1
|
Qi F, Meng K, Zhao X, Lv J, Huang L, Fan X, Feng Z. Targeting gut microbiota: a potential therapeutic approach for tumor microenvironment in glioma. Front Neurol 2025; 16:1549465. [PMID: 40183013 PMCID: PMC11965986 DOI: 10.3389/fneur.2025.1549465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 03/03/2025] [Indexed: 04/05/2025] Open
Abstract
Glioma, being one of the malignant tumors with the highest mortality rate globally, has an unclear pathogenesis, and the existing treatment effects still have certain limitations. The tumor microenvironment (TME) plays an important role in the occurrence, development, and recurrence of glioma. As one of the important regulatory factors of TME, the gut microbiota can regulate the progression of glioma not only by interacting with the brain through the brain-gut axis but also by influencing the tumor immune microenvironment (TIME) and inflammatory microenvironment. Recent studies have identified the gut microbiota and TME as potential therapeutic targets for glioma. This paper aims to summarize the role of the gut microbiota in TME, the association between them and glioma, and the potential of developing new intervention measures by targeting the gut microbiota. Understanding the involvement process of the gut microbiota in glioma may pave the way for the development of effective treatment methods that can regulate TME and prevent disease progression.
Collapse
Affiliation(s)
- Fan Qi
- College of Integrated Traditional and Western Medicine, Shaanxi University of Chinese Medicine, Shaanxi, China
| | - Kaiqiang Meng
- College of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Shaanxi, China
| | - Xiaoping Zhao
- Neurosurgery Department of the Encephalopathy Hospital, Affiliated Hospital of Shaanxi University of Chinese Medicine, Shaanxi, China
| | - Jing Lv
- College of Integrated Traditional and Western Medicine, Shaanxi University of Chinese Medicine, Shaanxi, China
| | - Lan Huang
- College of Integrated Traditional and Western Medicine, Shaanxi University of Chinese Medicine, Shaanxi, China
| | - Xiaoxuan Fan
- College of Integrated Traditional and Western Medicine, Shaanxi University of Chinese Medicine, Shaanxi, China
| | - Zhaoqun Feng
- Neurosurgery Department of the Encephalopathy Hospital, Affiliated Hospital of Shaanxi University of Chinese Medicine, Shaanxi, China
| |
Collapse
|
2
|
Melamed E, Palmer JL, Fonken C. Advantages and limitations of experimental autoimmune encephalomyelitis in breaking down the role of the gut microbiome in multiple sclerosis. Front Mol Neurosci 2022; 15:1019877. [PMID: 36407764 PMCID: PMC9672668 DOI: 10.3389/fnmol.2022.1019877] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/11/2022] [Indexed: 08/22/2023] Open
Abstract
Since the first model of experimental autoimmune encephalomyelitis (EAE) was introduced almost a century ago, there has been an ongoing scientific debate about the risks and benefits of using EAE as a model of multiple sclerosis (MS). While there are notable limitations of translating EAE studies directly to human patients, EAE continues to be the most widely used model of MS, and EAE studies have contributed to multiple key breakthroughs in our understanding of MS pathogenesis and discovery of MS therapeutics. In addition, insights from EAE have led to a better understanding of modifiable environmental factors that can influence MS initiation and progression. In this review, we discuss how MS patient and EAE studies compare in our learning about the role of gut microbiome, diet, alcohol, probiotics, antibiotics, and fecal microbiome transplant in neuroinflammation. Ultimately, the combination of rigorous EAE animal studies, novel bioinformatic approaches, use of human cell lines, and implementation of well-powered, age- and sex-matched randomized controlled MS patient trials will be essential for improving MS patient outcomes and developing novel MS therapeutics to prevent and revert MS disease progression.
Collapse
Affiliation(s)
- Esther Melamed
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, United States
| | | | | |
Collapse
|
3
|
Exploring the Role of Nutraceuticals in Major Depressive Disorder (MDD): Rationale, State of the Art and Future Prospects. Pharmaceuticals (Basel) 2021; 14:ph14080821. [PMID: 34451918 PMCID: PMC8399392 DOI: 10.3390/ph14080821] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023] Open
Abstract
Major depressive disorder (MDD) is a complex and common disorder, with many factors involved in its onset and development. The clinical management of this condition is frequently based on the use of some pharmacological antidepressant agents, together with psychotherapy and other alternatives in most severe cases. However, an important percentage of depressed patients fail to respond to the use of conventional therapies. This has created the urgency of finding novel approaches to help in the clinical management of those individuals. Nutraceuticals are natural compounds contained in food with proven benefits either in health promotion or disease prevention and therapy. A growing interest and economical sources are being placed in the development and understanding of multiple nutraceutical products. Here, we summarize some of the most relevant nutraceutical agents evaluated in preclinical and clinical models of depression. In addition, we will also explore less frequent but interest nutraceutical products which are starting to be tested, also evaluating future roads to cover in order to maximize the benefits of nutraceuticals in MDD.
