1
|
Mitchell K, Mikwar M, Da Fonte D, Lu C, Tao B, Peng D, Erandani WKCU, Hu W, Trudeau VL. Secretoneurin is a secretogranin-2 derived hormonal peptide in vertebrate neuroendocrine systems. Gen Comp Endocrinol 2020; 299:113588. [PMID: 32828813 DOI: 10.1016/j.ygcen.2020.113588] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/04/2020] [Accepted: 08/13/2020] [Indexed: 01/09/2023]
Abstract
Secretogranin-2 (SCG2) is a large precursor protein that is processed into several potentially bioactive peptides, with the 30-43 amino acid central domain called secretoneurin (SN) being clearly evolutionary conserved in vertebrates. Secretoneurin exerts a diverse array of biological functions including regulating nervous, endocrine, and immune systems in part due to its wide tissue distribution. Expressed in some neuroendocrine neurons and pituitary cells, SN is a stimulator of the synthesis and release of luteinizing hormone from both goldfish pituitary cells and the mouse LβT2 cell line. Neuroendocrine, paracrine and autocrine signaling pathways for the stimulation of luteinizing hormone release indicate hormone-like activities to regulate reproduction. Mutation of the scg2a and scg2b genes using TALENs in zebrafish reduces sexual behavior, ovulation, oviposition, and fertility. A single injection of the SNa peptide enhanced reproductive outcomes in scg2a/scg2b double mutant zebrafish. Evidence in goldfish suggests a new role for SN to stimulate food intake by actions on other feeding-related neuropeptides. Expression and regulation of the Scg2a precursor mRNA in goldfish gut also supports a role in feeding. In rodent models, SN has trophic-like properties promoting both neuroprotection and neuronal plasticity and has chemoattractant properties that regulate neuroinflammation. Data obtained from several cellular models suggest that SN binds to and activates a G-protein coupled receptor (GPCR), but a bona fide SN receptor protein needs to be identified. Other signaling pathways for SN have been reported which provides alternatives to the GPCR hypothesis. These include AMP-activated protein kinase (AMPK), extracellular signal-regulated kinases (ERK), mitogen-activated protein kinase (MAPK)and calcium/calmodulin-dependent protein kinase II in cardiomyocytes, phosphatidylinositol 3-kinase (PI3K) and Akt/Protein Kinase B (AKT, and MAPK in endothelial cells and Janus kinase 2/signal transducer and activator of transcription protein (JAK2-STAT) signaling in neurons. Some studies in cardiac cells provide evidence for cellular internalization of SN by an unknown mechanism. Many of the biological functions of SN remain to be fully characterized, which could lead to new and exciting applications.
Collapse
Affiliation(s)
- Kimberly Mitchell
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Myy Mikwar
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Dillon Da Fonte
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Chunyu Lu
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - BinBin Tao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
| | - Di Peng
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | | | - Wei Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
| | - Vance L Trudeau
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| |
Collapse
|
2
|
Hannon PR, Duffy DM, Rosewell KL, Brännström M, Akin JW, Curry TE. Ovulatory Induction of SCG2 in Human, Nonhuman Primate, and Rodent Granulosa Cells Stimulates Ovarian Angiogenesis. Endocrinology 2018; 159:2447-2458. [PMID: 29648638 PMCID: PMC6287591 DOI: 10.1210/en.2018-00020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/02/2018] [Indexed: 02/06/2023]
Abstract
The luteinizing hormone (LH) surge is essential for ovulation, but the intrafollicular factors induced by LH that mediate ovulatory processes (e.g., angiogenesis) are poorly understood, especially in women. The role of secretogranin II (SCG2) and its cleaved bioactive peptide, secretoneurin (SN), were investigated as potential mediators of ovulation by testing the hypothesis that SCG2/SN is induced in granulosa cells by human chorionic gonadotropin (hCG), via a downstream LH receptor signaling mechanism, and stimulates ovarian angiogenesis. Humans, nonhuman primates, and rodents were treated with hCG in vivo resulting in a significant increase in the messenger RNA and protein levels of SCG2 in granulosa cells collected early during the periovulatory period and just prior to ovulation (humans: 12 to 34 hours; monkeys: 12 to 36 hours; rodents: 4 to 12 hours post-hCG). This induction by hCG was recapitulated in an in vitro culture system utilizing granulosa-lutein cells from in vitro fertilization patients. Using this system, inhibition of downstream LH receptor signaling pathways revealed that the initial induction of SCG2 is regulated, in part, by epidermal growth factor receptor signaling. Further, human ovarian microvascular endothelial cells were treated with SN (1 to 100 ng/mL) and subjected to angiogenesis assays. SN significantly increased endothelial cell migration and new sprout formation, suggesting induction of ovarian angiogenesis. These results establish that SCG2 is increased in granulosa cells across species during the periovulatory period and that SN may mediate ovulatory angiogenesis in the human ovary. These findings provide insight into the regulation of human ovulation and fertility.
