1
|
Qian T, Wang H, Wang P, Geng L, Mei L, Osakada T, Wang L, Tang Y, Kania A, Grinevich V, Stoop R, Lin D, Luo M, Li Y. A genetically encoded sensor measures temporal oxytocin release from different neuronal compartments. Nat Biotechnol 2023; 41:944-957. [PMID: 36593404 PMCID: PMC11182738 DOI: 10.1038/s41587-022-01561-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 10/12/2022] [Indexed: 01/03/2023]
Abstract
Oxytocin (OT), a peptide hormone and neuromodulator, is involved in diverse physiological and pathophysiological processes in the central nervous system and the periphery. However, the regulation and functional sequences of spatial OT release in the brain remain poorly understood. We describe a genetically encoded G-protein-coupled receptor activation-based (GRAB) OT sensor called GRABOT1.0. In contrast to previous methods, GRABOT1.0 enables imaging of OT release ex vivo and in vivo with suitable sensitivity, specificity and spatiotemporal resolution. Using this sensor, we visualize stimulation-induced OT release from specific neuronal compartments in mouse brain slices and discover that N-type calcium channels predominantly mediate axonal OT release, whereas L-type calcium channels mediate somatodendritic OT release. We identify differences in the fusion machinery of OT release for axon terminals versus somata and dendrites. Finally, we measure OT dynamics in various brain regions in mice during male courtship behavior. Thus, GRABOT1.0 provides insights into the role of compartmental OT release in physiological and behavioral functions.
Collapse
Affiliation(s)
- Tongrui Qian
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Huan Wang
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Peng Wang
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Lan Geng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Long Mei
- Neuroscience Institute, Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Takuya Osakada
- Neuroscience Institute, Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Lei Wang
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Peking University, Beijing, China
| | - Yan Tang
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital Center (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Alan Kania
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Ron Stoop
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital Center (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Dayu Lin
- Neuroscience Institute, Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Minmin Luo
- National Institute of Biological Sciences (NIBS), Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research (TIMBR), Tsinghua University, Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China.
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China.
- Chinese Institute for Brain Research, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- National Biomedical Imaging Center, Peking University, Beijing, China.
| |
Collapse
|
2
|
The effects of female-male friendships on male postcopulatory levels of oxytocin and vasopressin, and sperm parameters in Macacaarctoides. Theriogenology 2022; 177:63-72. [PMID: 34666204 DOI: 10.1016/j.theriogenology.2021.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 11/23/2022]
Abstract
Male and female stump-tailed macaques (Macaca arctoides) form close relationships akin to human friendships. Oxytocin and vasopressin modulate these and other social relationships and reproductive behavior and physiology in various mammal species. Besides the behavioral effects of oxytocin, this hormone plays an essential role in the ejaculatory process, favoring sperm transport upward the female reproductive tract. Therefore, we investigated the influence of friendships on postcopulatory serum levels of oxytocin and vasopressin in the stump-tailed macaque (Macaca arctoides). In addition, we searched for a correlation between this kind of social relationship and sperm transport in the vagina during the periovulatory and luteal phases. Six female and six male adult macaques having different friendship indices served as experimental animals. Allocated in 57 mating pairs combinations, these animals were allowed to copulate once in the luteal and periovulatory phases. Blood samples were collected from each animal finishing copulation to measure oxytocin and vasopressin. Afterward, we profoundly sedated the females and collected three semen samples from the vagina every 10 min to perform spermatobioscopies. Males' post-copulation oxytocin values increased along with the friendship index, while vasopressin behaves oppositely. Sperm concentration and immotile and motile sperm decreased from one sample to another as male-female closeness increased. Finally, in the periovulatory phase, only in the first vaginal sample, sperm velocities significantly increased with friendship indices. Our results showed that in stump-tailed macaques, heterosexual friendships promote higher postcopulatory oxytocin concentrations and better physiological conditions to males, which probably enhance reproductive success.
Collapse
|
3
|
Knöchel C, Frickmann H, Nürnberger F. Effects of Sleep Deprivation by Olfactorily Induced Sexual Arousal Compared to Immobilization Stress and Manual Sleep Deprivation on Neuromessengers and Time Keeping Genes in the Suprachiasmatic Nuclei and Other Cerebral Entities of Syrian Hamsters-An Immunohistochemical Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18179169. [PMID: 34501759 PMCID: PMC8430648 DOI: 10.3390/ijerph18179169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/13/2021] [Accepted: 08/27/2021] [Indexed: 11/16/2022]
Abstract
We investigated the effects of sexual arousal induced by olfactory stimuli on the expression of neuromodulators, neurotransmitters and sexual steroid receptors in the suprachiasmatic nucleus (SCN, the circadian pacemaker of mammals) and other cerebral entities of Syrian hamsters (Mesocricetus auratus) compared to manual sleep deprivation and immobilization stress. The hamsters kept under a 12:12 hours (h) light:dark cycle were deprived of sleep by sexual stimulation, gentle manual handling or immobilization stress for 1 h at the beginning of the light phase and subsequently sacrificed at zeitgeber time 01:00, respectively; for comparison, hamsters were manually sleep deprived for 6 or 20 h or sacrificed after completing a full sleep phase. As demonstrated by immunohistochemistry, apart from various alterations after manual sleep deprivation, sexual stimulation caused down-regulation of arginine-vasopressin (AVP), vasointestinal peptide (VIP), serotonin (5-HT), substance P (SP), and met-enkephalin (ME) in the SCN. Somatostatin (SOM) was diminished in the medial periventricular nucleus (MPVN). In contrast, an increase in AVP was observed in the PVN, that of oxytocin (OXY) in the supraoptic nucleus (SON), of tyrosine-hydroxylase (TH) in the infundibular nucleus (IN), and dopamine beta-hydroxylase (DBH) in the A7 neuron population of the brain stem (A7), respectively. Testosterone in plasma was increased. The results indicate that sexual arousal extensively influences the neuropeptide systems of the SCN, suggesting an involvement of the SCN in reproductive behavior.
