Shi YR, Gao L, Wang SH, Bu DF, Zhang BH, Jiang HF, Pang YZ, Tang CS. Inhibition of taurine transport by high concentration of glucose in cultured rat cardiomyocytes.
Metabolism 2003;
52:827-33. [PMID:
12870156 DOI:
10.1016/s0026-0495(03)00067-2]
[Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cultured rat cardiomyocytes were treated with 10, 20, and 30 mmol/L glucose and 30 mmol/L glucose plus protein kinase C (PKC) inhibitor, Chelerythrine. In the 20 and 30 mmol/L glucose-treated cells, taurine contents reduced by 15% and 27% (P<.05), respectively, taurine transporter (TAUT) mRNA levels reduced by 47% and 64% (P<.05), respectively, and cysteine sulfinate decarboxylase (CSD) mRNA reduced slightly, but not significantly. Time-dependent taurine uptakes reduced in the 10, 20, and 30 mmol/L glucose-treated cells, and time-dependent taurine release reduced in the 30 mmol/L glucose-treated cells. The Vmax of taurine transport decreased by 18%, 30%, and 35% (P<.05) in the 10, 20, and 30 mmol/L glucose-treated cells, respectively, while Km of taurine transport remained unchanged. When PKC inhibitor, Chelerythrine, combined with 30 mmol/L glucose was treated with the cells, the lowered taurine content, taurine uptake, taurine release, and Vmax of taurine transport caused by 30 mmol/L glucose were eliminated. These results demonstrate that high glucose considerably and specifically decreases intracellular taurine content, taurine transport activity, and TAUT mRNA, possibly through PKC-mediated transcriptional and posttranslational pathways.
Collapse