1
|
The C-terminal domain of the heavy chain of tetanus toxin prevents the oxidative and nitrosative stress induced by acute toxicity of 1-methyl-4-phenylpyridinium, a rat model of Parkinson's disease. Neurosci Res 2021; 174:36-45. [PMID: 34453989 DOI: 10.1016/j.neures.2021.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/11/2021] [Accepted: 08/22/2021] [Indexed: 12/21/2022]
Abstract
The recombinant carboxyl-terminal domain of the heavy chain of tetanus toxin (Hc-TeTx) exerts neuroprotective and neurorestorative effects on the dopaminergic system of animal models of Parkinson's disease (PD). The present study aimed to determine the effect of the Hc-TeTx fragment on the markers of oxidative stress and nitrosative stress generated by the acute toxicity of 1-methyl-4-phenylpyridinium (MPP+). For this purpose, the Hc-TeTx fragment was administered once a day in three 20 μg/kg consecutive injections into the grastrocnemius muscle of the rats, with an intra-striatal unilateral injection of 1 μL of MPP+ [10 μg/mL] then administered in order to cause a dopaminergic lesion. The results obtained show that the rats treated with Hc-TeTx plus MPP+ presented an increase in the expression of tyrosine hydroxylase (TH), a significantly greater decrease in the levels of the markers of oxidative stress, nitrosative stress, and neurodegeneration than that observed for the group injured with only MPP+. Moreover, it was observed that total superoxide dismutase (SOD) and copper/zinc SOD activity increased with the administration of Hc-TeTx. Finally, immunoreactivity levels were observed to decrease for the levels of 3-nitrotyrosine and the glial fibrillary acidic protein in the ipsilateral striatum of the rats treated with Hc-TeTx plus MPP+, in contrast with those lesioned with MPP+ alone. Our results demonstrate that the recombinant Hc-TeTx fragment may be a potent antioxidant and, therefore, could be suggested as a therapeutic tool against the dopaminergic neuronal impairment observed in the early stages of PD.
Collapse
|
2
|
Moreno-Galarza N, Mendieta L, Palafox-Sánchez V, Herrando-Grabulosa M, Gil C, Limón DI, Aguilera J. Peripheral Administration of Tetanus Toxin Hc Fragment Prevents MPP+ Toxicity In Vivo. Neurotox Res 2018; 34:47-61. [DOI: 10.1007/s12640-017-9853-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 12/08/2017] [Accepted: 12/11/2017] [Indexed: 01/13/2023]
|
3
|
Choi DK, Kim IS, Do JH. Signaling pathway analysis of MPP+-treated human neuroblastoma SH-SY5Y cells. BIOTECHNOL BIOPROC E 2014. [DOI: 10.1007/s12257-013-0754-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Li MY, Lai FJ, Hsu LJ, Lo CP, Cheng CL, Lin SR, Lee MH, Chang JY, Subhan D, Tsai MS, Sze CI, Pugazhenthi S, Chang NS, Chen ST. Dramatic co-activation of WWOX/WOX1 with CREB and NF-kappaB in delayed loss of small dorsal root ganglion neurons upon sciatic nerve transection in rats. PLoS One 2009; 4:e7820. [PMID: 19918364 PMCID: PMC2771921 DOI: 10.1371/journal.pone.0007820] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 10/17/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Tumor suppressor WOX1 (also named WWOX or FOR) is known to participate in neuronal apoptosis in vivo. Here, we investigated the functional role of WOX1 and transcription factors in the delayed loss of axotomized neurons in dorsal root ganglia (DRG) in rats. METHODOLOGY/PRINCIPAL FINDINGS Sciatic nerve transection in rats rapidly induced JNK1 activation and upregulation of mRNA and protein expression of WOX1 in the injured DRG neurons in 30 min. Accumulation of p-WOX1, p-JNK1, p-CREB, p-c-Jun, NF-kappaB and ATF3 in the nuclei of injured neurons took place within hours or the first week