1
|
Powell K, Lin K, Tambo W, Saavedra AP, Sciubba D, Al Abed Y, Li C. Trigeminal nerve stimulation: a current state-of-the-art review. Bioelectron Med 2023; 9:30. [PMID: 38087375 PMCID: PMC10717521 DOI: 10.1186/s42234-023-00128-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/04/2023] [Indexed: 09/26/2024] Open
Abstract
Nearly 5 decades ago, the effect of trigeminal nerve stimulation (TNS) on cerebral blood flow was observed for the first time. This implication directly led to further investigations and TNS' success as a therapeutic intervention. Possessing unique connections with key brain and brainstem regions, TNS has been observed to modulate cerebral vasodilation, brain metabolism, cerebral autoregulation, cerebral and systemic inflammation, and the autonomic nervous system. The unique range of effects make it a prime therapeutic modality and have led to its clinical usage in chronic conditions such as migraine, prolonged disorders of consciousness, and depression. This review aims to present a comprehensive overview of TNS research and its broader therapeutic potentialities. For the purpose of this review, PubMed and Google Scholar were searched from inception to August 28, 2023 to identify a total of 89 relevant studies, both clinical and pre-clinical. TNS harnesses the release of vasoactive neuropeptides, modulation of neurotransmission, and direct action upon the autonomic nervous system to generate a suite of powerful multitarget therapeutic effects. While TNS has been applied clinically to chronic pathological conditions, these powerful effects have recently shown great potential in a number of acute/traumatic pathologies. However, there are still key mechanistic and methodologic knowledge gaps to be solved to make TNS a viable therapeutic option in wider clinical settings. These include bimodal or paradoxical effects and mechanisms, questions regarding its safety in acute/traumatic conditions, the development of more selective stimulation methods to avoid potential maladaptive effects, and its connection to the diving reflex, a trigeminally-mediated protective endogenous reflex. The address of these questions could overcome the current limitations and allow TNS to be applied therapeutically to an innumerable number of pathologies, such that it now stands at the precipice of becoming a ground-breaking therapeutic modality.
Collapse
Affiliation(s)
- Keren Powell
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Kanheng Lin
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Emory University, Atlanta, GA, USA
| | - Willians Tambo
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Elmezzi Graduate School of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | | | - Daniel Sciubba
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Yousef Al Abed
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Chunyan Li
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY, 11030, USA.
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA.
- Elmezzi Graduate School of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, USA.
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| |
Collapse
|
2
|
Caroleo MC, Brizzi A, De Rosa M, Pandey A, Gallelli L, Badolato M, Carullo G, Cione E. Targeting Neuropathic Pain: Pathobiology, Current Treatment and Peptidomimetics as a New Therapeutic Opportunity. Curr Med Chem 2019; 27:1469-1500. [PMID: 31142248 DOI: 10.2174/0929867326666190530121133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 01/25/2019] [Accepted: 02/15/2019] [Indexed: 12/18/2022]
Abstract
There is a huge need for pharmaceutical agents for the treatment of chronic Neuropathic Pain (NP), a complex condition where patients can suffer from either hyperalgesia or allodynia originating from central or peripheral nerve injuries. To date, the therapeutic guidelines include the use of tricyclic antidepressants, serotonin-noradrenaline reuptake inhibitors and anticonvulsants, beside the use of natural compounds and non-pharmacological options. Unfortunately, these drugs suffer from limited efficacy and serious dose-dependent adverse effects. In the last decades, the heptapeptide SP1-7, the major bioactive metabolite produced by Substance P (SP) cleavage, has been extensively investigated as a potential target for the development of novel peptidomimetic molecules to treat NP. Although the physiological effects of this SP fragment have been studied in detail, the mechanism behind its action is not fully clarified and the target for SP1-7 has not been identified yet. Nevertheless, specific binding sites for the heptapeptide have been found in brain and spinal cord of both mouse and rats. Several Structure-Affinity Relationship (SAR) studies on SP1-7 and some of its synthetic analogues have been carried out aiming to developing more metabolically stable and effective small molecule SP1-7-related amides that could be used as research tools for a better understanding of the SP1-7 system and, in a longer perspective, as potential therapeutic agents for future treatment of NP.
