, Hiroshima 731-5193, Japan
| |
Collapse
|
5
|
Conzelmann M, Williams EA, Krug K, Franz-Wachtel M, Macek B, Jékely G. The neuropeptide complement of the marine annelid Platynereis dumerilii. BMC Genomics 2013; 14:906. [PMID: 24359412 PMCID: PMC3890597 DOI: 10.1186/1471-2164-14-906] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 12/17/2013] [Indexed: 11/30/2022] Open
Abstract
Background The marine annelid Platynereis dumerilii is emerging as a powerful lophotrochozoan experimental model for evolutionary developmental biology (evo-devo) and neurobiology. Recent studies revealed the presence of conserved neuropeptidergic signaling in Platynereis, including vasotocin/neurophysin, myoinhibitory peptide and opioid peptidergic systems. Despite these advances, comprehensive peptidome resources have yet to be reported. Results The present work describes the neuropeptidome of Platynereis. We established a large transcriptome resource, consisting of stage-specific next-generation sequencing datasets and 77,419 expressed sequence tags. Using this information and a combination of bioinformatic searches and mass spectrometry analyses, we increased the known proneuropeptide (pNP) complement of Platynereis to 98. Based on sequence homology to metazoan pNPs, Platynereis pNPs were grouped into ancient eumetazoan, bilaterian, protostome, lophotrochozoan, and annelid families, and pNPs only found in Platynereis. Compared to the planarian Schmidtea mediterranea, the only other lophotrochozoan with a large-scale pNP resource, Platynereis has a remarkably full complement of conserved pNPs, with 53 pNPs belonging to ancient eumetazoan or bilaterian families. Our comprehensive search strategy, combined with analyses of sequence conservation, also allowed us to define several novel lophotrochozoan and annelid pNP families. The stage-specific transcriptome datasets also allowed us to map changes in pNP expression throughout the Platynereis life cycle. Conclusion The large repertoire of conserved pNPs in Platynereis highlights the usefulness of annelids in comparative neuroendocrinology. This work establishes a reference dataset for comparative peptidomics in lophotrochozoans and provides the basis for future studies of Platynereis peptidergic signaling.
Collapse
Affiliation(s)
- Markus Conzelmann
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076, Tübingen, Germany.
| | | | | | | | | | | |
Collapse
|
6
|
Veenstra JA. Neuropeptide evolution: neurohormones and neuropeptides predicted from the genomes of Capitella teleta and Helobdella robusta. Gen Comp Endocrinol 2011; 171:160-75. [PMID: 21241702 DOI: 10.1016/j.ygcen.2011.01.005] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 01/04/2011] [Accepted: 01/10/2011] [Indexed: 11/20/2022]
Abstract
Genes encoding neurohormones and neuropeptide precursors were identified in the genomes of two annelids, the leech Helobdella robusta and the polychaete worm Capitella teleta. Although no neuropeptides have been identified from these two species and relatively few neuropeptides from annelids in general, 43 and 35 such genes were found in Capitella and Helobdella, respectively. The predicted peptidomes of these two species are similar to one another and also similar to those of mollusks, particular in the case of Capitella. Helobdella seems to have less neuropeptide genes than Capitella and it lacks the glycoprotein hormones bursicon and GPA2/GPB5; in both cases the genes coding the two subunits as well as the genes coding their receptors are absent from its genome. In Helobdella several neuropeptide genes are duplicated, thus it has five NPY genes, including one pseudogene, as well as four genes coding Wwamides (allatostatin B). Genes coding achatin, allatotropin, allatostatin C, conopressin, FFamide, FLamide, FMRFamide, GGRFamide, GnRH, myomodulin, NPY, pedal peptides, RGWamide (a likely APGWamide homolog), RXDLamide, VR(F/I)amide, WWamide were found in both species, while genes coding cerebrin, elevenin, GGNG, LFRWamide, LRFYamide, luqin, lymnokinin and tachykinin were only found in Capitella.
