1
|
Numata T, Sato-Numata K, Yoshino M. Intermediate conductance Ca 2+-activated potassium channels are activated by functional coupling with stretch-activated nonselective cation channels in cricket myocytes. FRONTIERS IN INSECT SCIENCE 2023; 2:1100671. [PMID: 38468799 PMCID: PMC10926553 DOI: 10.3389/finsc.2022.1100671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/20/2022] [Indexed: 03/13/2024]
Abstract
Cooperative gating of localized ion channels ranges from fine-tuning excitation-contraction coupling in muscle cells to controlling pace-making activity in the heart. Membrane deformation resulting from muscle contraction activates stretch-activated (SA) cation channels. The subsequent Ca2+ influx activates spatially localized Ca2+-sensitive K+ channels to fine-tune spontaneous muscle contraction. To characterize endogenously expressed intermediate conductance Ca2+-activated potassium (IK) channels and assess the functional relevance of the extracellular Ca2+ source leading to IK channel activity, we performed patch-clamp techniques on cricket oviduct myocytes and recorded single-channel data. In this study, we first investigated the identification of IK channels that could be distinguished from endogenously expressed large-conductance Ca2+-activated potassium (BK) channels by adding extracellular Ba2+. The single-channel conductance of the IK channel was 62 pS, and its activity increased with increasing intracellular Ca2+ concentration but was not voltage-dependent. These results indicated that IK channels are endogenously expressed in cricket oviduct myocytes. Second, the Ca2+ influx pathway that activates the IK channel was investigated. The absence of extracellular Ca2+ or the presence of Gd3+ abolished the activity of IK channels. Finally, we investigated the proximity between SA and IK channels. The removal of extracellular Ca2+, administration of Ca2+ to the microscopic region in a pipette, and application of membrane stretching stimulation increased SA channel activity, followed by IK channel activity. Membrane stretch-induced SA and IK channel activity were positively correlated. However, the emergence of IK channel activity and its increase in response to membrane mechanical stretch was not observed without Ca2+ in the pipette. These results strongly suggest that IK channels are endogenously expressed in cricket oviduct myocytes and that IK channel activity is regulated by neighboring SA channel activity. In conclusion, functional coupling between SA and IK channels may underlie the molecular basis of spontaneous rhythmic contractions.
Collapse
Affiliation(s)
- Tomohiro Numata
- Department of Integrative Physiology, Graduate School of Medicine, Akita University, Akita, Japan
- Department of Biology, Tokyo Gakugei University, Tokyo, Japan
| | - Kaori Sato-Numata
- Department of Integrative Physiology, Graduate School of Medicine, Akita University, Akita, Japan
- Department of Biology, Tokyo Gakugei University, Tokyo, Japan
| | - Masami Yoshino
- Department of Biology, Tokyo Gakugei University, Tokyo, Japan
| |
Collapse
|
2
|
Shen Y, Lu JB, Chen YZ, Moussian B, Zhang CX. A lateral oviduct secreted protein plays a vital role for egg movement through the female reproductive tract in the brown planthopper. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 132:103555. [PMID: 33639242 DOI: 10.1016/j.ibmb.2021.103555] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/10/2020] [Accepted: 02/13/2021] [Indexed: 06/12/2023]
Abstract
The oviduct serves as a delivery tube for mature eggs ovulated from ovaries to egg-laying sites. Oviduct secreted components play important roles in ovulation and fertilization in mammals, however, no oviduct secreted protein has been characterized in an insect to date. Here, we identified a gene highly expressed in the lateral oviduct of the adult females in the brown planthopper (BPH), Nilaparvata lugens, the most destructive rice insect pest. Western blotting and immunofluorescence analyses revealed that the gene encodes a protein that is specifically expressed in the lateral oviduct as a component of the gel-like material secreted by the oviduct epithelial cells into the lumen of the swollen part of the lateral oviducts. The protein was tentatively named N. lugens oviduct secreted protein (Nlodsp). RNA interference (RNAi) against NlOdsp transcripts caused a failure of the lateral oviducts to deliver oocytes to the common oviduct that was, by consequence, plugged by 1-2 oocytes. Moreover, although oocytes in the Nlodsp-deficient ovariole were not released to the oviduct, they continued to develop, finally resulting in the presence of several matured oocytes in an ovariole. These defects evidently declined female fecundity. Together, our results demonstrate that NlOdsp plays an essential role in egg transport through the oviduct during ovulation. This work deepens our understanding of insect reproductive system and provides a potential target gene for RNAi-based insect pest control.