Collapse
Affiliation(s)
- Christian Knöchel
- Vitos Clincis of Forensic Psychiatry Eltville, 65346 Eltville, Germany;
| | - Hagen Frickmann
- Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital Hamburg, 20359 Hamburg, Germany; or
- Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany
| | - Frank Nürnberger
- Institute for Anatomy II, Goethe-Universität Frankfurt am Main, 60590 Frankfurt am Main, Germany
- Correspondence:
| |
Collapse
|
4
|
Oti T, Sakamoto T, Sakamoto H. Systemic effects of oxytocin on male sexual activity via the spinal ejaculation generator in rats. Commun Integr Biol 2021; 14:55-60. [PMID: 33828638 PMCID: PMC8009111 DOI: 10.1080/19420889.2021.1902056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Oxytocin is produced in the hypothalamus and stimulates uterine contraction and milk ejection. While many people consider oxytocin to be a female hormone, it is reported that, in men, the plasma oxytocin level increases markedly after ejaculation. However, this aspect of oxytocin physiology is poorly understood. The spinal ejaculation generator (SEG), which expresses the neuropeptide, gastrin-releasing peptide (GRP), can trigger ejaculation in rats. Therefore, we focused on systemic effects of oxytocin on the GRP/SEG neuron system in the lumbar spinal cord controlling sexual activity in male rats. We found that systemic administration of oxytocin significantly shortened the latency to the first mount, intromission and ejaculation during male copulatory behavior. In addition, the local oxytocin level in the lumbar cord was significantly higher in males than in females. Histological analysis showed that oxytocin-binding is apparent in spinal GRP/SEG neurons. We therefore conclude that oxytocin influences male sexual activity via the SEG.
Collapse
Affiliation(s)
- Takumi Oti
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Hiratsuka, Japan.,Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Setouchi, Japan
| | - Tatsuya Sakamoto
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Setouchi, Japan
| | - Hirotaka Sakamoto
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Setouchi, Japan
| |
Collapse
|
5
|
|
6
|
Jurek B, Neumann ID. The Oxytocin Receptor: From Intracellular Signaling to Behavior. Physiol Rev 2018; 98:1805-1908. [DOI: 10.1152/physrev.00031.2017] [Citation(s) in RCA: 601] [Impact Index Per Article: 85.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The many facets of the oxytocin (OXT) system of the brain and periphery elicited nearly 25,000 publications since 1930 (see FIGURE 1 , as listed in PubMed), which revealed central roles for OXT and its receptor (OXTR) in reproduction, and social and emotional behaviors in animal and human studies focusing on mental and physical health and disease. In this review, we discuss the mechanisms of OXT expression and release, expression and binding of the OXTR in brain and periphery, OXTR-coupled signaling cascades, and their involvement in behavioral outcomes to assemble a comprehensive picture of the central and peripheral OXT system. Traditionally known for its role in milk let-down and uterine contraction during labor, OXT also has implications in physiological, and also behavioral, aspects of reproduction, such as sexual and maternal behaviors and pair bonding, but also anxiety, trust, sociability, food intake, or even drug abuse. The many facets of OXT are, on a molecular basis, brought about by a single receptor. The OXTR, a 7-transmembrane G protein-coupled receptor capable of binding to either Gαior Gαqproteins, activates a set of signaling cascades, such as the MAPK, PKC, PLC, or CaMK pathways, which converge on transcription factors like CREB or MEF-2. The cellular response to OXT includes regulation of neurite outgrowth, cellular viability, and increased survival. OXTergic projections in the brain represent anxiety and stress-regulating circuits connecting the paraventricular nucleus of the hypothalamus, amygdala, bed nucleus of the stria terminalis, or the medial prefrontal cortex. Which OXT-induced patterns finally alter the behavior of an animal or a human being is still poorly understood, and studying those OXTR-coupled signaling cascades is one initial step toward a better understanding of the molecular background of those behavioral effects.