Collapse
Affiliation(s)
- Jan A Veenstra
- Université de Bordeaux, INCIA UMR 5287 CNRS, 33400 Talence, France.
| |
Collapse
|
7
|
Winchell CJ, Valencia JE, Jacobs DK. Confocal analysis of nervous system architecture in direct-developing juveniles of Neanthes arenaceodentata (Annelida, Nereididae). Front Zool 2010; 7:17. [PMID: 20553614 PMCID: PMC2909921 DOI: 10.1186/1742-9994-7-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 06/16/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Members of Family Nereididae have complex neural morphology exemplary of errant polychaetes and are leading research models in the investigation of annelid nervous systems. However, few studies focus on the development of their nervous system morphology. Such data are particularly relevant today, as nereidids are the subjects of a growing body of "evo-devo" work concerning bilaterian nervous systems, and detailed knowledge of their developing neuroanatomy facilitates the interpretation of gene expression analyses. In addition, new data are needed to resolve discrepancies between classic studies of nereidid neuroanatomy. We present a neuroanatomical overview based on acetylated alpha-tubulin labeling and confocal microscopy for post-embryonic stages of Neanthes arenaceodentata, a direct-developing nereidid. RESULTS At hatching (2-3 chaetigers), the nervous system has developed much of the complexity of the adult (large brain, circumesophageal connectives, nerve cords, segmental nerves), and the stomatogastric nervous system is partially formed. By the 5-chaetiger stage, the cephalic appendages and anal cirri are well innervated and have clear connections to the central nervous system. Within one week of hatching (9-chaetigers), cephalic sensory structures (e.g., nuchal organs, Langdon's organs) and brain substructures (e.g., corpora pedunculata, stomatogastric ganglia) are clearly differentiated. Additionally, the segmental-nerve architecture (including interconnections) matches descriptions of other, adult nereidids, and the pharynx has developed longitudinal nerves, nerve rings, and ganglia. All central roots of the stomatogastric nervous system are distinguishable in 12-chaetiger juveniles. Evidence was also found for two previously undescribed peripheral nerve interconnections and aspects of parapodial muscle innervation. CONCLUSIONS N. arenaceodentata has apparently lost all essential trochophore characteristics typical of nereidids. Relative to the polychaete Capitella, brain separation from a distinct epidermis occurs later in N. arenaceodentata, indicating different mechanisms of prostomial development. Our observations of parapodial innervation and the absence of lateral nerves in N. arenaceodentata are similar to a 19th century study of Alitta virens (formerly Nereis/Neanthes virens) but contrast with a more recent study that describes a single parapodial nerve pattern and lateral nerve presence in A. virens and two other genera. The latter study apparently does not account for among-nereidid variation in these major neural features.
Collapse
Affiliation(s)
- Christopher J Winchell
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, 621 Charles E, Young Drive South, Los Angeles, CA 90095-1606 USA.
| | | | | |
Collapse
|
8
|
Veenstra JA. Neurohormones and neuropeptides encoded by the genome of Lottia gigantea, with reference to other mollusks and insects. Gen Comp Endocrinol 2010; 167:86-103. [PMID: 20171220 DOI: 10.1016/j.ygcen.2010.02.010] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 02/04/2010] [Accepted: 02/12/2010] [Indexed: 12/23/2022]
Abstract
The Lottia gigantea genome was prospected for the presence of genes coding neuropeptides and neurohormones. Four genes code insulin-related peptides: two genes code molluscan insulin-like growth hormones, one gene an insulin very similar to vertebrate insulin, and the fourth a peptide related to drosophila insulin-like peptide 7. Four other genes encode the cysteine-knot proteins GPA2/GPB5 and bursicon/parabursicon. Another 37 genes code for precursors of the following neuropeptides: achatin, APGWamide, allatostatin C, allatotropin, buccalin (perhaps an allatostatin A homolog), cerebrin, CCAP, conopressin, elevenin (the predicted neuropeptide made by abdominal neuron 11 in Aplysia), egg laying hormone (two genes), enterin, feeding circuit activating neuropeptide (FCAP), FFamide, FMRFamide, GGNG, a GnRH-like peptide, the newly discovered LASGLVamide, LFRFamide, LFRYamide, LRNFVamide, luqin, lymnokinin, myomodulin (two genes), the newly discovered NKY, NPY, pedal peptide (three genes), PKYMDT, pleurin, PXFVamide, small cardioactive peptides, tachykinins (two genes) and WWamide (an allatostatin B homolog). One gene was found to encode FWISamide, while about 20 closely related genes were found to encode WWFamide. These small neuropeptides appear homologous to the NdWFamide, which contains d-Trp; these genes are similar to the Aplysia gene encoding NWFamide. Some of these peptides had not been previously identified from mollusks, such as the predicted hormones similar to Drosophila and vertebrate insulins, bursicon, the putative proctolin homolog PKYMDT and allatostatin C. Together with neuropeptides which are likely homologs of other insect neuropeptides, such as cerebrin and WWamide, this shows that despite significant differences the molluscan and arthropod neuropeptidomes are more similar than generally recognized.