Collapse
|
4
|
Prokopiou E, Kolovos P, Georgiou C, Kalogerou M, Potamiti L, Sokratous K, Kyriacou K, Georgiou T. Omega-3 fatty acids supplementation protects the retina from age-associated degeneration in aged C57BL/6J mice. BMJ Open Ophthalmol 2019; 4:e000326. [PMID: 31799410 PMCID: PMC6861077 DOI: 10.1136/bmjophth-2019-000326] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/28/2019] [Accepted: 09/22/2019] [Indexed: 11/03/2022] Open
Abstract
Objective To evaluate the therapeutic effects of omega-3 (ω3) fatty acids in the retina of aged mice when the blood arachidonic acid (AA)/eicosapentaenoic acid (EPA) ratio is maintained between 1.0 and 1.5. Methods and analysis Aged (24-month-old) wild-type C57BL/6J mice were allocated to two groups: ω3 treated and untreated. Treatment with ω3 was by daily gavage administration of EPA and docosahexaenoic acid for 60 days. Gas chromatography was used to identify and quantify fatty acids in the blood and retina. To count lipofuscin granules and measure the photoreceptor layer, eyecups were examined histologically using transmission electron microscopy and light microscopy. We also analysed eyecups using mass spectrometry-based proteomics. Results AA levels were lower, and EPA levels were higher, in the blood and retinas of the ω3-treated group than in the untreated group, resulting in a lower AA/EPA ratio. The ω3-treated group also showed significantly fewer lipofuscin granules and a thicker outer nuclear layer than the untreated group. Proteomic analysis revealed significantly greater expression of myelin basic protein, myelin regulatory factor-like protein, myelin proteolipid protein and glial fibrillar acidic protein in the ω3-treated group than in the untreated group. Three different pathways were significantly affected by ω3 treatment: fatty acid elongation, biosynthesis of unsaturated fatty acids and metabolic pathways. Conclusion Two months of ω3 supplementation (when the blood AA/EPA~1.0-1.5) in aged mice reduced lipofuscin granule formation in the retina and protected the photoreceptor layer, suggesting that ω3 supplementation slows normal age-related retinal degeneration.
Collapse
Affiliation(s)
- Ekatherine Prokopiou
- Ophthalmos Research and Educational Institute, Nicosia, Cyprus.,University of Nicosia Medical School, Nicosia, Cyprus
| | | | | | - Maria Kalogerou
- Ophthalmos Research and Educational Institute, Nicosia, Cyprus
| | - Louiza Potamiti
- Department of Electron Microscopy/Molecular Pathology, Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Kleitos Sokratous
- Department of Electron Microscopy/Molecular Pathology, Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,Bioinformatics Group, Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Kyriacos Kyriacou
- Department of Electron Microscopy/Molecular Pathology, Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,The Cyprus School of Molecular Medicine, Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Tassos Georgiou
- Ophthalmos Research and Educational Institute, Nicosia, Cyprus
| |
Collapse
|
5
|
Sharma K, Singh J, Pillai PP. MeCP2 Differentially Regulate the Myelin MBP and PLP Protein Expression in Oligodendrocytes and C6 Glioma. J Mol Neurosci 2018; 65:343-350. [DOI: 10.1007/s12031-018-1112-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/25/2018] [Indexed: 12/21/2022]
|
6
|
Rossi M, Spichty M, Attorri L, Distante C, Nervi C, Salvati S, Vitelli L. Eicosapentaenoic acid modulates the synergistic action of CREB1 and ID/E2A family members in the rat pup brain and mouse embryonic stem cells. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2017; 1860:870-884. [PMID: 28666847 DOI: 10.1016/j.bbagrm.2017.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/01/2017] [Accepted: 06/20/2017] [Indexed: 12/13/2022]
Abstract
The aim of this study was to investigate the molecular mechanism by which eicosapentaenoic acid (EPA) may exert neuroprotective effects through an "EPA-cyclic AMP response element-binding protein (CREB)" signaling pathway. The current study reveals that EPA modulates the exquisite interplay of interaction of CREB1 with the inhibitor of DNA binding (ID) and E2A family members, thereby delivering mechanistic insights into specific neural differentiation program. In this scenario, our work provides evidence for the capability of CREB1 to sequester ID:E2A family members in brain tissues and neural differentiating mouse embryonic stem cells (mESCs) through formation of a [CREB1]2:ID2:E47 tetrameric complex.In essence, the molecular function of CREB1 is to dynamically regulate the location-specific assembly or disassembly of basic-helix-loop-helix (bHLH):HLH protein complexes to mediate the activation of neural/glial target genes. Together, these findings support the one-to-many binding mechanism of CREB1 and indicate that EPA treatment potentiates the integration of CREB dependent signaling with HLH/bHLH transcriptional network, adding specificity to the CREB1-mediated gene regulation during neural/glial differentiation. Our current research on the EPA-CREB axis could reveal new molecular targets for treating neurogenerative disease.