Collapse
Affiliation(s)
- Yan Shen
- Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jia-Bao Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Yuan-Zhi Chen
- Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China
| | - Bernard Moussian
- Université Côte d'Azur, CNRS, Inserm, Institute of Biology Valrose, Parc Valrose, 06108, Nice, CEDEX 2, France
| | - Chuan-Xi Zhang
- Institute of Insect Science, Zhejiang University, Hangzhou, 310058, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
3
|
Neuromodulation Can Be Simple: Myoinhibitory Peptide, Contained in Dedicated Regulatory Pathways, Is the Only Neurally-Mediated Peptide Modulator of Stick Insect Leg Muscle. J Neurosci 2021; 41:2911-2929. [PMID: 33531417 DOI: 10.1523/jneurosci.0188-20.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 01/05/2021] [Accepted: 01/12/2021] [Indexed: 01/22/2023] Open
Abstract
In the best studied cases (Aplysia feeding, crustacean stomatogastric system), peptidergic modulation is mediated by large numbers of peptides. Furthermore, in Aplysia, excitatory motor neurons release the peptides, obligatorily coupling target activation and modulator release. Vertebrate nervous systems typically contain about a hundred peptide modulators. These data have created a belief that modulation is, in general, complex. The stick insect leg is a well-studied locomotory model system, and the complete stick insect neuropeptide inventory was recently described. We used multiple techniques to comprehensively examine stick insect leg peptidergic modulation. Single-cell mass spectrometry (MS) and immunohistochemistry showed that myoinhibitory peptide (MIP) is the only neuronal (as opposed to hemolymph-borne) peptide modulator of all leg muscles. Leg muscle excitatory motor neurons contained no neuropeptides. Only the common inhibitor (CI) and dorsal unpaired median (DUM) neuron groups, each neuron of which innervates a group of functionally-related leg muscles, contained MIP. We described MIP transport to, and receptor presence in, one leg muscle, the extensor tibiae (ExtTi). MIP application reduced ExtTi slow fiber force and shortening by about half, increasing the muscle's ability to contract and relax rapidly. These data show neuromodulation does not need to be complex. Excitation and modulation do not need to be obligatorily coupled (Aplysia feeding). Modulation does not need to involve large numbers of peptides, with the attendant possibility of combinatorial explosion (stomatogastric system). Modulation can be simple, mediated by dedicated regulatory neurons, each innervating a single group of functionally-related targets, and all using the same neuropeptide.SIGNIFICANCE STATEMENT Vertebrate and invertebrate nervous systems contain large numbers (around a hundred in human brain) of peptide neurotransmitters. In prior work, neuropeptide modulation has been complex, either obligatorily coupling postsynaptic excitation and modulation, or large numbers of peptides modulating individual neural networks. The complete stick insect neuropeptide inventory was recently described. We comprehensively describe here peptidergic modulation in the stick insect leg. Surprisingly, out of the large number of potential peptide transmitters, only myoinhibitory peptide (MIP) was present in neurons innervating leg muscles. Furthermore, the peptide was present only in dedicated regulatory neurons, not in leg excitatory motor neurons. Peptidergic modulation can thus be simple, neither obligatorily coupling target activation and modulation nor involving so many peptides that combinatorial explosion can occur.
Collapse
|
4
|
Caers J, Boonen K, Van Den Abbeele J, Van Rompay L, Schoofs L, Van Hiel MB. Peptidomics of Neuropeptidergic Tissues of the Tsetse Fly Glossina morsitans morsitans. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:2024-2038. [PMID: 26463237 DOI: 10.1007/s13361-015-1248-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 06/05/2023]
Abstract
Neuropeptides and peptide hormones are essential signaling molecules that regulate nearly all physiological processes. The recent release of the tsetse fly genome allowed the construction of a detailed in silico neuropeptide database (International Glossina Genome Consortium, Science 344, 380-386 (2014)), as well as an in-depth mass spectrometric analysis of the most important neuropeptidergic tissues of this medically and economically important insect species. Mass spectrometric confirmation of predicted peptides is a vital step in the functional characterization of neuropeptides, as in vivo peptides can be modified, cleaved, or even mispredicted. Using a nanoscale reversed phase liquid chromatography coupled to a Q Exactive Orbitrap mass spectrometer, we detected 51 putative bioactive neuropeptides encoded by 19 precursors: adipokinetic hormone (AKH) I and II, allatostatin A and B, capability/pyrokinin (capa/PK), corazonin, calcitonin-like diuretic hormone (CT/DH), FMRFamide, hugin, leucokinin, myosuppressin, natalisin, neuropeptide-like precursor (NPLP) 1, orcokinin, pigment dispersing factor (PDF), RYamide, SIFamide, short neuropeptide F (sNPF) and tachykinin. In addition, propeptides, truncated and spacer peptides derived from seven additional precursors were found, and include the precursors of allatostatin C, crustacean cardioactive peptide, corticotropin releasing factor-like diuretic hormone (CRF/DH), ecdysis triggering hormone (ETH), ion transport peptide (ITP), neuropeptide F, and proctolin, respectively. The majority of the identified neuropeptides are present in the central nervous system, with only a limited number of peptides in the corpora cardiaca-corpora allata and midgut. Owing to the large number of identified peptides, this study can be used as a reference for comparative studies in other insects. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Jelle Caers
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| | - Kurt Boonen
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| | - Jan Van Den Abbeele
- Unit of Veterinary Protozoology, Department of Biomedical Sciences, Institute of Tropical Medicine, 2000, Antwerp, Belgium
- Laboratory of Zoophysiology, Department of Physiology, University of Ghent, 9000, Ghent, Belgium
| | - Liesbeth Van Rompay
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| | - Liliane Schoofs
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, 3000, Leuven, Belgium.