Collapse
Affiliation(s)
- Patrick R Hannon
- Department of Obstetrics and Gynecology, University of Kentucky, Lexington,
Kentucky
| | - Diane M Duffy
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk,
Virginia
| | - Katherine L Rosewell
- Department of Obstetrics and Gynecology, University of Kentucky, Lexington,
Kentucky
| | - Mats Brännström
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of
Gothenburg, Gothenburg, Sweden
| | | | - Thomas E Curry
- Department of Obstetrics and Gynecology, University of Kentucky, Lexington,
Kentucky
- Correspondence: Thomas E. Curry, Jr., PhD, Department of Obstetrics and Gynecology, University of
Kentucky, 800 Rose Street, Room C351, Lexington, Kentucky 40536. E-mail:
| |
Collapse
|
3
|
Barbosa DJ, Capela JP, de Lourdes Bastos M, Carvalho F. In vitro models for neurotoxicology research. Toxicol Res (Camb) 2015; 4:801-842. [DOI: 10.1039/c4tx00043a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
The nervous system has a highly complex organization, including many cell types with multiple functions, with an intricate anatomy and unique structural and functional characteristics; the study of its (dys)functionality following exposure to xenobiotics, neurotoxicology, constitutes an important issue in neurosciences.
Collapse
Affiliation(s)
- Daniel José Barbosa
- REQUIMTE (Rede de Química e Tecnologia)
- Laboratório de Toxicologia
- Departamento de Ciências Biológicas
- Faculdade de Farmácia
- Universidade do Porto
| | - João Paulo Capela
- REQUIMTE (Rede de Química e Tecnologia)
- Laboratório de Toxicologia
- Departamento de Ciências Biológicas
- Faculdade de Farmácia
- Universidade do Porto
| | - Maria de Lourdes Bastos
- REQUIMTE (Rede de Química e Tecnologia)
- Laboratório de Toxicologia
- Departamento de Ciências Biológicas
- Faculdade de Farmácia
- Universidade do Porto
| | - Félix Carvalho
- REQUIMTE (Rede de Química e Tecnologia)
- Laboratório de Toxicologia
- Departamento de Ciências Biológicas
- Faculdade de Farmácia
- Universidade do Porto
| |
Collapse
|
4
|
Doblinger A, Becker A, Seidah NG, Laslop A. Proteolytic processing of chromogranin A by the prohormone convertase PC2. REGULATORY PEPTIDES 2003; 111:111-6. [PMID: 12609757 DOI: 10.1016/s0167-0115(02)00262-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The neuroendocrine secretory protein chromogranin A (CgA) is a precursor for various biologically active peptides. Several single and paired basic residues are present within its primary amino acid sequence comprising cleavage sites for prohormone convertases. In this study, SH-SY5Y human neuroblastoma cells were stably transfected with the prohormone convertase PC2 to analyse the proteolytic processing of endogenous chromogranin A and, in particular, the formation of the chromogranin-A-derived peptide GE-25. Our analyses revealed a significant change in the pattern of proteolytic conversion of chromogranin A in cells expressing PC2. Mock-transfected control cells contained mainly the intact chromogranin A molecule and hardly any shorter products were found. On the other hand, PC2-transfected cells showed extensive processing of chromogranin A, resulting in significantly lower amounts of the intact precursor and especially high levels of the free peptide GE-25.