Collapse
Affiliation(s)
- Benjamin Jurek
- Department of Behavioural and Molecular Neurobiology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| | - Inga D. Neumann
- Department of Behavioural and Molecular Neurobiology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
7
|
Blitzer DS, Wells TE, Hawley WR. Administration of an oxytocin receptor antagonist attenuates sexual motivation in male rats. Horm Behav 2017; 94:33-39. [PMID: 28596135 DOI: 10.1016/j.yhbeh.2017.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 03/20/2017] [Accepted: 06/03/2017] [Indexed: 01/23/2023]
Abstract
In male rats, oxytocin impacts both sexual arousal and certain types of consummatory sexual behaviors. However, the role of oxytocin in the motivational aspects of sexual behavior has received limited attention. Given the role that oxytocin signaling plays in consummatory sexual behaviors, it was hypothesized that pharmacological attenuation of oxytocin signaling would reduce sexual motivation in male rats. Sexually experienced Long-Evans male rats were administered either an oxytocin receptor antagonist (L368,899 hydrochloride; 1mg/kg) or vehicle control into the intraperitoneal cavity 40min prior to placement into the center chamber of a three-chambered arena designed to assess sexual motivation. During the 20-minute test, a sexually experienced stimulus male rat and a sexually receptive stimulus female rat were separately confined to smaller chambers that were attached to the larger end chambers of the arena. However, physical contact between test and stimulus rats was prevented by perforated dividers. Immediately following the sexual motivation test, test male rats were placed with a sexually receptive female to examine consummatory sexual behaviors. Although both drug and vehicle treated rats exhibited a preference for the female, treatment with an oxytocin receptor antagonist decreased the amount of time spent with the female. There were no differences between drug and vehicle treated rats in either general activity, exploratory behaviors, the amount of time spent near the stimulus male rat, or consummatory sexual behaviors. Extending previous findings, these results indicate that oxytocin receptors are involved in sexual motivation in male rats.
Collapse
Affiliation(s)
- D S Blitzer
- Franklin and Marshall College, Department of Psychology, United States
| | - T E Wells
- Franklin and Marshall College, Department of Psychology, United States
| | - W R Hawley
- Franklin and Marshall College, Department of Psychology, United States; Edinboro University of Pennsylvania, Department of Psychology, United States.
| |
Collapse
|
8
|
Abdel-Hamid IA, Elsaied MA, Mostafa T. The drug treatment of delayed ejaculation. Transl Androl Urol 2016; 5:576-591. [PMID: 27652229 PMCID: PMC5001980 DOI: 10.21037/tau.2016.05.05] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 03/29/2016] [Indexed: 02/05/2023] Open
Abstract
Delayed ejaculation (DE) is an uncommon and a challenging disorder to treat. It is often quite concerning to patients and it can affect psychosocial well-being. Here we reviewed how DE is treated pharmacologically .We also highlighted specific settings where drugs could be introduced to medical practice. Electronic databases were searched from 1966 to February 2016, including PubMed MEDLINE, EMBASE, EBCSO Academic Search Complete, Cochrane Systematic Reviews Database, and Google Scholar using key words; delayed ejaculation, retarded ejaculation, inhibited ejaculation, drugs, treatment, or pharmacology. To achieve the maximum sensitivity of the search strategy and to identify all studies, we combined "delayed ejaculation" as Medical Subject Headings (MeSH) terms or keywords with each of "testosterone" or "cabergoline" or "bupropion" or "amantadine" or "cyproheptadine" or "midodrine" or "imipramine" or "ephedrine" or "pseudoephedrine" or "yohimbine" or "buspirone" or "oxytocin" or "bethanechol" as MeSH terms or keywords. There are a number of drugs to treat patients with DE including: testosterone, cabergoline, bupropion, amantadine, cyproheptadine, midodrine, imipramine, ephedrine, pseudoephedrine, yohimbine, buspirone, oxytocin, and bethanechol. Although there are many pharmacological treatment options, the evidence is still limited to small trials, case series or case reports. Review of literature showed that evidence level 1 (Double blind randomized clinical trial) studies were performed with testosterone, oxytocin, buspirone or bethanechol treatment. It is concluded that successful drug treatment of DE is still in its infancy. The clinicians need to be aware of the pathogenesis of DE and the pharmacological basis underlying the use of different drugs to extend better care for these patients. Various drugs are available to address such problem, however their evidence of efficacy is still limited and their choice needs to be individualized to each specific case.