Collapse
Affiliation(s)
- Maurizio Rossi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Martin Spichty
- Laboratory of Biology and Modelling of the Cell, Lyon University, ENS Lyon, University Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 allée d'Italie, Site Jacques Monod, F-69007 Lyon, France
| | - Lucilla Attorri
- Department of Public Veterinary Health and Food Safety, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Chiara Distante
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Clara Nervi
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Corso della Repubblica 79, 04100, Latina, Italy
| | - Serafina Salvati
- Department of Public Veterinary Health and Food Safety, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Luigi Vitelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
7
|
Augusto RL, Isaac AR, Silva-Júnior IID, Santana DFD, Ferreira DJS, Lagranha CJ, Gonçalves-Pimentel C, Rodrigues MCA, Andrade-da-Costa BLDS. Fighting Oxidative Stress: Increased Resistance of Male Rat Cerebellum at Weaning Induced by Low Omega 6/Omega 3 Ratio in a Protein-Deficient Diet. THE CEREBELLUM 2016; 16:103-117. [DOI: 10.1007/s12311-016-0773-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Barbosa DJ, Capela JP, de Lourdes Bastos M, Carvalho F. In vitro models for neurotoxicology research. Toxicol Res (Camb) 2015; 4:801-842. [DOI: 10.1039/c4tx00043a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
The nervous system has a highly complex organization, including many cell types with multiple functions, with an intricate anatomy and unique structural and functional characteristics; the study of its (dys)functionality following exposure to xenobiotics, neurotoxicology, constitutes an important issue in neurosciences.
Collapse
Affiliation(s)
- Daniel José Barbosa
- REQUIMTE (Rede de Química e Tecnologia)
- Laboratório de Toxicologia
- Departamento de Ciências Biológicas
- Faculdade de Farmácia
- Universidade do Porto
| | - João Paulo Capela
- REQUIMTE (Rede de Química e Tecnologia)
- Laboratório de Toxicologia
- Departamento de Ciências Biológicas
- Faculdade de Farmácia
- Universidade do Porto
| | - Maria de Lourdes Bastos
- REQUIMTE (Rede de Química e Tecnologia)
- Laboratório de Toxicologia
- Departamento de Ciências Biológicas
- Faculdade de Farmácia
- Universidade do Porto
| | - Félix Carvalho
- REQUIMTE (Rede de Química e Tecnologia)
- Laboratório de Toxicologia
- Departamento de Ciências Biológicas
- Faculdade de Farmácia
- Universidade do Porto
| |
Collapse
|
9
|
Di Biase A, Salvati S, Di Benedetto R, Attorri L, Martinelli A, Malchiodi F. Eicosapentaenoic acid pre-treatment reduces biochemical changes induced in total brain and myelin of weanling Wistar rats by cuprizone feeding. Prostaglandins Leukot Essent Fatty Acids 2014; 90:99-104. [PMID: 24360206 DOI: 10.1016/j.plefa.2013.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 11/25/2013] [Accepted: 11/28/2013] [Indexed: 12/31/2022]
Abstract
Recently, we investigated the effects of eicosapentaenoic acid (EPA), a fatty acid which modulates immune response and stimulates myelin gene expression, in an established model of multiple sclerosis (MS): the experimental autoimmune encephalomyelitis (EAE) induced in Dark Agouti rats. As scientific evidences and our previous studies have suggested that EPA could directly affect oligodendrocytes, we have now evaluated the effects of EPA in the non-immune mediate MS model characterized by selective oligodendrocytes damage induced by cuprizone (CPZ). We found that feeding weanling rats diets containing 0.6% CPZ for 2 weeks induced variation of whole brain and myelin biochemical composition representative of a severe myelin damage. We thus administered daily and by gavage EPA or PBS to 2-day old rats up to 21 days. Afterwards, rats were fed CPZ diet for 9 days. The results show that compared to PBS/CPZ fed rats, the whole brain cerebroside content in EPA pre-treated rats was statistically increased as well as there was an overall trend of increase of all other biochemical components.