Collapse
Affiliation(s)
- Maria Cristina Caroleo
- Department of Pharmacy and Health and Nutrition Sciences, University of Calabria, Edificio Polifunzionale, 87026 Rende (CS), Italy
| | - Antonella Brizzi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Polo Scientifico San Miniato, Via A. Moro 2, 53100 Siena, Italy
| | - Maria De Rosa
- Drug Discovery Unit, Ri.MED Foundation, Palermo 90133, Italy
| | - Ankur Pandey
- Department of Chemistry and Center of Advanced Studies in Chemistry, Punjab University, Chandigarh, India
| | - Luca Gallelli
- Department of Health Science, School of Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Mariateresa Badolato
- Department of Pharmacy and Health and Nutrition Sciences, University of Calabria, Edificio Polifunzionale, 87026 Rende (CS), Italy
| | - Gabriele Carullo
- Department of Pharmacy and Health and Nutrition Sciences, University of Calabria, Edificio Polifunzionale, 87026 Rende (CS), Italy
| | - Erika Cione
- Department of Pharmacy and Health and Nutrition Sciences, University of Calabria, Edificio Polifunzionale, 87026 Rende (CS), Italy
| |
Collapse
|
3
|
Substance P signalling in primary motor cortex facilitates motor learning in rats. PLoS One 2017; 12:e0189812. [PMID: 29281692 PMCID: PMC5744944 DOI: 10.1371/journal.pone.0189812] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/01/2017] [Indexed: 01/17/2023] Open
Abstract
Among the genes that are up-regulated in response to a reaching training in rats, Tachykinin 1 (Tac1)-a gene that encodes the neuropeptide Substance P (Sub P)-shows an especially strong expression. Using Real-Time RT-PCR, a detailed time-course of Tac1 expression could be defined: a significant peak occurs 7 hours after training ended at the first and second training session, whereas no up-regulation could be detected at a later time-point (sixth training session). To assess the physiological role of Sub P during movement acquisition, microinjections into the primary motor cortex (M1) contralateral to the trained paw were performed. When Sub P was injected before the first three sessions of a reaching training, effectiveness of motor learning became significantly increased. Injections at a time-point when rats already knew the task (i.e. training session ten and eleven) had no effect on reaching performance. Sub P injections did not influence the improvement of performance within a single training session, but retention of performance between sessions became strengthened at a very early stage (i.e. between baseline-training and first training session). Thus, Sub P facilitates motor learning in the very early phase of skill acquisition by supporting memory consolidation. In line with these findings, learning related expression of the precursor Tac1 occurs at early but not at later time-points during reaching training.
Collapse
|
4
|
Skogh A, Lesniak A, Gaugaz FZ, Svensson R, Lindeberg G, Fransson R, Nyberg F, Hallberg M, Sandström A. Importance of N- and C-terminal residues of substance P 1-7 for alleviating allodynia in mice after peripheral administration. Eur J Pharm Sci 2017; 106:345-351. [PMID: 28587787 DOI: 10.1016/j.ejps.2017.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/30/2017] [Accepted: 06/02/2017] [Indexed: 02/08/2023]
Abstract
The heptapeptide SP1-7 (1, Arg1-Pro2-Lys3-Pro4-Gln5-Gln6-Phe7) is the major bioactive metabolite formed after proteolytic processing of the neuropeptide substance P (SP, Arg1-Pro2-Lys3-Pro4-Gln5-Gln6-Phe7-Phe8-Gly9-Leu10-Met11-NH2). The heptapeptide 1 frequently exhibits opposite effects to those induced by SP, such as exerting antinociception, or attenuating thermal hyperalgesia and mechanical allodynia. The heptapeptide SP1-7 amide (2, Arg1-Pro2-Lys3-Pro4-Gln5-Gln6-Phe7-NH2) is often more efficacious than 1 in experimental pain models. We have now assessed the anti-allodynic outcome after systemic administration of 2 and a series of Ala-substituted and truncated analogues of 2, in the spared nerve injury (SNI) mice model and the results obtained were correlated with in vitro plasma stability and permeability measurements. It is herein demonstrated that an intact Arg1 in SP1-7 amide analogues is fundamental for retaining a potent in vivo effect, while Lys3 of 2 is less important. A displacement with Ala1 or truncation rendered the peptide analogues either inactive or with a significantly attenuated in vivo activity. Thus, the pentapeptide SP3-7 amide (7, t1/2=11.1 min) proven to be the major metabolite of 2, demonstrated an in vivo effect itself although considerably less significant than 2 in the SNI model. Intraperitoneal administration of 2 in a low dose furnished the most powerful anti-allodynic effect in the SNI model of all the analogous evaluated, despite a fast proteolysis of 2 in plasma (t1/2=6.4 min). It is concluded that not only the C-terminal residue, that we previously demonstrated, but also the N-terminal with its basic side chain, are important for achieving effective pain relief. This information is of value for the further design process aimed at identifying more drug-like SP1-7 amide related peptidomimetics with pronounced anti-allodynic effects.