Collapse
Affiliation(s)
| | | | - Taymour Mostafa
- Department of Andrology & Sexology, Faculty of Medicine, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
9
|
Veening JG, de Jong TR, Waldinger MD, Korte SM, Olivier B. The role of oxytocin in male and female reproductive behavior. Eur J Pharmacol 2014; 753:209-28. [PMID: 25088178 DOI: 10.1016/j.ejphar.2014.07.045] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 05/30/2014] [Accepted: 07/24/2014] [Indexed: 01/01/2023]
Abstract
Oxytocin (OT) is a nonapeptide with an impressive variety of physiological functions. Among them, the 'prosocial' effects have been discussed in several recent reviews, but the direct effects on male and female sexual behavior did receive much less attention so far. As our contribution to honor the lifelong interest of Berend Olivier in the control mechanisms of sexual behavior, we decided to explore the role of OT in the present review. In the successive sections, some physiological mechanisms and the 'pair-bonding' effects of OT will be discussed, followed by sections about desire, female appetitive and copulatory behavior, including lordosis and orgasm. At the male side, the effects on erection and ejaculation are reviewed, followed by a section about 'premature ejaculation' and a possible role of OT in its treatment. In addition to OT, serotonin receives some attention as one of the main mechanisms controlling the effects of OT. In the succeeding sections, the importance of OT for 'the fruits of labor' is discussed, as it plays an important role in both maternal and paternal behavior. Finally, we pay attention to an intriguing brain area, the ventrolateral part of the ventromedial hypothalamic nucleus (VMHvl), apparently functioning in both sexual and aggressive behavior, which are at first view completely opposite behavioral systems.
Collapse
Affiliation(s)
- J G Veening
- Department of Psychopharmacology, Division of Pharmacology, University of Utrecht, Utrecht, The Netherlands; Department of Anatomy, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - T R de Jong
- Department of Behavioral and Molecular Neurobiology, University of Regensburg, 93053 Regensburg, Germany
| | - M D Waldinger
- Department of Psychopharmacology, Division of Pharmacology, University of Utrecht, Utrecht, The Netherlands
| | - S M Korte
- Department of Psychopharmacology, Division of Pharmacology, University of Utrecht, Utrecht, The Netherlands
| | - B Olivier
- Department of Psychopharmacology, Division of Pharmacology, University of Utrecht, Utrecht, The Netherlands
| |
Collapse
|
10
|
Cummings JA, Clinton SM, Perry AN, Akil H, Becker JB. Male rats that differ in novelty exploration demonstrate distinct patterns of sexual behavior. Behav Neurosci 2013; 127:47-58. [PMID: 23398441 DOI: 10.1037/a0031528] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
High- versus low-novelty exploration predicts a variety of behavioral differences. For example, rats selectively bred for high-novelty exploration (bred-high responders, bHR) exhibit exaggerated aggression, impulsivity, and proclivity to addictive behaviors compared with low-novelty reactive rats (bred-low responders, bLRs), which are characterized by a high anxiety/depressive-like phenotype. Since bHR/bLR rats exhibit differences in dopaminergic circuitry and differential response to rewarding stimuli (i.e., psychostimulants, food), the present study examined whether they also differ in another key hedonic behavior-sex. Thus, adult bHR/bLR males were given five 30-min opportunities to engage in sexual activity with a receptive female. Sexual behavior and motivation were examined and compared between the groups. The bHR/bLR phenotype affected both sexual motivation and behavior, with bLR males demonstrating reduced motivation for sex compared with bHR males (i.e., fewer animals copulated, longer latency to engage in sex). The bHR males required more intromissions at a faster pace per ejaculation than did bLR males. Thus, neurobiological differences that affect motivation for drugs of abuse, aggression, and impulsivity in rats also affect sexual motivation and performance.
Collapse
Affiliation(s)
- Jennifer A Cummings
- Molecular and Behavioral Neuroscience Institute, University of Michigan, 205 Zina Pitcher Place, Ann Arbor, MI 48109, USA.
| | | | | | | | | |
Collapse
|
11
|
Burnett AL, Goldstein I, Andersson KE, Argiolas A, Christ G, Park K, Xin ZC. Future sexual medicine physiological treatment targets. J Sex Med 2011; 7:3269-304. [PMID: 21029380 DOI: 10.1111/j.1743-6109.2010.02025.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Sexual function in men and women incorporates physiologic processes and regulation of the central and peripheral nervous systems, the vascular system, and the endocrine system. There is need for state-of-the-art information as there is an evolving research understanding of the underlying molecular biological factors and mechanisms governing sexual physiologic functions. AIM To develop an evidence-based, state-of-the-art consensus report on the current knowledge of the major cellular and molecular targets of biologic systems responsible for sexual physiologic function. METHODS State-of-the-art knowledge representing the opinions of seven experts from four countries was developed in a consensus process over a 2-year period. MAIN OUTCOME MEASURES Expert opinion was based on the grading of evidence-based medical literature, widespread internal committee discussion, public presentation, and debate. RESULTS Scientific investigation in this field is needed to increase knowledge and foster development of the future line of treatments for all forms of biological-based sexual dysfunction. This article addresses the current knowledge of the major cellular and molecular targets of biological systems responsible for sexual physiologic function. Future treatment targets include growth factor therapy, gene therapy, stem and cell-based therapies, and regenerative medicine. CONCLUSIONS Scientific discovery is critically important for developing new and increasingly effective treatments in sexual medicine. Broad physiologic directions should be vigorously explored and considered for future management of sexual disorders.