Collapse
Affiliation(s)
- A Di Biase
- Department of Public Veterinary Health & Food Safety, Istituto Superiore di Sanità, Rome, Italy.
| | - S Salvati
- Department of Public Veterinary Health & Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - R Di Benedetto
- Department of Public Veterinary Health & Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - L Attorri
- Department of Public Veterinary Health & Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - A Martinelli
- Experimental Animal Welfare Sector, Istituto Superiore di Sanità, Rome, Italy
| | - F Malchiodi
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
10
|
Ethyl-eicosapentaenoic acid ameliorates the clinical course of experimental allergic encephalomyelitis induced in dark agouti rats. J Nutr Biochem 2013; 24:1645-54. [DOI: 10.1016/j.jnutbio.2013.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 12/17/2012] [Accepted: 02/06/2013] [Indexed: 11/21/2022]
|
11
|
Le Maux S, Giblin L, Croguennec T, Bouhallab S, Brodkorb A. β-Lactoglobulin as a molecular carrier of linoleate: characterization and effects on intestinal epithelial cells in vitro. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:9476-9483. [PMID: 22924475 DOI: 10.1021/jf3028396] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The dairy protein β-lactoglobulin (βlg) is known to bind hydrophobic ligands such as fatty acids. In the present work, we investigated the biological activity in vitro of linoleate once complexed to bovine βlg. Binding of linoleate (C18:2) to bovine βlg was achieved by heating at 60 °C for 30 min at pH 7.4, resulting in a linoleate/βlg molar binding stoichiometry of 1.1, 2.1, and 3.4. Two types of binding sites were determined by ITC titrations. Binding of linoleate induced the formation of covalent dimers and trimers of βlg. The LD(50) on Caco-2 cells after 24 h was 58 μM linoleate. However, cell viability was unaffected when 200 μM linoleate was presented to the Caco-2 cells as part of the βlg complex. The Caco-2 cells did not increase mRNA transcript levels of long chain fatty acid transport genes, FATP4 and FABPpm, or increase levels of the cAMP signal, in response to the presence of 50 μM linoleate alone or as part of the βlg complex. Therefore, it is proposed that βlg can act as a molecular carrier and alter the bioaccessibility of linoleate/linoleic acid.
Collapse
|
12
|
Roy J, Lefkimmiatis K, Moyer MP, Curci S, Hofer AM. The {omega}-3 fatty acid eicosapentaenoic acid elicits cAMP generation in colonic epithelial cells via a "store-operated" mechanism. Am J Physiol Gastrointest Liver Physiol 2010; 299:G715-22. [PMID: 20576916 PMCID: PMC2950681 DOI: 10.1152/ajpgi.00028.2010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Eicosapentaenoic acid (EPA) is an omega-3 polyunsaturated fatty acid abundant in fish oil that exerts a wide spectrum of documented beneficial health effects in humans. Because dietary interventions are relatively inexpensive and are widely assumed to be safe, they have broad public appeal. Their endorsement can potentially have a major impact on human health, but hard mechanistic evidence that specifies how these derivatives work at the cellular level is limited. EPA (50 microM) caused a small elevation of cytoplasmic Ca(2+) concentration ([Ca(2+)]) in intact NCM460 human colonic epithelial cells as measured by fura 2 and a profound drop of [Ca(2+)] within the endoplasmic reticulum (ER) of permeabilized cells as monitored by compartmentalized mag-fura 2. Total internal reflection fluorescence microscopy showed that this loss of ER store [Ca(2+)] led to translocation of the ER-resident transmembrane Ca(2+) sensor STIM1. Using sensitive FRET-based sensors for cAMP in single cells, we further found that EPA caused a substantial increase in cellular cAMP concentration, a large fraction of which was dependent on the drop in ER [Ca(2+)], but independent of cytosolic Ca(2+). An additional component of the EPA-induced cAMP signal was sensitive to the phosphodiesterase inhibitor isobutyl methylxanthine. We conclude that EPA slowly releases ER Ca(2+) stores, resulting in the generation of cAMP. The elevated cAMP is apparently independent of classical G protein-coupled receptor activation and is likely the consequence of a newly described "store-operated" cAMP signaling pathway that is mediated by STIM1.