Collapse
Affiliation(s)
- Anna Skogh
- Department of Medicinal Chemistry, Uppsala University, BMC, Box 574, SE-751 23 Uppsala, Sweden
| | - Anna Lesniak
- The Beijer Laboratory, Department of Pharmaceutical Bioscience, Uppsala University, BMC, Box 591, SE-751 24 Uppsala, Sweden
| | - Fabienne Z Gaugaz
- Uppsala Drug Optimization and Pharmaceutical Profiling Platform (UDOPP), Science for Life Laboratory Drug Discovery and Development Platform, Department of Pharmacy, Uppsala University, BMC, Box 580, SE-751 23 Uppsala, Sweden
| | - Richard Svensson
- Uppsala Drug Optimization and Pharmaceutical Profiling Platform (UDOPP), Science for Life Laboratory Drug Discovery and Development Platform, Department of Pharmacy, Uppsala University, BMC, Box 580, SE-751 23 Uppsala, Sweden
| | - Gunnar Lindeberg
- Department of Medicinal Chemistry, Uppsala University, BMC, Box 574, SE-751 23 Uppsala, Sweden
| | - Rebecca Fransson
- Department of Medicinal Chemistry, Uppsala University, BMC, Box 574, SE-751 23 Uppsala, Sweden
| | - Fred Nyberg
- The Beijer Laboratory, Department of Pharmaceutical Bioscience, Uppsala University, BMC, Box 591, SE-751 24 Uppsala, Sweden
| | - Mathias Hallberg
- The Beijer Laboratory, Department of Pharmaceutical Bioscience, Uppsala University, BMC, Box 591, SE-751 24 Uppsala, Sweden
| | - Anja Sandström
- Department of Medicinal Chemistry, Uppsala University, BMC, Box 574, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
5
|
Jonsson A, Fransson R, Haramaki Y, Skogh A, Brolin E, Watanabe H, Nordvall G, Hallberg M, Sandström A, Nyberg F. Small constrained SP1-7 analogs bind to a unique site and promote anti-allodynic effects following systemic injection in mice. Neuroscience 2015; 298:112-9. [PMID: 25862586 DOI: 10.1016/j.neuroscience.2015.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/31/2015] [Accepted: 04/02/2015] [Indexed: 12/31/2022]
Abstract
Previous results have shown that the substance P (SP) N-terminal fragment SP1-7 may attenuate hyperalgesia and produce anti-allodynia in animals using various experimental models for neuropathic pain. The heptapeptide was found to induce its effects through binding to and activating specific sites apart from any known neurokinin or opioid receptor. Furthermore, we have applied a medicinal chemistry program to develop lead compounds mimicking the effect of SP1-7. The present study was designed to evaluate the pharmacological effect of these compounds using the mouse spared nerve injury (SNI) model of chronic neuropathic pain. Also, as no comprehensive screen with the aim to identify the SP1-7 target has yet been performed we screened our lead compound H-Phe-Phe-NH2 toward a panel of drug targets. The extensive target screen, including 111 targets, did not reveal any hit for the binding site among a number of known receptors or enzymes involved in pain modulation. Our animal studies confirmed that SP1-7, but also synthetic analogs thereof, possesses anti-allodynic effects in the mouse SNI model of neuropathic pain. One of the lead compounds, a constrained H-Phe-Phe-NH2 analog, was shown to exhibit a significant anti-allodynic effect.
Collapse
Affiliation(s)
- A Jonsson
- Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-751 24 Uppsala, Sweden.
| | - R Fransson
- Department of Medicinal Chemistry, Uppsala University, Box 574, SE-751 23 Uppsala, Sweden.
| | - Y Haramaki
- Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-751 24 Uppsala, Sweden.
| | - A Skogh
- Department of Medicinal Chemistry, Uppsala University, Box 574, SE-751 23 Uppsala, Sweden.
| | - E Brolin
- Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-751 24 Uppsala, Sweden.
| | - H Watanabe
- Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-751 24 Uppsala, Sweden.
| | - G Nordvall
- AstraZeneca, CNSP iMed Södertälje, Research & Development Innovative Medicines, SE-151 85 Södertälje, Sweden.
| | - M Hallberg
- Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-751 24 Uppsala, Sweden.
| | - A Sandström
- Department of Medicinal Chemistry, Uppsala University, Box 574, SE-751 23 Uppsala, Sweden.
| | - F Nyberg
- Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-751 24 Uppsala, Sweden.
| |
Collapse
|
6
|
Fransson R, Sköld C, Kratz JM, Svensson R, Artursson P, Nyberg F, Hallberg M, Sandström A. Constrained H-Phe-Phe-NH2 Analogues with High Affinity to the Substance P 1–7 Binding Site and with Improved Metabolic Stability and Cell Permeability. J Med Chem 2013; 56:4953-65. [DOI: 10.1021/jm400209h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rebecca Fransson
- Department of Medicinal Chemistry, Uppsala University, Box 574, SE-751 23 Uppsala, Sweden
| | - Christian Sköld
- Department of Medicinal Chemistry, Uppsala University, Box 574, SE-751 23 Uppsala, Sweden
| | - Jadel M. Kratz
- Department of Pharmacy, Uppsala University, Box 580, SE-751 23 Uppsala, Sweden
- Programa de Pós-Graduação
em Farmácia, Centro de Ciências da Saúde, Departamento
de Ciências Farmacêuticas, Universidade Federal de Santa Catarina, 88.040-900, Florianópolis,
SC, Brazil
| | - Richard Svensson
- Department of Pharmacy, Uppsala University, Box 580, SE-751 23 Uppsala, Sweden
- The Uppsala
University Drug
Optimization and Pharmaceutical Profiling Platform (UDOPP), Chemical
Biology Consortium Sweden (CBCS), Uppsala University, Box 580, SE-751 23 Uppsala, Sweden
| | - Per Artursson
- Department of Pharmacy, Uppsala University, Box 580, SE-751 23 Uppsala, Sweden
- The Uppsala
University Drug
Optimization and Pharmaceutical Profiling Platform (UDOPP), Chemical