Collapse
Affiliation(s)
- Arthur L Burnett
- The James Buchanan Brady Urological Institute, The Johns Hopkins Hospital, Baltimore, MD, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Baskerville TA, Allard J, Wayman C, Douglas AJ. Dopamineâoxytocin interactions in penile erection. Eur J Neurosci 2009; 30:2151-64. [DOI: 10.1111/j.1460-9568.2009.06999.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
|
14
|
de Jong TR, Veening JG, Olivier B, Waldinger MD. Oxytocin Involvement in SSRI-Induced Delayed Ejaculation: A Review of Animal Studies. J Sex Med 2007; 4:14-28. [PMID: 17233773 DOI: 10.1111/j.1743-6109.2006.00394.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Selective serotonin reuptake inhibitors (SSRIs) differ in the severity of induced ejaculation delay. Various studies indicate that oxytocin is involved in sexual behavior. AIM To review and evaluate the involvement of oxytocin in SSRI-induced ejaculation delay. MAIN OUTCOME MEASURES Oxytocine release, 5-hydroxytryptamine (5-HT) neurotransmission, and desensitization of 5-HT(1A) receptors. METHODS A review and critical analysis of animal studies investigating the interaction of serotonergic and oxytocinergic neurotransmission in relation to the ejaculation process. RESULTS Although acute treatment with the SSRIs fluoxetine and paroxetine immediately causes increased serotonin levels, delayed ejaculation does not occur. The increased serotonin levels induce oxytocin release via activation of 5-HT(1A) receptors, and this might compensate for the inhibitory actions of serotonin on sexual behavior. Chronic treatment with fluoxetine and paroxetine desensitizes 5-HT(1A) receptors on oxytocin neurons, and that might in part determine the onset of delayed ejaculation. Desensitization of 5-HT(1A) receptors is less strong following chronic treatment with the SSRIs fluvoxamine or citalopram, which may attenuate the degree of delayed ejaculation. CONCLUSIONS Preliminary data suggest that the severity of chronic SSRI treatment-induced delayed ejaculation and the differences between the various SSRIs in inducing ejaculation delay is related to gradual desensitization of 5-HT(1A) receptors on oxytocin neurons.
Collapse
Affiliation(s)
- Trynke R de Jong
- Department of Psychopharmacology, Utrecht Institute of Pharmacological Sciences and Rudolf Magnus Institute of Neuroscience, Utrecht University, Utrecht, the Netherlands
| | - Jan G Veening
- Department of Psychopharmacology, Utrecht Institute of Pharmacological Sciences and Rudolf Magnus Institute of Neuroscience, Utrecht University, Utrecht, the Netherlands;; Department of Anatomy, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Berend Olivier
- Department of Psychopharmacology, Utrecht Institute of Pharmacological Sciences and Rudolf Magnus Institute of Neuroscience, Utrecht University, Utrecht, the Netherlands;; Department of Psychiatry, Yale University Medical School, New Haven, CT, USA
| | - Marcel D Waldinger
- Department of Psychopharmacology, Utrecht Institute of Pharmacological Sciences and Rudolf Magnus Institute of Neuroscience, Utrecht University, Utrecht, the Netherlands;; Department of Psychiatry and Neurosexology, HagaHospital Leyenburg, The Hague, the Netherlands.
| |
Collapse
|
15
|
Abstract
alpha-Melanocyte-stimulating hormone (alpha-MSH) and oxytocin share remarkable similarities of effects on behaviour in rats; in particular, they both inhibit feeding behaviour and stimulate sexual behaviour. Recently, we showed that alpha-MSH interacts with the magnocellular oxytocin system in the supraoptic nucleus; alpha-MSH induces the release of oxytocin from the dendrites of magnocellular neurones but it inhibits the secretion of oxytocin from their nerve terminals in the posterior pituitary. This effect of alpha-MSH on supraoptic nucleus oxytocin neurones is remarkable for two reasons. First, it illustrates the capacity of magnocellular neurones to differentially regulate peptide release from dendrites and axons and, second, it emphasises the putative role of magnocellular neurones as a major source of central oxytocin release, and as a likely substrate of some oxytocin-mediated behaviours. The ability of peptides to differentially control secretion from different compartments of their targets indicates one way by which peptide signals might have a particularly significant effect on neuronal circuitry. This suggests a possible explanation for the striking way in which some peptides can influence specific, complex behaviours.