Collapse
Affiliation(s)
- Jessica Roy
- 1Veterans Affairs Boston Healthcare System and the Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, West Roxbury, Massachusetts; and
| | - Konstantinos Lefkimmiatis
- 1Veterans Affairs Boston Healthcare System and the Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, West Roxbury, Massachusetts; and
| | | | - Silvana Curci
- 1Veterans Affairs Boston Healthcare System and the Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, West Roxbury, Massachusetts; and
| | - Aldebaran M. Hofer
- 1Veterans Affairs Boston Healthcare System and the Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, West Roxbury, Massachusetts; and
| |
Collapse
|
13
|
Anderson BM, Ma DWL. Are all n-3 polyunsaturated fatty acids created equal? Lipids Health Dis 2009; 8:33. [PMID: 19664246 PMCID: PMC3224740 DOI: 10.1186/1476-511x-8-33] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Accepted: 08/10/2009] [Indexed: 12/14/2022] Open
Abstract
N-3 Polyunsaturated fatty acids have been shown to have potential beneficial effects for chronic diseases including cancer, insulin resistance and cardiovascular disease. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in particular have been studied extensively, whereas substantive evidence for a biological role for the precursor, alpha-linolenic acid (ALA), is lacking. It is not enough to assume that ALA exerts effects through conversion to EPA and DHA, as the process is highly inefficient in humans. Thus, clarification of ALA's involvement in health and disease is essential, as it is the principle n-3 polyunsaturated fatty acid consumed in the North American diet and intakes of EPA and DHA are typically very low. There is evidence suggesting that ALA, EPA and DHA have specific and potentially independent effects on chronic disease. Therefore, this review will assess our current understanding of the differential effects of ALA, EPA and DHA on cancer, insulin resistance, and cardiovascular disease. Potential mechanisms of action will also be reviewed. Overall, a better understanding of the individual role for ALA, EPA and DHA is needed in order to make appropriate dietary recommendations regarding n-3 polyunsaturated fatty acid consumption.
Collapse
Affiliation(s)
- Breanne M Anderson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario N1G2W1 Canada.
| | | |
Collapse
|
14
|
Abstract
Ethyl-eicosapentaenoic acid (E-EPA) is an omega-3 fatty acid that has been used in a range of neuropsychiatric conditions with some benefits. However, its mechanism of action is unknown. Here, we investigate its effects on in vivo brain metabolism in first-episode psychosis (FEP). Proton magnetic resonance spectroscopy at 3 T was performed in the temporal lobes of 24 FEP patients before and after 12 weeks of treatment in the context of a larger double-blind, placebo-controlled E-EPA augmentation study. Treatment group effects for glutathione (F1,12=6.1, p=0.03), and a hemisphere-by-group interaction for glutamine/glutamate (F1,20=4.4, p=0.049) were found. Glutathione increased bilaterally and glutamate/glutamine increased in the left hemisphere following E-EPA administration. Improvement in negative symptoms correlated with metabolic brain changes, particularly glutathione (r=-0.57). These results suggest that E-EPA augmentation alters glutathione availability and modulates the glutamine/glutamate cycle in early psychosis, with some of the metabolic brain changes being correlated with negative symptom improvement. Larger confirmatory studies of these postulated metabolic brain effects of E-EPA are warranted.