Biology Consortium Sweden (CBCS), Uppsala University, Box 580, SE-751 23 Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Fred Nyberg
- Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-751 24 Uppsala, Sweden
| | - Mathias Hallberg
- Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-751 24 Uppsala, Sweden
| | - Anja Sandström
- Department of Medicinal Chemistry, Uppsala University, Box 574, SE-751 23 Uppsala, Sweden
| |
Collapse
|
7
|
Zhou Q, Carlsson A, Hallberg M, Nyberg F. Substance P N-terminal fragment SP(1-7) attenuates chronic morphine tolerance and affects dynorphin B and nociceptin in rats. Peptides 2011; 32:1661-5. [PMID: 21763376 DOI: 10.1016/j.peptides.2011.06.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Revised: 06/29/2011] [Accepted: 06/30/2011] [Indexed: 01/28/2023]
Abstract
The N-terminal substance P fragment SP(1-7) is known to modulate hyperalgesia and opioid withdrawal in animal models. This study examined the effects of intraperitoneal (i.p.) injections of SP(1-7) on chronic morphine tolerance and on the levels of dynorphin B (DYN B) and nociceptin/orphanin FQ (N/OFQ) in various brain areas of male Sprague-Dawley rats. Morphine tolerance was induced by subcutaneous injections of the opioid (10mg/kg) twice daily for 7 days. SP(1-7) injected i.p. (185 nmol/kg) 30 min prior to morphine reduced the development of morphine tolerance. Immunoreactive (ir) DYN B and N/OFQ peptide levels were measured in several areas of the central nervous system. Levels of ir DYN B in rats treated with SP(1-7) and morphine were decreased in the nucleus accumbens, substantia nigra and ventral tegmental area and increased in the frontal cortex. The ir N/OFQ levels were increased in the periaqueductal gray and decreased in the nucleus accumbens. Since the concentration profiles of the two peptides were altered by SP(1-7) in the areas that are implicated in the modulation of opioid tolerance and analgesia, it is suggested that DYN B and N/OFQ systems may be involved in the effects of SP(1-7) on opioid tolerance.
Collapse
Affiliation(s)
- Qin Zhou
- Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, Uppsala University, P.O. 591, S-751 24 Uppsala, Sweden
| | | | | | | |
Collapse
|
8
|
Ohsawa M, Carlsson A, Asato M, Koizumi T, Nakanishi Y, Fransson R, Sandström A, Hallberg M, Nyberg F, Kamei J. The effect of substance P1-7 amide on nociceptive threshold in diabetic mice. Peptides 2011; 32:93-8. [PMID: 20933559 DOI: 10.1016/j.peptides.2010.09.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 09/30/2010] [Accepted: 09/30/2010] [Indexed: 11/30/2022]
Abstract
We previously demonstrated that intrathecal treatment with substance P metabolite substance P(1-7) induced anti-hyperalgesia in diabetic mice. In the present study, we have used a synthetic analog of this peptide, the substance P(1-7) amide, showing higher binding affinity than the native heptapeptide, for studies of the tail-flick response in diabetic and non-diabetic mice. Intrathecal injection of substance P(1-7) amide produced prolongation of the tail-flick latency in both diabetic and non-diabetic mice, an effect that was more pronounced in diabetic mice than non-diabetic mice. Moreover, the observed antinociceptive potency of the substance P(1-7) amide was higher in both diabetic and non-diabetic mice in comparison with the native substance P(1-7). The antinociceptive effect of substance P(1-7) amide was reversed by naloxone but not by the selective opioid receptor antagonist β-funaltrexamine, naltrindole or nor-binaltorphimine, selective for the μ-, δ- or κ-opioid receptor, respectively. In addition, the antinociceptive effect induced by substance P(1-7) amide was partly reversed by the σ(1) receptor agonist (+)-pentazocine, suggesting a possible involvement of the σ(1) receptor for the action of this peptide. These results suggest that the actions of substance P(1-7) amide mimic the effects of the native substance P fragment but with higher potency and that the mechanisms for its action may involve the σ(1) receptor system.
Collapse
Affiliation(s)
- Masahiro Ohsawa
- Department of Pathophysiology & Therapeutics, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 4-41, Ebara 2-chome, Shinagawa-ku, Tokyo 142-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Fransson R, Botros M, Sköld C, Nyberg F, Lindeberg G, Hallberg M, Sandström A. Discovery of dipeptides with high affinity to the specific binding site for substance P1-7. J Med Chem 2010; 53:2383-9. [PMID: 20178322 DOI: 10.1021/jm901352b] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Substance P 1-7 (SP(1-7), H-Arg-Pro-Lys-Pro-Gln-Gln-Phe-OH) is the major bioactive metabolite of substance P. The interest in this heptapeptide originates from the observation that it modulates, and in certain cases opposes the effects of the parent peptide, e.g., the nociceptive effect. The mu-opioid receptor agonist endomorphin-2 (EM-2, H-Tyr-Pro-Phe-Phe-NH(2)) has been found to also interact with the specific binding site of SP(1-7) with only a 10-fold lower affinity compared to the native peptide. Considering the smaller size of EM-2 compared to the target heptapeptide, it was selected as a lead compound in the development of low-molecular-weight ligands to the SP(1-7) binding site. An alanine scan and truncation study led to the unexpected discovery of the dipeptide H-Phe-Phe-NH(2) (K(i) = 1.5 nM), having equal affinity as the endogenous heptapeptide SP(1-7.) Moreover, the studies show that the C-terminal phenylalanine amide is crucial for the affinity of the dipeptide.