of injury. At the second month, dramatic nuclear accumulation of WOX1 with CREB (>65% neurons) and NF-kappaB (40-65%) occurred essentially in small DRG neurons, followed by apoptosis at later months. WOX1 physically interacted with CREB most strongly in the nuclei as determined by FRET analysis. Immunoelectron microscopy revealed the complex formation of p-WOX1 with p-CREB and p-c-Jun in vivo. WOX1 blocked the prosurvival CREB-, CRE-, and AP-1-mediated promoter activation in vitro. In contrast, WOX1 enhanced promoter activation governed by c-Jun, Elk-1 and NF-kappaB. WOX1 directly activated NF-kappaB-regulated promoter via its WW domains. Smad4 and p53 were not involved in the delayed loss of small DRG neurons. CONCLUSIONS/SIGNIFICANCE Rapid activation of JNK1 and WOX1 during the acute phase of injury is critical in determining neuronal survival or death, as both proteins functionally antagonize. In the chronic phase, concurrent activation of WOX1, CREB, and NF-kappaB occurs in small neurons just prior to apoptosis. Likely in vivo interactions are: 1) WOX1 inhibits the neuroprotective CREB, which leads to eventual neuronal death, and 2) WOX1 enhances NF-kappaB promoter activation (which turns to be proapoptotic). Evidently, WOX1 is the potential target for drug intervention in mitigating symptoms associated with neuronal injury.
Collapse
Affiliation(s)
- Meng-Yen Li
- Department of Cell Biology & Anatomy, National Cheng Kung
University Medical College, Tainan, Taiwan
| | - Feng-Jie Lai
- Department of Dermatology, Chi-Mei Medical Center, Tainan,
Taiwan
| | - Li-Jin Hsu
- Department of Microbiology & Immunology, National Cheng Kung
University Medical College, Tainan, Taiwan
- Center for Gene Regulation and Signal Transduction Research, National
Cheng Kung University Medical College, Tainan, Taiwan
| | - Chen-Peng Lo
- Department of Cell Biology & Anatomy, National Cheng Kung
University Medical College, Tainan, Taiwan
- Institute of Basic Medical Science, National Cheng Kung University
Medical College, Tainan, Taiwan
| | - Ching-Li Cheng
- Institute of Basic Medical Science, National Cheng Kung University
Medical College, Tainan, Taiwan
| | - Sing-Ru Lin
- Institute of Molecular Medicine, National Cheng Kung University Medical
College, Tainan, Taiwan
| | - Ming-Hui Lee
- Institute of Molecular Medicine, National Cheng Kung University Medical
College, Tainan, Taiwan
| | - Jean-Yun Chang
- Institute of Molecular Medicine, National Cheng Kung University Medical
College, Tainan, Taiwan
| | - Dudekula Subhan
- Institute of Molecular Medicine, National Cheng Kung University Medical
College, Tainan, Taiwan
| | - Ming-Shu Tsai
- Putz General Hospital, Department of Health, Executive Yuan, Chiayi,
Taiwan
| | - Chun-I Sze
- Department of Cell Biology & Anatomy, National Cheng Kung
University Medical College, Tainan, Taiwan
| | - Subbiah Pugazhenthi
- Department of Medicine, University of Colorado at Denver and Health
Sciences Center, Aurora, Colorado, United States of America
| | - Nan-Shan Chang
- Center for Gene Regulation and Signal Transduction Research, National
Cheng Kung University Medical College, Tainan, Taiwan
- Institute of Basic Medical Science, National Cheng Kung University
Medical College, Tainan, Taiwan
- Institute of Molecular Medicine, National Cheng Kung University Medical
College, Tainan, Taiwan
- Department of Neuroscience and Physiology, SUNY Upstate Medical
University, Syracuse, New York, United States of America
| | - Shur-Tzu Chen
- Department of Cell Biology & Anatomy, National Cheng Kung
University Medical College, Tainan, Taiwan
- Department of Dermatology, Chi-Mei Medical Center, Tainan,
Taiwan
| |
Collapse
|
5
|