Collapse
|
15
|
Salvati S, Natali F, Attorri L, Di Benedetto R, Leonardi F, Di Biase A, Ferri F, Fortuna S, Lorenzini P, Sanchez M, Ricceri L, Vitelli L. Eicosapentaenoic acid stimulates the expression of myelin proteins in rat brain. J Neurosci Res 2008; 86:776-84. [PMID: 17941053 DOI: 10.1002/jnr.21537] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have previously demonstrated that, in C6 glioma cells, eicosapentaenoic acid (EPA) stimulates the expression of proteolipid protein (PLP) via cAMP-mediated pathways. In this study, we investigated whether n-3 polyunsaturated fatty acids can affect myelinogenesis in vivo. A single dose of either EPA or docosahexaenoic acid (DHA) was injected intracerebroventricularly into 2-day-old rats, which were then killed after 3 days post-injection (p.i.). Total RNA was isolated from the medulla, cerebellum, and cortex, and the expression of myelin-specific mRNAs was analyzed by real-time PCR. The levels of PLP, myelin basic protein, and myelin oligodendrocyte protein mRNAs increased in nearly all brain regions of DHA- and EPA-treated animals, but the effect was more pronounced in EPA-treated rats. The enhancement in PLP transcript levels was followed by an increase in PLP translation in EPA-treated rats. A further indicator of accelerated myelination was the increase in 2'-3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) protein levels. In EPA-treated rats, the increased expression of myelin genes coincided with a decrease of cAMP-response element-binding protein (CREB)-DNA binding in the cerebellum and cortex (1 hr p.i.). After 16 hr, this effect was still present in the same cerebral regions even though the decrease in EPA-treated rats was less pronounced than in controls. The down-regulation of CREB activity was due to a decrease in the levels of CREB phosphorylation. In conclusion, our data suggest that EPA stimulates the expression of specific myelin proteins through decreased CREB phosphorylation. These results corroborate the clinical studies of the n-3 PUFA beneficial effects on several demyelinating diseases.
Collapse
Affiliation(s)
- Serafina Salvati
- Department of Food, Nutrition and Health, Istituto Superiore di Sanità, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Le-Niculescu H, McFarland MJ, Ogden CA, Balaraman Y, Patel S, Tan J, Rodd ZA, Paulus M, Geyer MA, Edenberg HJ, Glatt SJ, Faraone SV, Nurnberger JI, Kuczenski R, Tsuang MT, Niculescu AB. Phenomic, convergent functional genomic, and biomarker studies in a stress-reactive genetic animal model of bipolar disorder and co-morbid alcoholism. Am J Med Genet B Neuropsychiatr Genet 2008; 147B:134-66. [PMID: 18247375 DOI: 10.1002/ajmg.b.30707] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We had previously identified the clock gene D-box binding protein (Dbp) as a potential candidate gene for bipolar disorder and for alcoholism, using a Convergent Functional Genomics (CFG) approach. Here we report that mice with a homozygous deletion of DBP have lower locomotor activity, blunted responses to stimulants, and gain less weight over time. In response to a chronic stress paradigm, these mice exhibit a diametric switch in these phenotypes. DBP knockout mice are also activated by sleep deprivation, similar to bipolar patients, and that activation is prevented by treatment with the mood stabilizer drug valproate. Moreover, these mice show increased alcohol intake following exposure to stress. Microarray studies of brain and blood reveal a pattern of gene expression changes that may explain the observed phenotypes. CFG analysis of the gene expression changes identified a series of novel candidate genes and blood biomarkers for bipolar disorder, alcoholism, and stress reactivity.
Collapse
Affiliation(s)
- H Le-Niculescu
- Laboratory of Neurophenomics, Indiana University School of Medicine, Indianapolis, Indiana
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Natali F, Siculella L, Salvati S, Gnoni GV. Oleic acid is a potent inhibitor of fatty acid and cholesterol synthesis in C6 glioma cells. J Lipid Res 2007; 48:1966-75. [PMID: 17568062 DOI: 10.1194/jlr.m700051-jlr200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glial cells play a pivotal role in brain fatty acid metabolism and membrane biogenesis. However, the potential regulation of lipogenesis and cholesterologenesis by fatty acids in glial cells has been barely investigated. Here, we show that physiologically relevant concentrations of various saturated, monounsaturated, and polyunsaturated fatty acids significantly reduce [1-(14)C]acetate incorporation into fatty acids and cholesterol in C6 cells. Oleic acid was the most effective at depressing lipogenesis and cholesterologenesis; a decreased label incorporation into cellular palmitic, stearic, and oleic acids was detected, suggesting that an enzymatic step(s) of de novo fatty acid biosynthesis was affected. To clarify this issue, the activities of acetyl-coenzyme A carboxylase (ACC) and FAS were determined with an in situ digitonin-permeabilized cell assay after incubation of C6 cells with fatty acids. ACC activity was strongly reduced ( approximately 80%) by oleic acid, whereas no significant change in FAS activity was observed. Oleic acid also reduced the activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR). The inhibition of ACC and HMGCR activities is corroborated by the decreases in ACC and HMGCR mRNA abundance and protein levels. The downregulation of ACC and HMGCR activities and expression by oleic acid could contribute to the reduced lipogenesis and cholesterologenesis.