Collapse
Affiliation(s)
- Rebecca Fransson
- Department of Medicinal Chemistry, Uppsala University, Box 574, SE-751 23 Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
10
|
Substance P1–7 induces antihyperalgesia in diabetic mice through a mechanism involving the naloxone-sensitive sigma receptors. Eur J Pharmacol 2010; 626:250-5. [DOI: 10.1016/j.ejphar.2009.10.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 09/19/2009] [Accepted: 10/06/2009] [Indexed: 11/24/2022]
|
11
|
Zhou Q, Carlsson A, Botros M, Fransson R, Sandström A, Gordh T, Hallberg M, Nyberg F. The C-terminal amidated analogue of the substance P (SP) fragment SP(1-7) attenuates the expression of naloxone-precipitated withdrawal in morphine dependent rats. Peptides 2009; 30:2418-22. [PMID: 19686790 DOI: 10.1016/j.peptides.2009.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2009] [Revised: 08/07/2009] [Accepted: 08/07/2009] [Indexed: 11/15/2022]
Abstract
We previously demonstrated that intracerebroventricular (i.c.v.) administration of the substance P (SP) aminoterminal fragment SP(1-7) attenuates the expression of morphine withdrawal in the male rat. In this study we have used a synthetic analogue of this peptide, i.e. the SP(1-7) amide showing higher binding potency than the native heptapeptide, in a similar experimental set-up. Thus, Wistar male rats were made tolerant to morphine by daily injections of the opiate during 8 days. Following peptide administration (i.c.v.) and a subsequent naloxone challenge a variety of physical syndromes of withdrawal were recorded. We observed that the SP(1-7) amide potently and dose-dependently reduced several signs of reaction to morphine withdrawal. Interestingly, the effect of the peptide amide was significantly attenuated by the addition of the sigma agonist (+)-SKF-10047. We conclude that the SP(1-7) amide mimics the effect of the native SP fragment and that the mechanisms for its action involve a sigma receptor site.
Collapse
Affiliation(s)
- Qin Zhou
- Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, Uppsala University, S-751 24 Uppsala, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Kang L, Wang D, Li B, Hu M, Zhang P, Li J. Mirtazapine, a Noradrenergic and Specific Serotonergic Antidepressant, Attenuates Morphine Dependence and Withdrawal in Sprague-Dawley Rats. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2009; 34:541-52. [DOI: 10.1080/00952990802183921] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Guo Y, Wang HL, Xiang XH, Zhao Y. The role of glutamate and its receptors in mesocorticolimbic dopaminergic regions in opioid addiction. Neurosci Biobehav Rev 2009; 33:864-73. [DOI: 10.1016/j.neubiorev.2009.02.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 02/10/2009] [Accepted: 02/19/2009] [Indexed: 11/28/2022]
|
14
|
Rossbach U, Nilsson A, Fälth M, Kultima K, Zhou Q, Hallberg M, Gordh T, Andren PE, Nyberg F. A quantitative peptidomic analysis of peptides related to the endogenous opioid and tachykinin systems in nucleus accumbens of rats following naloxone-precipitated morphine withdrawal. J Proteome Res 2009; 8:1091-8. [PMID: 19159213 DOI: 10.1021/pr800669g] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have applied a recently developed label-free mass spectrometry based peptidomic approach to identify and quantify a variety of endogenous peptides from rat nucleus accumbens following withdrawal in naloxone-precipitated, morphine-dependent rats of two separate strains. We focused on maturated, partially processed and truncated peptides derived from the peptide precursors proenkephalin, prodynorphin and preprotachykinin. The expression of several identified peptides was dependent on strain and was affected during morphine withdrawal.
Collapse
Affiliation(s)
- Uwe Rossbach
- Department of Pharmaceutical Biosciences, Uppsala University, SE-751 24, Uppsala, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Alburges ME, Frankel PS, Hoonakker AJ, Hanson GR. Responses of limbic and extrapyramidal substance P systems to nicotine treatment. Psychopharmacology (Berl) 2009; 201:517-27. [PMID: 18773198 PMCID: PMC2678878 DOI: 10.1007/s00213-008-1316-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Accepted: 08/21/2008] [Indexed: 10/21/2022]
Abstract
RATIONALE Neuropeptides are linked to the psychopathology of stimulants of abuse, principally through dopamine mechanisms. Substance P (SP) is one of these neuropeptides and is associated with both limbic and extrapyramidal dopaminergic pathways and likely contributes to the pharmacology of these stimulants. The effects of nicotine on these dopamine systems have also been extensively studied; however, its effects on the associated SP pathways have received little attention. OBJECTIVES In the present study, we elucidated the effects of nicotine treatment on limbic and extrapyramidal SP systems by measuring changes in associated SP tissue concentrations. MATERIALS AND METHODS Male Sprague-Dawley rats received (+/-)nicotine 4.0 mg/kg/day (0.8 mg/kg, intraperitoneally; five injections at 2-h intervals) in the presence or absence of selective dopamine D1 and D2 receptor antagonists or a nonselective nicotinic acetylcholine receptor antagonist. RESULTS The nicotine treatment significantly but temporarily decreased substance P-like immunoreactivity (SPLI) content in the ventral tegmental area (VTA) and substantia nigra 12-18 h after drug exposure. The nicotine-mediated changes in SPLI were selectively blocked by pretreatment with mecamylamine as well as a dopamine D1, D2, or both receptor antagonists. Other brain areas that also selectively demonstrated nicotine-related declines in SPLI content included prefrontal cortex, the nucleus accumbens shell, and the very posterior caudate. CONCLUSIONS These findings indicate that some limbic and basal ganglia SP systems are significantly affected by exposure to nicotine through processes mediated by nicotinic and dopaminergic receptors, suggesting a role for SP pathways in nicotine's limbic and extrapyramidal effects.