Collapse
Affiliation(s)
- Alfred Doblinger
- Department of Pharmacology, University of Innsbruck, Peter-Mayr-Strasse 1a, A-6020, Innsbruck, Austria
| | | | | | | |
Collapse
|
5
|
Huttunen HJ, Kuja-Panula J, Rauvala H. Receptor for advanced glycation end products (RAGE) signaling induces CREB-dependent chromogranin expression during neuronal differentiation. J Biol Chem 2002; 277:38635-46. [PMID: 12167613 DOI: 10.1074/jbc.m202515200] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Receptor for advanced glycation end products (RAGE) mediates neurite outgrowth and cell migration upon stimulation with its ligand, amphoterin. We show here that RAGE-dependent changes in cell morphology are associated with proliferation arrest and changes in gene expression in neuroblastoma cells. Chromogranin B, a component of secretory vesicles in endocrine cells and neurons, was found to be up-regulated by RAGE signaling during differentiation of neuroblastoma cells along with the two other members of the chromogranin family, chromogranin A and secretogranin II. Ligation of RAGE by amphoterin lead to rapid phosphorylation and nuclear localization of cyclic AMP response element-binding protein (CREB), a major regulator of chromogranin expression. Furthermore, inhibition of ERK1/2-Rsk2-dependent CREB phosphorylation efficiently inhibited up-regulation of chromogranin gene expression upon RAGE activation. To further study the effects of RAGE and amphoterin on cellular differentiation, we stimulated embryonic stem cells expressing RAGE or a signaling-deficient mutant of RAGE with amphoterin. Amphoterin was found to promote RAGE-dependent neuronal differentiation of embryonic stem cells characterized by up-regulation of neuronal markers light neurofilament protein and beta-III-tubulin, activation of CREB, and increased expression of chromogranins A and B. These data suggest that RAGE signaling is capable of driving neuronal differentiation involving CREB activation and induction of chromogranin expression.
Collapse
Affiliation(s)
- Henri J Huttunen
- Programme of Molecular Neurobiology, Institute of Biotechnology and the Department of Biosciences, University of Helsinki, Helsinki FIN-00014, Finland.
| | | | | |
Collapse
|
6
|
Hofsli E, Thommesen L, Nørsett K, Falkmer S, Syversen U, Sandvik A, Laegreid A. Expression of chromogranin A and somatostatin receptors in pancreatic AR42J cells. Mol Cell Endocrinol 2002; 194:165-73. [PMID: 12242039 DOI: 10.1016/s0303-7207(02)00131-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The exocrine pancreatic cell line AR42J is also known to display some neuroendocrine (NE) features. We have extended this fact by showing that AR42J cells express mRNA of chromogranin A (CgA), display immunoreactivity (IR) to CgA, and secrete its cleavage product pancreastatin. A sparse occurrence of typical NE secretion granules, together with only a faint IR to conventional NE markers, indicates that the NE cells are of a poorly differentiated type. CgA promoter reporter plasmid experiments showed that gastrin, epidermal growth factor, and phorbol 12-myristate 13-acetate, induce upregulation of CgA after 24 h. By RT-PCR, it was found that AR42J expresses all of the five subtypes of the somatostatin (SST) receptor (SSTR) family, except SSTR4. The existence of functional SSTRs was confirmed by showing that the SST analog octreotide could inhibit gastrin-induced proliferation. Thus, the AR42J cell line may function as a valuable experimental model to study the regulation of CgA and SSTRs in poorly differentiated NE tumor cells.