Lo CP, Hsu LJ, Li MY, Hsu SY, Chuang JI, Tsai MS, Lin SR, Chang NS, Chen ST. MPP+-induced neuronal death in rats involves tyrosine 33 phosphorylation of WW domain-containing oxidoreductase WOX1. Eur J Neurosci 2008; 27:1634-46. [PMID: 18371080 DOI: 10.1111/j.1460-9568.2008.06139.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
WW domain-containing oxidoreductase (named WWOX, FOR or WOX1) is a pro-apoptotic protein and tumor suppressor. Animals treated with dopaminergic neurotoxin 1-methyl-4-phenyl-pyridinium (MPP+) develop Parkinson's disease (PD)-like symptoms. Here we investigated whether WOX1 is involved in MPP+-induced neurodegeneration. Upon insult with MPP+ in rat brains, WOX1 protein was upregulated and phosphorylated at Tyr33 (or activated) in the injured neurons in the striatum and cortex ipsilaterally to intoxication, as determined by immunohistochemistry and Western blotting. Also, WOX1 was present in the condensed nuclei and damaged mitochondria of degenerative neurons, as revealed by transmission immunoelectron microscopy. Time-lapse microscopy revealed that MPP+ induced membrane blebbing and shrinkage of neuroblastoma SK-N-SH cells. Dominant-negative WOX1, a potent inhibitor of Tyr33 phosphorylation, abolished this event, indicating a critical role of the phosphorylation in apoptosis. c-Jun N-terminal kinase (JNK1) is known to bind and counteract the apoptotic function of WOX1. Suppression of JNK1 function by a dominant-negative spontaneously induced WOX1 activation. WOX1 physically interacted with JNK1 in SK-N-SH cells and rat brain extracts. MPP+ rapidly increased the binding, followed by dissociation, which is probably needed for WOX1 to exert apoptosis. We synthesized a short Tyr33-phosphorylated WOX1 peptide (11 amino acid residues). Interestingly, this peptide blocked MPP+-induced neuronal death in the rat brains, whereas non-phospho-WOX1 peptide had no effect. Together, activated WOX1 plays an essential role in the MPP+-induced neuronal death. Our synthetic phospho-WOX1 peptide prevents neuronal death, suggestive of its therapeutic potential in mitigating the symptoms of PD.
Collapse
Affiliation(s)
- Chen-Peng Lo
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan 70101, ROC
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Kim SY, Kim MY, Mo JS, Park JW, Park HS. SAG protects human neuroblastoma SH-SY5Y cells against 1-methyl-4-phenylpyridinium ion (MPP+)-induced cytotoxicity via the downregulation of ROS generation and JNK signaling. Neurosci Lett 2007; 413:132-6. [PMID: 17240529 DOI: 10.1016/j.neulet.2006.11.074] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Revised: 11/07/2006] [Accepted: 11/24/2006] [Indexed: 10/23/2022]
Abstract
Sensitive to apoptosis gene (SAG), a novel zinc RING finger protein, exhibits anti-apoptotic and antioxidant activity against a variety of redox reagents. In the present study, we have determined that SAG suppresses 1-methyl-4-phenylpyridinium ion (MPP(+))-induced neurotoxicity via the downregulation of ROS generation and c-Jun N-terminal kinase 1 (JNK1) activity. Both transient and constitutively overexpressed SAG were found to inhibit the MPP(+)-induced neurotoxicity of SH-SY5Y neuroblastoma cells. In the SAG-expressing cells, MPP(+) induced ROS generation was suppressed to a significant degree as compared to the cells treated only with MPP(+). MPP(+)-induced JNK1 activation was also determined to be suppressed markedly by SAG. Furthermore, SAG inhibits MEKK1 dependent c-Jun transcription activity in SH-SY5Y cells. Thus, we concluded that SAG is a cellular protective molecule, which appears to function as an antioxidant, suppressing MPP(+)-induced neurotoxicity.