Collapse
Affiliation(s)
- Mario E Alburges
- Department of Pharmacology and Toxicology, University of Utah, 30 South 2000 East, Room 201, Salt Lake City, UT, USA.
| | | | | | | |
Collapse
|
16
|
Botros M, Johansson T, Zhou Q, Lindeberg G, Tömböly C, Tóth G, Le Grevès P, Nyberg F, Hallberg M. Endomorphins interact with the substance P (SP) aminoterminal SP(1-7) binding in the ventral tegmental area of the rat brain. Peptides 2008; 29:1820-4. [PMID: 18597894 DOI: 10.1016/j.peptides.2008.05.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 05/15/2008] [Accepted: 05/17/2008] [Indexed: 10/22/2022]
Abstract
We have recently identified a specific binding site for the tachykinin peptide substance P (SP) fragment SP(1-7) in the rat spinal cord. This site appeared very specific for SP(1-7) as the binding affinity of this compound highly exceeded those of other SP fragments. We also observed that endomorphin-2 (EM-2) exhibited high potency in displacing SP(1-7) from this site. In the present work using a [(3)H]-labeled derivative of the heptapeptide we have identified and characterized [(3)H]-SP(1-7) binding in the rat ventral tegmental area (VTA). Similarly to the [(3)H]-SP(1-7) binding in the spinal cord the affinity of unlabeled SP(1-7) to the specific site in VTA was significantly higher than those of other SP fragments. Further, the tachykinin receptor NK-1, NK-2 and NK-3 ligands showed no or negligible binding to the identified site. However, the mu-opioid peptide (MOP) receptor agonists DAMGO, EM-1 and EM-2 did, and significant difference was observed in the binding affinity between the two endomorphins. As recorded from displacement curves the affinity of EM-2 for the SP(1-7) site was 4-5 times weaker than that for SP(1-7) but about 5 times higher than that of EM-1. The opioid receptor antagonists naloxone and naloxonazine showed weak or negligible binding. It was concluded that the specific site identified for SP(1-7) binding in the rat VTA is distinct from the MOP receptor although it exhibits high affinity for EM-2.
Collapse
Affiliation(s)
- Milad Botros
- Department of Pharmaceutical Biosciences, Uppsala University, SE-751 24 Uppsala, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Fransson R, Botros M, Nyberg F, Lindeberg G, Sandström A, Hallberg M. Small peptides mimicking substance P (1-7) and encompassing a C-terminal amide functionality. Neuropeptides 2008; 42:31-7. [PMID: 18093649 DOI: 10.1016/j.npep.2007.11.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2007] [Revised: 10/22/2007] [Accepted: 11/09/2007] [Indexed: 11/28/2022]
Abstract
Some of the biological effects demonstrated after administration of substance P (SP) in vivo can indirectly be attributed to the fragmentation of the undecapeptide to its N-terminal bioactive fragment SP(1-7). This heptapeptide (H-Arg-Pro-Lys-Pro-Gln-Gln-Phe-OH) is a major bioactive metabolite from SP that frequently exerts similar biological effects as the parent peptide but also, in several cases, completely opposite actions. Specific binding sites for the heptapeptide SP(1-7) that are separate from the SP preferred NK receptors have been identified. In this study we demonstrate that (a) the C-terminal part of the SP metabolite SP(1-7) is most important for binding as deduced from an Ala scan and that a replacement of Phe(7) for Ala is deleterious, (b) truncation of the N-terminal amino acid residues of SP(1-7) delivers peptides with retained binding activity, although with somewhat lower binding affinities than SP(1-7) and (c) a C-terminal amide group as a replacement for the terminal carboxy group of SP(1-7) and for all of the truncated ligands synthesized affords approximately 5-10-fold improvements of the binding affinities.