| | - Matthias B Van Hiel
- Functional Genomics and Proteomics, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| |
Collapse
|
5
|
Lee D, James TE, Lange AB. Identification, characterization and expression of a receptor for the unusual myosuppressin in the blood-feeding bug, Rhodnius prolixus. INSECT MOLECULAR BIOLOGY 2015; 24:129-137. [PMID: 25318350 DOI: 10.1111/imb.12141] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Myosuppressins are a family of the FMRFamide-like peptides. They have been characterized in many insects and shown to inhibit visceral muscle contraction. Rhodnius prolixus possesses an unusual myosuppressin in that the typical FLRFamide C-terminal motif is unique and ends with FMRFamide. In the present study, we isolated the cDNA sequence for the R. prolixus receptor for this unusual myosuppressin (RhoprMSR). Quantitative PCR indicates high relative transcript expression of RhoprMSR in the central nervous system and also supports the previously described physiological effects of RhoprMS on the digestive system, with expression of the RhoprMSR transcript in the midgut and hindgut. Expression of the RhoprMSR transcript was also found in the female and male reproductive system of 5th instar nymphs, with transcript expression greater in the female reproductive tissues. No expression was found in the salivary glands or Malpighian tubules. A functional receptor expression assay confirmed that the cloned RhoprMSR is indeed activated by RhoprMS (half maximum effective concentration = 42.7 nM). Structure-activity studies based upon both functional receptor assays and physiological assays showed the importance of the HVFMRFamide moiety, as further N-terminal truncation removed all activity.
Collapse
Affiliation(s)
- D Lee
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | | | | |
Collapse
|
6
|
Wong R, Lange AB. Octopamine modulates a central pattern generator associated with egg-laying in the locust, Locusta migratoria. JOURNAL OF INSECT PHYSIOLOGY 2014; 63:1-8. [PMID: 24530620 DOI: 10.1016/j.jinsphys.2014.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 01/30/2014] [Accepted: 02/05/2014] [Indexed: 06/03/2023]
Abstract
Egg-laying in Locusta migratoria involves the control of a variety of complex behavioural patterns including those that regulate digging of the oviposition hole and retention of eggs during digging. These two behavioural patterns are under the control of central pattern generators (CPGs). The digging and egg-retention CPGs are coordinated and integrated with overlapping locations of neural substrate within the VIIth and VIIIth abdominal ganglia of the central nervous system (CNS). In fact, the egg-retention CPG of the VIIth abdominal ganglion is involved in both egg-retention and protraction of the abdomen during digging. The biogenic amine, octopamine, has peripheral effects on oviduct muscle, relaxing basal tension of the lateral and upper common oviduct and enabling egg passage. Here we show that octopamine also modulates the pattern of the egg-retention CPG by altering the motor pattern that controls the external ventral protractor of the VIIth abdominal segment. There is no change in the motor pattern that goes to the oviducts. Octopamine decreased the frequency of the largest amplitude action potential and decreased burst duration while leading to an increase in cycle duration and interburst interval. The effects of octopamine were greatly reduced in the presence of the α-adrenergic blocker, phentolamine, indicating that the action of octopamine was via a receptor. Thus, octopamine orchestrates events that can lead to oviposition, centrally inhibiting the digging behavior and peripherally relaxing the lateral and common oviducts to enable egg-laying.