Collapse
Affiliation(s)
- Sun-Yee Kim
- Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Yongbong-dong, Buk-ku, Gwangju 500-757, Republic of Korea
| | | | | | | | | |
Collapse
|
7
|
Arango-Dávila CA, Cardona-Gomez GP, Gallego-Gomez JC, Garcia-Segura LM, Pimienta HJ. Down-regulation of Bcl-2 in rat substantia nigra after focal cerebral ischemia. Neuroreport 2004; 15:1437-41. [PMID: 15194869 DOI: 10.1097/01.wnr.0000131010.74494.75] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
After occlusion of the middle cerebral artery in rats, a robust neuronal loss occurs in the ipsilateral substantia nigra reticulata. In this study we have assessed whether degeneration of the substantia nigra is accompanied by changes in the expression of the anti-apoptotic protein Bcl-2. Neuronal loss was assessed by neuronal nuclei (NeuN) immunoreactivity. A significant decrease of Bcl-2 expression was observed in the substantia nigra 12, 24 and 72 h after middle cerebral artery occlusion. These results suggest that the secondary neuronal loss in the substantia nigra could be related with the modification of proteins regulating programmed cell death. Exo-focal cell death may explain the appearance of neuropsychiatric symptoms that are not correlated with the primary site of lesion.
Collapse
Affiliation(s)
- Cesar A Arango-Dávila
- Centro de Estudios Cerebrales, Health Faculty, Universidad del Valle, calle 4B No 36-00, San Fernando, Santiago de Cali, Colombia
| | | | | | | | | |
Collapse
|
8
|
Chen ST, Chuang JI, Wang JP, Tsai MS, Li H, Chang NS. Expression of WW domain-containing oxidoreductase WOX1 in the developing murine nervous system. Neuroscience 2004; 124:831-9. [PMID: 15026124 DOI: 10.1016/j.neuroscience.2003.12.036] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2003] [Indexed: 11/21/2022]
Abstract
WW domain-containing oxidoreductase WOX1, also known as WWOX or FOR, is a proapoptotic protein and a putative tumor suppressor. Hyaluronidases such as PH-20, Hyal-1 and Hyal-2 induce the expression of WOX1, and hyaluronidases and hyaluronan are involved in the embryonic development. In the present study, we document the expression of WOX1 in the developing murine nervous system. Immunohistochemical analysis revealed that WOX1 was differentially expressed in early dividing cells from all three germ layers from embryonic to perinatal stages. In murine fetuses, WOX1 was present prevalently in the brainstem, spinal cord and peripheral nerve bundles, but its expression decreased after birth. In parallel, the expression of WOX1, as determined by Western blotting, was significantly reduced in the brain stem and spinal cord of adult mice. Notably, high levels of WOX1 immunoreactivity was observed in the neural crest-derived structures such as cranial and spinal ganglia and cranial mesenchyme during the late fetal stage. In the adult brain, WOX1 is abundant in the epithelial cells of the choroids plexus and ependymal cells, while a low to moderate level of WOX1 is observed within white matter tracts, such as axonal profiles of the corpus callosum, striatum, optic tract, and cerebral peduncle. WOX1 is shown to mediate apoptosis synergistically with p53 in vitro. Nonetheless, the expression profiles of WOX1 were found to be similar in both p53 wild type and knockout mice, suggesting that WOX1 expression is not controlled by p53-mediated gene transcription. Taken together, in this study we have shown the expression and distribution of WOX1 in developing and adult murine nervous system. The potential role of WOX1 in the neuronal differentiation is discussed.