Collapse
Affiliation(s)
- N Sabatier
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
16
|
de Jong TR, Pattij T, Veening JG, Dederen PJWC, Waldinger MD, Cools AR, Olivier B. Effects of chronic paroxetine pretreatment on (+/-)-8-hydroxy-2-(di-n-propyl-amino)tetralin induced c-fos expression following sexual behavior. Neuroscience 2005; 134:1351-61. [PMID: 16019152 DOI: 10.1016/j.neuroscience.2005.05.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2005] [Revised: 05/04/2005] [Accepted: 05/06/2005] [Indexed: 11/20/2022]
Abstract
Chronic treatment with the selective serotonin reuptake inhibitor paroxetine impairs the functioning of 5-HT(1A) receptors involved in ejaculation. This could underlie the development of delayed ejaculation often reported by men treated with paroxetine. The neurobiological substrate linking the effects of selective serotonin reuptake inhibitor-treatment and 5-HT(1A) receptor activation with ejaculation was investigated. Male Wistar rats that were pretreated with paroxetine (20 mg/kg/day p.o.) or vehicle for 22 days and had received an additional injection with the 5-HT(1A) receptor agonist 8-OH-DPAT ((+/-)-8-hydroxy-2-(di-n-propyl-amino)tetralin; 0.4 mg/kg s.c.) or saline on day 22, 30 min prior to a sexual behavior test, were perfused 1 h after the sexual behavior test. Brains were processed for Fos-, and oxytocin immunohistochemistry. The drug treatments markedly changed both sexual behavior and the pattern and number of Fos-immunoreactive cells in the brain. Chronic pretreatment with paroxetine caused delayed ejaculation. Acute injection with 8-OH-DPAT facilitated ejaculation in vehicle-pretreated rats, notably evident in a strongly reduced intromission frequency, whereas 8-OH-DPAT had no effects in paroxetine-pretreated rats. Chronic treatment with paroxetine reduced Fos-immunoreactivity in the locus coeruleus, and prevented the increase in Fos-immunoreactive neurons induced by 8-OH-DPAT in the oxytocinergic magnocellular part of the paraventricular nucleus as well as in the locus coeruleus. Since oxytocin and noradrenalin facilitate ejaculation, the alterations in Fos-IR in these areas could connect selective serotonin reuptake inhibitor treatment and 5-HT(1A) receptor activation to ejaculation. Chronic paroxetine treatment and 8-OH-DPAT changed c-fos expression in a number of other brain areas, indicating that Fos-immunohistochemistry is a useful tool to find locations where selective serotonin reuptake inhibitors and 8-OH-DPAT exert their effects.
Collapse
Affiliation(s)
- T R de Jong
- Department of Anatomy, Radboud University Nijmegen Medical Centre, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
17
|
Pattij T, de Jong TR, Uitterdijk A, Waldinger MD, Veening JG, Cools AR, van der Graaf PH, Olivier B. Individual differences in male rat ejaculatory behaviour: searching for models to study ejaculation disorders. Eur J Neurosci 2005; 22:724-34. [PMID: 16101754 DOI: 10.1111/j.1460-9568.2005.04252.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In addition to investigating sexual function in rats that display normal ejaculatory behaviour, studying rats that are either 'hyposexual' or 'hypersexual' may provide important insights into the aetiology of ejaculatory dysfunctions in men, such as premature and retarded ejaculation. To this end, rats were matched into groups of 'sluggish', 'normal' and 'rapid' ejaculators based on their ejaculation frequencies displayed in a series of weekly sexual behaviour tests. Selecting rats on this parameter revealed large and stable differences in other parameters of sexual behaviour as well, including ejaculation latency and mount frequency but not intromission frequency and mount latency, putative indices of sexual motivation. Neuroanatomically, Fos immunoreactivity as a measure of neuronal activation was increased in rapid ejaculators compared with sluggish ejaculators in ejaculation-related brain areas, presumably associated with the differences in ejaculatory behaviour. Although the total number of oxytocin neurones within subregions of the hypothalamus did not differ between groups, in the supraoptic nucleus of the hypothalamus more oxytocin neurones were activated in rapid ejaculators compared with the other groups. Apart from the differences observed in ejaculatory behaviour, groups did not differ with respect to their locomotor activity and approach-avoidance behaviour as measured in the elevated plus-maze. Finally, apomorphine-induced stereotypy was similar in sluggish and rapid ejaculators, suggesting no large differences in dopamine susceptibility. Altogether, the present results suggest stable differences in male rat ejaculatory behaviour. Further exploring the neurobiological mechanisms underlying these differences may be a promising approach to gain insights into the aetiology of sexual dysfunctions such as premature, retarded or an-ejaculation.
Collapse
Affiliation(s)
- Tommy Pattij
- Department of Anatomy, University Medical Center St Radboud, Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
A baby sucks at a mother's breast for comfort and, of course, for milk. Milk is made in specialized cells of the mammary gland, and for a baby to feed, the milk must be released into a collecting chamber from where it can be extracted by sucking. Milk "let-down" is a reflex response to the suckling and kneading of the nipple--and sometimes in response to the sight, smell, and sound of the baby--and is ultimately affected by the secretion of oxytocin. Oxytocin has many physiological roles, but its only irreplaceable role is to mediate milk let-down: oxytocin-deficient mice cannot feed their young; the pups suckle but no milk is let down, and they will die unless cross-fostered. Most other physiological roles of oxytocin, including its role in parturition, are redundant in the sense that the roles can be assumed by other mechanisms in the absence of oxytocin throughout development and adult life. Nevertheless, physiological function in these roles can be altered or impaired by acute interventions that alter oxytocin secretion or change the actions of oxytocin. Here we focus on the diverse stimuli that regulate oxytocin secretion and on the apparent diversity of the roles for oxytocin.