Collapse
Affiliation(s)
- Raymond Wong
- University of Toronto Mississauga, Department of Biology, 3359 Mississauga Rd., Mississauga, ON L5L 1C6, Canada
| | - Angela B Lange
- University of Toronto Mississauga, Department of Biology, 3359 Mississauga Rd., Mississauga, ON L5L 1C6, Canada.
| |
Collapse
|
7
|
Orchard I, Lee DH, da Silva R, Lange AB. The Proctolin Gene and Biological Effects of Proctolin in the Blood-Feeding Bug, Rhodnius prolixus. Front Endocrinol (Lausanne) 2011; 2:59. [PMID: 22654816 PMCID: PMC3356076 DOI: 10.3389/fendo.2011.00059] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 10/04/2011] [Indexed: 11/20/2022] Open
Abstract
We have reinvestigated the possible presence or absence of the pentapeptide proctolin in Rhodnius prolixus and report here the cloning of the proctolin cDNA. The transcript is expressed in the central nervous system (CNS) and some peripheral tissues. The proctolin prepropeptide encodes a single copy of proctolin along with a possible proctolin-precursor-associated peptide. We have biochemically identified proctolin in CNS extracts and shown its distribution using proctolin-like immunoreactivity. Immunostained processes are found on the salivary glands, female and male reproductive tissues, and heart and associated alary muscles. Proctolin-like immunoreactive bipolar neurons are found on the lateral margins of the common oviduct and bursa. Proctolin is biologically active on R. prolixus tissues, stimulating increases in contraction of anterior midgut and hindgut muscles, and increasing heartbeat frequency. Contrary to the previous suggestion that proctolin is absent from R. prolixus, proctolin is indeed present and biologically active in this medically important bug.
Collapse
Affiliation(s)
- Ian Orchard
- Department of Biology, University of Toronto MississaugaMississauga, ON, Canada
- *Correspondence: Ian Orchard, Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, Canada L5L 1C6. e-mail:
| | - Do Hee Lee
- Department of Biology, University of Toronto MississaugaMississauga, ON, Canada
| | - Rosa da Silva
- Department of Biology, University of Toronto MississaugaMississauga, ON, Canada
| | - Angela B. Lange
- Department of Biology, University of Toronto MississaugaMississauga, ON, Canada
| |
Collapse
|
8
|
Lange AB. The female reproductive system and control of oviposition in Locusta migratoria migratorioidesThe present review is the first of a series of occasional review articles that have been invited by the Editors and will feature the broad range of disciplines and expertise represented in our Editorial Advisory Board. CAN J ZOOL 2009. [DOI: 10.1139/z09-063] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The spermatheca acts as a repository for sperm deposited by the male and, in the African migratory locust ( Locusta migratoria migratorioides (Fairmaire and Reiche, 1849)), is situated dorsal to the lateral and common oviducts. In the locust, eggs mature in the ovaries and are ovulated into the lateral oviducts where they are held until a suitable oviposition site is found. At that time, a hole is dug in the soil by the locust and, aided by muscular contractions of the upper lateral oviducts, the eggs are propelled through the common oviduct and genital chamber and deposited in a pod in the soil. Contractions of the spermathecal sac lead to sperm release, resulting in fertilization of eggs in the genital chamber. Coordination of digging and of the oviducts and spermatheca is clearly critical to the production of viable eggs. The muscles responsible for digging and both reproductive structures are under central neuronal control, incorporating neurons that express an array of neuropeptide and amine phenotypes. Many of the phenotypes are common to both reproductive tissues. A neural loop ensures the coordinated release of sperm when an egg passes into the genital chamber. This review will discuss our understanding of the neural control of these reproductive tissues and their coordination with digging.
Collapse
Affiliation(s)
- Angela B. Lange
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada (e-mail: )
| |
Collapse
|
9
|
Yu Y, Jawa A, Pan W, Kastin AJ. Effects of peptides, with emphasis on feeding, pain, and behavior A 5-year (1999-2003) review of publications in Peptides. Peptides 2004; 25:2257-89. [PMID: 15572212 DOI: 10.1016/j.peptides.2004.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Accepted: 09/21/2004] [Indexed: 11/28/2022]
Abstract
Novel effects of naturally occurring peptides are continuing to be discovered, and their mechanisms of actions as well as interactions with other substances, organs, and systems have been elucidated. Synthetic analogs may have actions similar or antagonistic to the endogenous peptides, and both the native peptides and analogs have potential as drugs or drug targets. The journal Peptides publishes many leading articles on the structure-activity relationship of peptides as well as outstanding reviews on some families of peptides. Complementary to the reviews, here we extract information from the original papers published during the past five years in Peptides (1999-2003) to summarize the effects of different classes of peptides, their modulation by other chemicals and various pathophysiological states, and the mechanisms by which the effects are exerted. Special attention is given to peptides related to feeding, pain, and other behaviors. By presenting in condensed form the effects of peptides which are essential for systems biology, we hope that this summary of existing knowledge will encourage additional novel research to be presented in Peptides.
Collapse
Affiliation(s)
- Yongmei Yu
- Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | | | | | | |
Collapse
|