Collapse
Affiliation(s)
- Rebecca Fransson
- Department of Medicinal Chemistry, Uppsala University, P.O. Box 574, SE-751 23 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
18
|
Kovács KA, Steinmann M, Magistretti PJ, Halfon O, Cardinaux JR. C/EBPβ couples dopamine signalling to substance P precursor gene expression in striatal neurones. J Neurochem 2006; 98:1390-9. [PMID: 16771829 DOI: 10.1111/j.1471-4159.2006.03957.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dopamine-induced changes in striatal gene expression are thought to play an important role in drug addiction and compulsive behaviour. In this study we report that dopamine induces the expression of the transcription factor CCAAT/Enhancer Binding Protein beta (C/EBP)-beta in primary cultures of striatal neurones. We identified the preprotachykinin-A (PPT-A) gene coding for substance P and neurokinin-A as a potential target gene of C/EBPbeta. We demonstrated that C/EBPbeta physically interacts with an element of the PPT-A promoter, thereby facilitating substance P precursor gene transcription. The regulation of PPT-A gene by C/EBPbeta could subserve many important physiological processes involving substance P, such as nociception, neurogenic inflammation and addiction. Given that substance P is known to increase dopamine signalling in the striatum and, in turn, dopamine increases substance P expression in medium spiny neurones, our results implicate C/EBPbeta in a positive feedback loop, changes of which might contribute to the development of drug addiction.
Collapse
Affiliation(s)
- Krisztián A Kovács
- Center for Psychiatric Neuroscience, University Medical Center, University of Lausanne, Prilly, Switzerland
| | | | | | | | | |
Collapse
|
19
|
Wiktelius D, Khalil Z, Nyberg F. Modulation of peripheral inflammation by the substance P N-terminal metabolite substance P1-7. Peptides 2006; 27:1490-7. [PMID: 16414148 DOI: 10.1016/j.peptides.2005.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Revised: 12/06/2005] [Accepted: 12/07/2005] [Indexed: 10/25/2022]
Abstract
The N-terminal metabolite of the undecapeptide substance P (SP), substance P1-7 (SP1-7), is known to modulate nociception in the central nervous system (CNS) and often has opposite effects from SP. This study investigated the ability of SP(1-7) to modulate the vasodilatation response to SP in anaesthetized rats under different injury conditions using a blister model of inflammation on the hind footpad. The results indicated that SP1-7 inhibited the vascular response to SP in a dose-dependent manner. The putative antagonists naloxone and D-Pro2-D-Phe7-SP1-7 (D-SP1-7) reversed the effect of SP1-7. D-SP1-7 improved the responsiveness to SP under chronic nerve injury, which suggests a role for endogenous SP1-7 in this model. SP1-7 did not inhibit the response to electrical stimulation of the sciatic nerve, which indicates that the heptapeptide interacts at a post-terminal binding site. The current results suggest that SP1-7 may have inhibitory properties in inflammation, analogous to its antinociceptive role in the central nervous system.
Collapse
Affiliation(s)
- Daniel Wiktelius
- Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, Uppsala University, P.O. Box 591, S-751 24 Uppsala, Sweden
| | | | | |
Collapse
|
20
|
Botros M, Hallberg M, Johansson T, Zhou Q, Lindeberg G, Frändberg PA, Tömböly C, Tóth G, Le Grevès P, Nyberg F. Endomorphin-1 and endomorphin-2 differentially interact with specific binding sites for substance P (SP) aminoterminal SP1-7 in the rat spinal cord. Peptides 2006; 27:753-9. [PMID: 16216386 DOI: 10.1016/j.peptides.2005.08.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Revised: 08/18/2005] [Accepted: 08/18/2005] [Indexed: 10/25/2022]
Abstract
Endomorphin-1 (EM-1) and endomorphin-2 (EM-2) represent two opioid active tetrapeptides with high affinity and selectivity for the mu-opioid (MOP) receptor. Both EM-1 and EM-2 exhibit strong inhibition of pain signals in the central nervous system (CNS). In contrast to these compounds, the undecapeptide substance P (SP) facilitates pain influx in the CNS. SP has been implicated in a number of functions in the central nervous system, including pain processing and reward. Its aminoterminal fragment SP1-7 has been shown to modulate several actions of SP in the CNS, the nociceptive effect included. Although the actions of SP1-7 have been known for long no specific receptor for the SP fragment has yet been cloned. In this study, we demonstrate the presence of specific binding sites for the heptapeptide in the rat spinal cord. The binding affinity for unlabeled SP1-7 to the specific sites for the labeled heptapeptide highly exceeded those of SP and other C- or N-terminal fragments thereof. The NK-1, NK-2 and NK-3 receptor ligands [Sar9, Met(O2)11]SP, R396 and senktide, respectively, showed no or negligible binding. Moreover, both EM-1 and EM-2 were found to interact with SP1-7 binding. However, a significant difference in binding affinity between the two opioid active tetrapeptides was observed. As recorded from replacement curves the affinity of EM-2 was 10 times weaker than that for SP1-7 but about 100 times higher than that of EM-1. Among other Tyr-Pro-containing peptides Tyr-MIF-1 but not Tyr-W-MIF-1 exhibited affinity of similar potency as EM-2. These results strengthen the previously observed differences between EM-1 and EM-2 in various functional studies. Moreover, using a cell line (C6) expressing the MOP receptor it was shown that the labeled SP1-7 did not interact with binding to this receptor and no functional response was seen for the SP heptapeptide on the MOP receptor by means of stimulation in the GTPgammaS assay. This suggests that the identified SP1-7 binding sites, with high affinity also for EM-2, are not identical to the MOP receptor and apparently not to any of the known tachykinin receptors.