Collapse
Affiliation(s)
- Gareth Leng
- Centre for Integrative Physiology, The University of Edinburgh College of Medicine and Veterinary Sciences, Edinburgh EH8 9XD, United Kingdom
| | | | | |
Collapse
|
19
|
Nishitani S, Moriya T, Kondo Y, Sakuma Y, Shinohara K. Induction of Fos immunoreactivity in oxytocin neurons in the paraventricular nucleus after female odor exposure in male rats: effects of sexual experience. Cell Mol Neurobiol 2004; 24:283-91. [PMID: 15176441 PMCID: PMC11529925 DOI: 10.1023/b:cemn.0000018622.44317.14] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
1. We examined whether oxytocin (OT) neurons in the paraventricular nucleus of the hypothalamus (PVN) were activated by estrus female odor and sexual contact in sexually naïve and experienced Long-Evans rats. 2. Male rats were not presented to anesthetized estrus females (control) or presented to the females without (exposure to the female odor without sexual contact) or with direct contact (exposure to the female odor with sexual contact). 3. Exposure to the female odor with sexual contact significantly increased OT neurons with Fos-ir in both males. Exposure to the female odor without contact increased OT neurons with Fos-immunoreactive cells (Fos-ir) in sexually experienced males but not in naïve males, suggesting that the female odor without sexual contact activated the oxytocinergic neuronal system in the PVN in the experienced males. 4. Therefore, exposure to the estrus female odor itself may exert different effects on sexually naïve and experienced males.
Collapse
Affiliation(s)
- Shota Nishitani
- Division of Neurobiology and Behavior, Department of Translational Medical Sciences, Course of Medical and Dental Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | | | | | | | | |
Collapse
|
20
|
Codispoti M, Gerra G, Montebarocci O, Zaimovic A, Raggi MA, Baldaro B. Emotional perception and neuroendocrine changes. Psychophysiology 2004; 40:863-8. [PMID: 14986839 DOI: 10.1111/1469-8986.00104] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The present study was designed to investigate the neuroendocrine modifications during affective states. In particular, we investigate if the pleasantness of the stimuli has a different effect on neuroendocrine responses. To address this issue, we compared the effects of pleasant, neutral, and unpleasant pictures on catecholamine, adrenocorticotrophic hormone (ACTH), cortisol, and prolactin plasma levels. Ten male participants were submitted to three experimental sessions, each on one of the three experimental days, a week apart in a counterbalanced order. Although in the subjective arousal rating, pleasant (erotic pictures) and unpleasant stimuli (pictures of mutilated bodies) receive the same high score, a different neuroendocrine pattern was obtained: unpleasant stimuli elicited a decrease in prolactin concentration and increases in noradrenaline, cortisol, and ACTH levels, whereas pleasant slide set viewing induced an increase in prolactin levels. The results suggest that the neuroendocrine system responds selectively to affective motivationally relevant pictures.
Collapse
|
21
|
Tanoue S, Sumida S, Suetsugu T, Endo Y, Nishioka T. Identification of a receptor type guanylyl cyclase in the antennal lobe and antennal sensory neurons of the silkmoth, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2001; 31:971-979. [PMID: 11483433 DOI: 10.1016/s0965-1748(01)00045-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Sensory neuron-specific guanylyl cyclases (GC), which were recently identified in rodents and nematodes, are thought to be a new family of odorant/pheromone receptors. In the antennae of the male silkmoth Bombyx mori, receptor type GC are supposed to mediate signaling of pheromone. Structure of receptor type GC expressed in insect sensory neurons has remained unidentified. Here we report the isolation of cDNA of the receptor type GC, designated BmGC-I, from the male silkmoth antennae. The deduced amino acid sequence indicates that BmGC-I appears to consist of four domains: an extracellular, single transmembrane, kinase-like and a guanylyl cyclase domain. BmGC-I is most closely related to the mammalian natriuretic peptide hormone receptor A (GC-A) and retains all the cysteine residues that are conserved within the extracellular domain of the mammalian GC-As. Transcripts of the BmGC-I gene were detected in various tissues; the flight muscles, midgut, legs, ganglion, Malpighian tubules, testis and the head. Immunohistochemical study revealed that the BmGC-I protein localizes in the antennal-lobe glomerulus and in the soma and axon of sensory neurons. We thus suggest that BmGC-I plays functional roles in the odorant information processing and the modulation of excitability in the antennal sensory neurons.