Collapse
Affiliation(s)
- Francesco Natali
- Laboratory of Biochemistry and Molecular Biology, Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | | | | | | |
Collapse
|
18
|
Frangou S, Lewis M, Wollard J, Simmons A. Preliminary in vivo evidence of increased N-acetyl-aspartate following eicosapentanoic acid treatment in patients with bipolar disorder. J Psychopharmacol 2007; 21:435-9. [PMID: 16891338 DOI: 10.1177/0269881106067787] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ethyl-eicosapentanoic acid (ethyl-EPA) may be beneficial in the treatment of bipolar disorder (BD) and may have a neurotrophic/neuroprotective role in patients with neuropsychiatric disorders. To investigate this we examined whether ethyl-EPA treatment of BD patients is associated with increased brain levels of N-acetylaspartate (NAA), a putative marker of neuronal integrity. Fourteen female BD outpatients with moderate depressive symptoms were administered 2 g of ethyl-EPA per day or placebo for 12 weeks in a randomized, double-blind fashion. Quantitative, proton magnetic resonance spectroscopy imaging data were obtained prior to randomization and after 12 weeks of treatment from a single 12 ml volume of interest centred above the body of the corpus callosum. A significant rise in NAA levels was observed in the ethyl-EPA treatment group compared with the placebo group (p = 0.027). These results provide the first evidence for a probable neurotrophic role of ethyl-EPA treatment in BD underlining the need for more detailed investigation of its mechanism of action and therapeutic potential.
Collapse
Affiliation(s)
- Sophia Frangou
- Section of Neurobiology of Psychosis, Institute of Psychiatry, Kings College London, London, UK.
| | | | | | | |
Collapse
|
19
|
Le-Niculescu H, Balaraman Y, Patel S, Tan J, Sidhu K, Jerome RE, Edenberg HJ, Kuczenski R, Geyer MA, Nurnberger JI, Faraone SV, Tsuang MT, Niculescu AB. Towards understanding the schizophrenia code: an expanded convergent functional genomics approach. Am J Med Genet B Neuropsychiatr Genet 2007; 144B:129-58. [PMID: 17266109 DOI: 10.1002/ajmg.b.30481] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Identifying genes for schizophrenia through classical genetic approaches has proven arduous. Here, we present a comprehensive convergent analysis that translationally integrates brain gene expression data from a relevant pharmacogenomic mouse model (involving treatments with a psychomimetic agent - phencyclidine (PCP), and an anti-psychotic - clozapine), with human genetic linkage data and human postmortem brain data, as a Bayesian strategy of cross validating findings. Topping the list of candidate genes, we have three genes involved in GABA neurotransmission (GABRA1, GABBR1, and GAD2), one gene involved in glutamate neurotransmission (GRIA2), one gene involved in neuropeptide signaling (TAC1), two genes involved in synaptic function (SYN2 and KCNJ4), six genes involved in myelin/glial function (CNP, MAL, MBP, PLP1, MOBP and GFAP), and one gene involved in lipid metabolism (LPL). These data suggest that schizophrenia is primarily a disorder of brain functional and structural connectivity, with GABA neurotransmission playing a prominent role. These findings may explain the EEG gamma band abnormalities detected in schizophrenia. The analysis also revealed other high probability candidates genes (neurotransmitter signaling, other structural proteins, ion channels, signal transduction, regulatory enzymes, neuronal migration/neurite outgrowth, clock genes, transcription factors, RNA regulatory genes), pathways and mechanisms of likely importance in pathophysiology. Some of the pathways identified suggest possible avenues for augmentation pharmacotherapy of schizophrenia with other existing agents, such as benzodiazepines, anticonvulsants and lipid modulating agents. Other pathways are new potential targets for drug development. Lastly, a comparison with our earlier work on bipolar disorder illuminates the significant molecular overlap between schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- H Le-Niculescu
- Laboratory of Neurophenomics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