Collapse
Affiliation(s)
- Eva Hofsli
- Department of Physiology and Biomedical Engineering, Medisinsk Teknisk Senter, Norwegian University of Science and Technology, N-7489 Trondheim, Norway.
| | | | | | | | | | | | | |
Collapse
|
7
|
Wood WM, Sarapura VD, Dowding JM, Woodmansee WW, Haakinson DJ, Gordon DF, Ridgway EC. Early gene expression changes preceding thyroid hormone-induced involution of a thyrotrope tumor. Endocrinology 2002; 143:347-59. [PMID: 11796486 DOI: 10.1210/endo.143.2.8636] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Treatment with thyroid hormone (TH) results in shrinkage of a thyrotropic tumor grown in a hypothyroid host. We used microarray and Northern analysis to assess the changes in gene expression that preceded tumor involution. Of the 1,176 genes on the microarray, 7 were up-regulated, whereas 40 were decreased by TH. Many of these were neuroendocrine in nature and related to growth or apoptosis. When we examined transcripts for cell cycle regulators only cyclin-dependent kinase 2, cyclin A and p57 were down-regulated, whereas p15 was induced by TH. Retinoblastoma protein, c-myc, and mdm2 were unchanged, but E2F1 was down-regulated. TH also decreased expression of brain-derived neurotrophic factor, its receptor trkB, and the receptor for TRH. These, in addition to two other genes, neuronatin and PB cadherin, which were up- and down-regulated, respectively, showed a more rapid response to TH than the cell cycle regulators and may represent direct targets of TH. Finally, p19ARF was dramatically induced by TH, and although this protein can stabilize p53 by sequestering mdm2, we found no increase in p53 protein up to 48 h of treatment. In summary, we have described early changes in the expression of genes that may play a role in TH-induced growth arrest of a thyrotropic tumor. These include repression of specific growth factor and receptors and cell cycle genes as well as induction of other factors associated with growth arrest and apoptosis.
Collapse
Affiliation(s)
- William M Wood
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| | | | | | | | | | | | | |
Collapse
|
8
|
Bauer R, Hoflehner J, Doblinger A, Kapeller I, Laslop A. Regulation of the biosynthesis and processing of chromogranins in organotypic slices: influence of depolarization, forskolin and differentiating factors. Eur J Neurosci 2000; 12:2746-56. [PMID: 10971617 DOI: 10.1046/j.1460-9568.2000.00157.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Slices from rat hippocampus in organotypic culture were used to study the biosynthesis regulation of chromogranins A and B and secretogranin II. Additionally, we investigated the proteolytic conversion of secretogranin II and the levels of prohormone convertases putatively involved. Forskolin treatment and depolarization with potassium plus BayK 8644 led to significant increases in secretogranin II mRNA in the principal cells of the hippocampus. Enhanced expression of secretogranin II was also reflected by a rise in peptide levels. Despite this induction of biosynthesis the extensive processing to secretoneurin normally observed in brain was maintained. Both forskolin and depolarization upregulated the prohormone convertase (PC)1, but not PC2, indicating that PC1 levels are critical for secretoneurin production under stimulating conditions. Results obtained for chromogranins A and B were less consistent. For chromogranin A mRNA, changes were restricted to granule cells; for chromogranin B, a response in granule cells was observed to depolarization but not to forskolin, and effects in pyramidal neurons were weak. Accordingly, we were unable to detect alterations in chromogranin A and B protein levels. Furthermore, we tested several neurotrophic growth factors and found that only basic fibroblast growth factor raised secretogranin II expression without affecting chromogranins A and B. The hippocampal slice preparation allowed well controlled treatment with identification of neuronal subpopulations and yielded data largely matching experiments in vivo and in cell culture. The pronounced regulation of secretogranin II and its effective processing underlines the importance of the resulting peptide secretoneurin as an active neuropeptide in the nervous system.
Collapse
Affiliation(s)
- R Bauer
- Department of Pharmacology, University of Innsbruck, Peter-Mayr-Strasse 1a, A-6020 Innsbruck, Austria
| | | | | | | | | |
Collapse
|