Collapse
Affiliation(s)
- Jan A Veenstra
- Université de Bordeaux, CNRS, CNIC UMR 5228, 33400 Talence, France.
| |
Collapse
|
9
|
Lawrence AJ, Soame JM. The endocrine control of reproduction in Nereidae: a new multi-hormonal model with implications for their functional role in a changing environment. Philos Trans R Soc Lond B Biol Sci 2010; 364:3363-76. [PMID: 19833648 DOI: 10.1098/rstb.2009.0127] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Nereidae are vital to the functioning of estuarine ecosystems and are major components in the diets of over-wintering birds and commercial fish. They use environmental cues to synchronize reproduction. Photoperiod is the proximate cue, initiating vitellogenesis in a temperature-compensated process. The prevailing paradigm in Nereidae is of a single 'juvenile' hormone controlling growth and reproduction. However, a new multi-hormone model is presented here that integrates the environmental and endocrine control of reproduction. This is supported by evidence from in vitro bioassays. The juvenile hormone is shown to be heat stable and cross reactive between species. In addition, a second neuro-hormone, identified here as a gonadotrophic hormone, is shown to be present in mature females and is found to promote oocyte growth. Furthermore, dopamine and melatonin appear to switch off the juvenile hormone while serotonin and oxytocin promote oocyte growth. Global warming is likely to uncouple the phase relationship between temperature and photoperiod, with significant consequences for Nereidae that use photoperiod to cue reproduction during the winter in northern latitudes. Genotypic adaptation of the photoperiodic response may be possible, but significant impacts on fecundity, spawning success and recruitment are likely in response to short-term extreme events. Endocrine-disrupting chemicals may also impact on putative steroid hormone pathways in Nereidae with similar consequences. These impacts may have significant implications for the functional role of Nereidae and highlight the importance of comparative endocrinology studies in these and other invertebrates.
Collapse
Affiliation(s)
- A J Lawrence
- Department of Life Sciences, University of the West Indies, Saint Augustine, Trinidad and Tobago.
| | | |
Collapse
|
10
|
Morishita F, Minakata H, Takeshige K, Furukawa Y, Takata T, Matsushima O, Mukai ST, Saleuddin ASM, Horiguchi T. Novel excitatory neuropeptides isolated from a prosobranch gastropod, Thais clavigera: The molluscan counterpart of the annelidan GGNG peptides. Peptides 2006; 27:483-92. [PMID: 16309789 DOI: 10.1016/j.peptides.2005.06.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2005] [Accepted: 06/16/2005] [Indexed: 11/17/2022]
Abstract
The GGNG peptides are excitatory neuropeptides identified from earthworms, leeches and polychaeta. Two structurally related peptides were purified and characterized from a mollusk, Thais clavigera (prosobranch gastropod). The peptides designated as Thais excitatory peptide-1 (TEP-1) (KCSGKWAIHACWGGN-NH2) and TEP-2 (KCYGKWAMHACWGGN-NH2) are pentadecapeptides having one disulfide bond and C-terminal GGN-NH2 structures, which are shared by most GGNG peptides. TEP augmented the motilities of Thais esophagus and penial complex. TEP-like immunoreactivity is distributed in both the neurons of the central nervous system and nerve endings in the penial complex. Thus, the involvement of TEP in the contraction of the digestive and reproductive systems is suggested. Substitution of amino acids in TEP revealed that two tryptophan residues in TEP are important for maintaining bioactivity.
Collapse
Affiliation(s)
- F Morishita
- Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Yu Y, Jawa A, Pan W, Kastin AJ. Effects of peptides, with emphasis on feeding, pain, and behavior A 5-year (1999-2003) review of publications in Peptides. Peptides 2004; 25:2257-89. [PMID: 15572212 DOI: 10.1016/j.peptides.2004.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Accepted: 09/21/2004] [Indexed: 11/28/2022]
Abstract
Novel effects of naturally occurring peptides are continuing to be discovered, and their mechanisms of actions as well as interactions with other substances, organs, and systems have been elucidated. Synthetic analogs may have actions similar or antagonistic to the endogenous peptides, and both the native peptides and analogs have potential as drugs or drug targets. The journal Peptides publishes many leading articles on the structure-activity relationship of peptides as well as outstanding reviews on some families of peptides. Complementary to the reviews, here we extract information from the original papers published during the past five years in Peptides (1999-2003) to summarize the effects of different classes of peptides, their modulation by other chemicals and various pathophysiological states, and the mechanisms by which the effects are exerted. Special attention is given to peptides related to feeding, pain, and other behaviors. By presenting in condensed form the effects of peptides which are essential for systems biology, we hope that this summary of existing knowledge will encourage additional novel research to be presented in Peptides.
Collapse
Affiliation(s)
- Yongmei Yu
- Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | | | | | | |
Collapse
|