McNamara RK, Ostrander M, Abplanalp W, Richtand NM, Benoit SC, Clegg DJ. Modulation of phosphoinositide-protein kinase C signal transduction by omega-3 fatty acids: implications for the pathophysiology and treatment of recurrent neuropsychiatric illness. Prostaglandins Leukot Essent Fatty Acids 2006; 75:237-57. [PMID: 16935483 DOI: 10.1016/j.plefa.2006.07.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The phosphoinositide (PI)-protein kinase C (PKC) signal transduction pathway is initiated by pre- and postsynaptic Galphaq-coupled receptors, and regulates several clinically relevant neurochemical events, including neurotransmitter release efficacy, monoamine receptor function and trafficking, monoamine transporter function and trafficking, axonal myelination, and gene expression. Mounting evidence for PI-PKC signaling hyperactivity in the peripheral (platelets) and central (premortem and postmortem brain) tissues of patients with schizophrenia, bipolar disorder, and major depressive disorder, coupled with evidence that PI-PKC signal transduction is down-regulated in rat brain following chronic, but not acute, treatment with antipsychotic, mood-stabilizer, and antidepressant medications, suggest that PI-PKC hyperactivity is central to an underlying pathophysiology. Evidence that membrane omega-3 fatty acids act as endogenous antagonists of the PI-PKC signal transduction pathway, coupled with evidence that omega-3 fatty acid deficiency is observed in peripheral and central tissues of patients with schizophrenia, bipolar disorder, and major depressive disorder, support the hypothesis that omega-3 fatty acid deficiency may contribute to elevated PI-PKC activity in these illnesses. The data reviewed in this paper outline a potential molecular mechanism by which omega-3 fatty acids could contribute to the pathophysiology and treatment of recurrent neuropsychiatric illness.
Collapse
Affiliation(s)
- Robert K McNamara
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0559, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Farooqui AA, Ong WY, Horrocks LA. Inhibitors of brain phospholipase A2 activity: their neuropharmacological effects and therapeutic importance for the treatment of neurologic disorders. Pharmacol Rev 2006; 58:591-620. [PMID: 16968951 DOI: 10.1124/pr.58.3.7] [Citation(s) in RCA: 247] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The phospholipase A(2) family includes secretory phospholipase A(2), cytosolic phospholipase A(2), plasmalogen-selective phospholipase A(2), and calcium-independent phospholipase A(2). It is generally thought that the release of arachidonic acid by cytosolic phospholipase A(2) is the rate-limiting step in the generation of eicosanoids and platelet activating factor. These lipid mediators play critical roles in the initiation and modulation of inflammation and oxidative stress. Neurological disorders, such as ischemia, spinal cord injury, Alzheimer's disease, multiple sclerosis, prion diseases, and epilepsy are characterized by inflammatory reactions, oxidative stress, altered phospholipid metabolism, accumulation of lipid peroxides, and increased phospholipase A(2) activity. Increased activities of phospholipases A(2) and generation of lipid mediators may be involved in oxidative stress and neuroinflammation associated with the above neurological disorders. Several phospholipase A(2) inhibitors have been recently discovered and used for the treatment of ischemia and other neurological diseases in cell culture and animal models. At this time very little is known about in vivo neurochemical effects, mechanism of action, or toxicity of phospholipase A(2) inhibitors in human or animal models of neurological disorders. In kainic acid-mediated neurotoxicity, the activities of phospholipase A(2) isoforms and their immunoreactivities are markedly increased and phospholipase A(2) inhibitors, quinacrine and chloroquine, arachidonyl trifluoromethyl ketone, bromoenol lactone, cytidine 5-diphosphoamines, and vitamin E, not only inhibit phospholipase A(2) activity and immunoreactivity but also prevent neurodegeneration, suggesting that phospholipase A(2) is involved in the neurodegenerative process. This also suggests that phospholipase A(2) inhibitors can be used as neuroprotectants and anti-inflammatory agents against neurodegenerative processes in neurodegenerative diseases.
Collapse
Affiliation(s)
- Akhlaq A Farooqui
- Department of Molecular and Cellular Biochemistry, The Ohio State University, 1645 Neil Avenue, Columbus, OH 43210-1218, USA
| | | | | |
Collapse
|