Collapse
Affiliation(s)
- S Tanoue
- Laboratory of Insect Physiology, Graduate School of Agricultural Sciences, Kyoto University, Kitashirakawa, Sakyo-ku, 606-8502, Kyoto, Japan
| | | | | | | | | |
Collapse
|
22
|
Drago F, Lissandrello CO. The "low-dose" concept and the paradoxical effects of prolactin on grooming and sexual behavior. Eur J Pharmacol 2000; 405:131-7. [PMID: 11033320 DOI: 10.1016/s0014-2999(00)00678-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effects of prolactin on animal behavior include the stimulation of novelty-induced grooming in rats. This effect has been demonstrated in hyperprolactinaemic animals bearing pituitary homografts under the kidney capsule or after intracerebroventricular (i.c.v.) administration of prolactin. Since plasma prolactin levels in hyperprolactinaemic rats are similar to those of animals injected with low doses of rat prolactin, we studied the effects of this hormone injected subcutaneously (s.c.) in a dose range of 5-50 microg/kg. Novelty-induced grooming was enhanced only in rats injected with 5 or 10 microg/kg rat prolactin, whereas no effect was observed after the s.c. injection of the higher dose. The sexual behavior of male rats is also affected by prolactin. Male rats with normal mating activity showed enhanced sexual behavior when injected s.c. with rat prolactin (5, 10 or 50 microg/kg). In animals with poor sexual performance or in impotent rats, prolactin (5 or 10 microg/kg, but not 50 microg/kg) restored the full pattern of sexual behavior. An increased lordosis quotient was also observed in ovariectomized rats treated with prolactin 5 or 10 microg/kg. These results suggest that, besides the duration of hyperprolactinaemia, the effective level of plasma prolactin is important for the expression of the behavioral effects of this hormone.
Collapse
Affiliation(s)
- F Drago
- Department of Experimental and Clinical Pharmacology, Institute of Pharmacology, Faculty of Medicine, University of Catania Medical School, Catania, Italy.
| | | |
Collapse
|
23
|
Abstract
For the individual engaged in it, sexual behavior has no finality or purpose other than its own execution. Data are presented showing that the execution of sexual reflexes can promote learning, i.e. it functions as reinforcement. Furthermore, positive affect is generated. Based on these principles, a model of sexual motivation has been elaborated. The conceptual framework is the incentive motivation theory previously proposed by Bindra D, A motivational view of learning, performance, and behavior modification, Psychol Rev 1974: 81:199-213; A Theory of Intelligent Behavior, New York: Wiley, 1976; How adaptive behavior is produced: a perceptual-motivational alternative to response reinforcement, Behav Brain Sci 1978; 1:41-52. Although the model is intended for application to most mammals, the rat is used as example. Essentially, sexual approach behaviors are activated by appropriate incentives (conditioned in the male, unconditioned in the female). Approach is, in the inexperienced male, followed by the execution of copulatory reflexes as a consequence of accidentally obtained tactile stimulation of the perineal region. In the female, copulatory acts are activated by tactile stimulation of the flanks and hinds provided by the mounting male. The role of conditioning for the execution of copulatory reflexes and for the acquisition of incentive value of neutral stimuli is analyzed. It is also shown that the incentive properties of sexual acts are not substantially different from those of other incentives. Sexual exhaustion is suggested to be either a case of negative alliesthesia or of stimulus habituation and the Coolidge effect is, in consequence, an example of dishabituation. Studies in women and men support this proposal. It is emphasized that sexual behavior is best understood as being entirely mechanistic albeit not deterministic.
Collapse
Affiliation(s)
- A Agmo
- Department of Psychology, University of Tromsø, Norway.
| |
Collapse
|
24
|
Exton MS, Bindert A, Krüger T, Scheller F, Hartmann U, Schedlowski M. Cardiovascular and endocrine alterations after masturbation-induced orgasm in women. Psychosom Med 1999; 61:280-9. [PMID: 10367606 DOI: 10.1097/00006842-199905000-00005] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE The present study investigated the cardiovascular, genital, and endocrine changes in women after masturbation-induced orgasm because the neuroendocrine response to sexual arousal in humans is equivocal. METHODS Healthy women (N = 10) completed an experimental session, in which a documentary film was observed for 20 minutes, followed by a pornographic film for 20 minutes, and another documentary for an additional 20 minutes. Subjects also participated in a control session, in which participants watched a documentary film for 60 minutes. After subjects had watched the pornographic film for 10 minutes in the experimental session, they were asked to masturbate until orgasm. Cardiovascular (heart rate and blood pressure) and genital (vaginal pulse amplitude) parameters were monitored continuously throughout testing. Furthermore, blood was drawn continuously for analysis of plasma concentrations of adrenaline, noradrenaline, cortisol, prolactin, luteinizing hormone (LH), beta-endorphin, follicle-stimulating hormone (FSH), testosterone, progesterone, and estradiol. RESULTS Orgasm induced elevations in cardiovascular parameters and levels of plasma adrenaline and noradrenaline. Plasma prolactin substantially increased after orgasm, remained elevated over the remainder of the session, and was still raised 60 minutes after sexual arousal. In addition, sexual arousal also produced small increases in plasma LH and testosterone concentrations. In contrast, plasma concentrations of cortisol, FSH, beta-endorphin, progesterone, and estradiol were unaffected by orgasm. CONCLUSIONS Sexual arousal and orgasm produce a distinct pattern of neuroendocrine alterations in women, primarily inducing a long-lasting elevation in plasma prolactin concentrations. These results concur with those observed in men, suggesting that prolactin is an endocrine marker of sexual arousal and orgasm.
Collapse
Affiliation(s)
- M S Exton
- Department of Medical Psychology, University Clinic Essen, Germany
| | | | | | | | | | | |
Collapse
|