Collapse
Affiliation(s)
- Milad Botros
- Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, Uppsala University, BMC, Box 591, SE-751 24 Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
In Iran, opium is smoked for pleasure or as a medication by some people. It is a complex mixture of 40 different alkaloids, including morphine and codeine along with many impurities. Although it is well established that opioids or tobacco affect many physiological functions in humans, to our knowledge there has been no specific study looking at these effects in opium smokers. To assess that, we investigated the circulating levels of prolactin, TSH, LH, FSH and testosterone in male opium smokers who also smoke cigarettes (n=23, aged 28.4+/- 4.1 years), and comparing this with the corresponding values for nicotine abusers (n=12, 15-25 cigarettes/day) or a healthy control group (n=20) of the same age. Our results showed that 86.96% of the opium-dependent and 41.67 % of the nicotine-dependent group displayed high prolactin values (p<0.002). In addition, there was a positive correlation between the dose of opium and the plasma prolactin level of opium dependents (p=0.748, p<0.001). Low FSH was detected in 43.48% of the opium smokers and 50% of the cigarette smokers (p<0.001) with normal LH and testosterone levels. TSH of the opium smokers was also lower than that of the other two groups (p<0.002). In conclusion, the present data indicate that chronic opium and cigarette smoking may synergistically influence pituitary hormone production through the effects on neuropeptides produced either locally or systemic.
Collapse
|
22
|
Abstract
This paper is the 26th consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning over a quarter-century of research. It summarizes papers published during 2003 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology, Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| | | |
Collapse
|
23
|
Yu Y, Jawa A, Pan W, Kastin AJ. Effects of peptides, with emphasis on feeding, pain, and behavior A 5-year (1999-2003) review of publications in Peptides. Peptides 2004; 25:2257-89. [PMID: 15572212 DOI: 10.1016/j.peptides.2004.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Accepted: 09/21/2004] [Indexed: 11/28/2022]
Abstract
Novel effects of naturally occurring peptides are continuing to be discovered, and their mechanisms of actions as well as interactions with other substances, organs, and systems have been elucidated. Synthetic analogs may have actions similar or antagonistic to the endogenous peptides, and both the native peptides and analogs have potential as drugs or drug targets. The journal Peptides publishes many leading articles on the structure-activity relationship of peptides as well as outstanding reviews on some families of peptides. Complementary to the reviews, here we extract information from the original papers published during the past five years in Peptides (1999-2003) to summarize the effects of different classes of peptides, their modulation by other chemicals and various pathophysiological states, and the mechanisms by which the effects are exerted. Special attention is given to peptides related to feeding, pain, and other behaviors. By presenting in condensed form the effects of peptides which are essential for systems biology, we hope that this summary of existing knowledge will encourage additional novel research to be presented in Peptides.
Collapse
Affiliation(s)
- Yongmei Yu
- Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | | | | | | |
Collapse
|
24
|
Zhou Q, Kindlundh AMS, Hallberg M, Nyberg F. The substance P (SP) heptapeptide fragment SP1-7 alters the density of dopamine receptors in rat brain mesocorticolimbic structures during morphine withdrawal. Peptides 2004; 25:1951-7. [PMID: 15501527 DOI: 10.1016/j.peptides.2004.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Accepted: 07/28/2004] [Indexed: 10/26/2022]
Abstract
The aminoterminal fragment of substance P (SP), SP(1-7), has been suggested to modulate the expression of opiate tolerance and withdrawal behaviors in rodents. However, the mechanism of this effect is not yet clarified. Using a rat model we have previously demonstrated that SP(1-7) affects dopamine transmission and the expression of the dopamine D2-receptor gene transcript in the nucleus accumbens during naloxone precipitated morphine withdrawal. In the present study, we have applied autoradiography to investigate the effect of the heptapeptide on the binding of dopamine D1- and D2-receptors in mesocorticolimbic brain areas of male rats during morphine withdrawal. Morphine dependent animals were treated with an injection of SP(1-7) into the ventral tegmental area prior to naloxone challenge. The result indicated that the SP fragment elicited a significant decrease in specific binding to D1-like receptors in the caudate putamen, nucleus accumbens shell, nucleus accumbens core, substantia nigra and medial globus pallidus. Radioligand binding to dopamine D2-like receptors was also altered by SP(1-7). The heptapeptide induced a decreased density of these sites in the ventral tegmental area but an increased binding in the substantia nigra and the frontal cortex. The observed alterations in the D1- and D2-like receptor density could reflect activations in dopamine pathways associated with the above-mentioned brain regions. The result provides further evidence for the modulatory effect of SP(1-7) on dopamine systems during opioid withdrawal, suggesting the possible role for the heptapeptide to regulate morphine withdrawal reactions.
Collapse
Affiliation(s)
- Qin Zhou
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, P.O. Box 591, S-75124 Uppsala, Sweden
| | | | | | | |
Collapse
|