Collapse
Affiliation(s)
- S T Chen
- Department of Cell Biology and Anatomy, National Cheng Kung University, Tainan 701, Taiwan, ROC.
| | | | | | | | | | | |
Collapse
|
9
|
Chen ST, Hsu JR, Hsu PC, Chuang JI. The retina as a novel in vivo model for studying the role of molecules of the Bcl-2 family in relation to MPTP neurotoxicity. Neurochem Res 2003; 28:805-14. [PMID: 12718432 DOI: 10.1023/a:1023298604347] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
To determine the roles of different members of the family of B cell lymphoma protooncogene (Bcl-2) in relation to neurotoxin-induced neuronal degeneration, the pattern of the expression of a number of molecules of the Bcl-2 family was studied immunocytochemically in the retinas of C57BL/6J mice after intraperitoneal (IP) injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Three days to 12 weeks after MPTP treatment, a detectable reduction of tyrosine hydroxylase immunoreactivity in the amacrine cells was observed, with an increase of Bcl-2 expression in the Müller glial cells, and a de novo expression of Bad and Bax in the retinal ganglion cells, optic nerve fibers and plexiform layers. In contrast, a slight decrease of Bcl-x(L) immunoreactivity in the retinal ganglion cells was observed, whereas Bcl-x(S/L) immunoreactivity was increased slightly in the retinas of MPTP-treated mice compared with that of the controls. In animals that received MPTP injection, an increase in immunostaining of GFAP, glutamine synthetase, and Mac-1 (CD11b) in astrocytes, Müller cells, and microglia was invariably observed, indicating an activation or dysfunction of retinal glial cells. These findings are consistent with the current view that glial dysfunction is important in mediating the cytotoxic effect of a variety of neurotoxic molecules, including MPTP, and that different members of Bcl-2 family may have different roles as far as neuronal degeneration or neuroprotection is concerned.
Collapse
Affiliation(s)
- S T Chen
- Department of Anatomy, Graduate Institute of Cell Biology and Anatomy, Medical College, National Cheng Kung University, Taiwan, Republic of China.
| | | | | | | |
Collapse
|
10
|
Chen ST, Chuang JI, Hong MH, Li EIC. Melatonin attenuates MPP+-induced neurodegeneration and glutathione impairment in the nigrostriatal dopaminergic pathway. J Pineal Res 2002; 32:262-9. [PMID: 11982797 DOI: 10.1034/j.1600-079x.2002.01871.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this study we selected a rat model of Parkinson's disease (PD) by using intrastriatal infusion of the 1-methyl-4-phenyl-pyridinium ion (MPP+) to investigate the neuroprotective action of melatonin and its inhibitory activity on MPP+-impaired glutathione (GSH) system in the nigrostriatal system. Results show that MPP+ caused not only a severe neuronal injury in the striatum and in the ipsilateral substantia nigra (SN), but it also induced a significant decrease in GSH levels and an increase in the GSSG/GSH ratio 3 days after intrastriatal MPP+ infusion. Intraperitoneal co-administration of melatonin (10 mg/kg, five times) significantly attenuated MPP+-induced nigrostriatal neurotoxicity and GSH impairment. Depletion of cytosolic GSH by L-buthionine sulfoximine (BSO) did not cause neuronal damage by itself. It, however, when co-administrated with MPP+, potentiated the GSH reduction in the striatum, without aggravating nigrostriatal neurodegeneration induced by MPP+. Moreover, the MPP+-caused neuronal damage was positively correlated with a rising ratio of GSSG/GSH, but not with a drop of GSH. These results suggest that the MPP+-triggered oxidative stress may play a more important role than the loss of the antioxidant GSH in determining neuronal injury. Interestingly, the neuronal damage and oxidative stress elicited by co-treatment of BSO with MPP+ were effectively reduced by melatonin. Our results hence provide direct evidence showing that melatonin attenuates MPP+-induced nigrostriatal dopaminergic injury by its ability to impede the increase of GSSG/GSH ratio; therefore melatonin may have therapeutic implications in PD.
Collapse
Affiliation(s)
- Shur Tzu Chen
- Department of Anatomy, National Cheng Kung University, Tainan, Taiwan
| | | | | | | |
Collapse
|