1
|
Myrum C, Moreno-Castilla P, Rapp PR. 'Arc'-hitecture of normal cognitive aging. Ageing Res Rev 2022; 80:101678. [PMID: 35781092 PMCID: PMC9378697 DOI: 10.1016/j.arr.2022.101678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 06/10/2022] [Accepted: 06/24/2022] [Indexed: 12/17/2022]
Abstract
Arc is an effector immediate-early gene that is critical for forming long-term memories. Since its discovery 25 years ago, it has repeatedly surprised us with a number of intriguing properties, including the transport of its mRNA to recently-activated synapses, its master role in bidirectionally regulating synaptic strength, its evolutionary retroviral origins, its ability to mediate intercellular transfer between neurons via extracellular vesicles (EVs), and its exceptional regulation-both temporally and spatially. The current review discusses how Arc has been used as a tool to identify the neural networks involved in cognitive aging and how Arc itself may contribute to cognitive outcome in aging. In addition, we raise several outstanding questions, including whether Arc-containing EVs in peripheral blood might provide a noninvasive biomarker for memory-related synaptic failure in aging, and whether rectifying Arc dysregulation is likely to be an effective strategy for bending the arc of aging toward successful cognitive outcomes.
Collapse
Affiliation(s)
- Craig Myrum
- Neurocognitive Aging Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Perla Moreno-Castilla
- Neurocognitive Aging Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Peter R Rapp
- Neurocognitive Aging Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
2
|
Bai D, Ma Y, Lv L, Wang Y, Yang W, Ma Y. Progranulin suppresses the age-dependent enhancement of neuronal activity in the hypothalamus. Neurosci Lett 2020; 720:134755. [PMID: 31945450 DOI: 10.1016/j.neulet.2020.134755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 11/17/2022]
Abstract
Our previous investigations revealed that progranulin (PGRN) is a lysosomal protein involved in hippocampal neurogenesis and neuroinflammation. However, the possible involvement of PGRN in regulating inflammatory response and mediating neuronal activity is still not well-defined. Here, we demonstrate that PGRN deficiency enhances the age-dependent increase of neuronal activity in the paraventricular nucleus (PVN) of the hypothalamus. Aging increased neuronal activity in the PVN of the hypothalamus, and PGRN deficiency enhanced the effects of age on hypothalamic neuronal activity. Aging increased the lysosomal biogenesis and inflammatory response in microglia, which was also aggravated in PGRN-knockout mice. Moreover, PGRN deficiency enhanced interleukin-1 beta and lysosomal genes levels. These results suggest that PGRN deficiency may enhance the age-dependent increase of neuronal activity possibly because PGRN facilitates immunological responses through regulating lysosomal function.
Collapse
Affiliation(s)
- Dongying Bai
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, PR China
| | - Yihong Ma
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Leyuan Lv
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, PR China
| | - Yun Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture, South China Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Wanqing Yang
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Yanbo Ma
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, PR China.
| |
Collapse
|
3
|
Myrum C, Rossi SL, Perez EJ, Rapp PR. Cortical network dynamics are coupled with cognitive aging in rats. Hippocampus 2019; 29:1165-1177. [PMID: 31334577 DOI: 10.1002/hipo.23130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/23/2019] [Accepted: 06/05/2019] [Indexed: 12/27/2022]
Abstract
Changes in neuronal network activity and increased interindividual variability in memory are among the most consistent features of growing older. Here, we examined the relationship between these hallmarks of aging. Young and aged rats were trained on a water maze task where aged individuals reliably display an increased range of spatial memory capacities relative to young. Two weeks later, neuronal activity was induced pharmacologically with a low dose of pilocarpine and control animals received vehicle. Activity levels were proxied by quantifying the immediate early gene products Arc and c-Fos. While no relationship was observed between basal, resting activity, and individual differences in spatial memory in any brain region, pilocarpine-induced marker expression was tightly coupled with memory in all areas of the prefrontal cortex (PFC) and hippocampus examined. The nature of this association, however, differed across regions and in relation to age-related cognitive outcome. Specifically, in the medial PFC, induced activity was greatest in aged rats with cognitive impairment and correlated with water maze performance across all subjects. In the hippocampus, the range of induced marker expression was comparable between groups and similarly coupled with memory in both impaired and unimpaired aged rats. Together the findings highlight that the dynamic range of neural network activity across multiple brain regions is a critical component of neurocognitive aging.
Collapse
Affiliation(s)
- Craig Myrum
- Laboratory of Behavioral Neuroscience, Neurocognitive Aging Section, National Institute on Aging, Baltimore, Maryland
| | - Sharyn L Rossi
- Laboratory of Behavioral Neuroscience, Neurocognitive Aging Section, National Institute on Aging, Baltimore, Maryland
| | - Evelyn J Perez
- Laboratory of Behavioral Neuroscience, Neurocognitive Aging Section, National Institute on Aging, Baltimore, Maryland
| | - Peter R Rapp
- Laboratory of Behavioral Neuroscience, Neurocognitive Aging Section, National Institute on Aging, Baltimore, Maryland
| |
Collapse
|
4
|
Haberman RP, Monasterio A, Branch A, Gallagher M. Aged rats with intact memory show distinctive recruitment in cortical regions relative to young adults in a cue mismatch task. Behav Neurosci 2019; 133:537-544. [PMID: 31246080 DOI: 10.1037/bne0000332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Similar to elderly humans, aged Long-Evans rats exhibit individual differences in performance on tasks that critically depend on the medial temporal lobe memory system. Although reduced memory performance is common, close to half of aged rats in this outbred rodent population perform within the range of young subjects, exhibiting a stable behavioral phenotype that may signal a resilience to memory decline. Increasing evidence from research on aging in the Long-Evans study population supports the existence of adaptive neural change rather than avoidance of detrimental effects of aging on the brain, indicating a malleability of brain function over the life span that may preserve optimal function. Augmenting prior work that centered on hippocampal function, the current study extends investigation to cortical regions functionally interconnected with the hippocampal formation, including medial temporal lobe cortices and posterior components of the default mode network. In response to an environmental manipulation that creates a mismatch in the expected cue orientation, aged rats with preserved memory show greater activation across an extended network of cortical regions as measured by immediate early gene expression. In contrast, young subjects, behaviorally similar to the aged rats in this study, show a more limited cortical response. This distinctive cortical recruitment in aged unimpaired rats, set against a background of comparable activation across hippocampal subregions, may represent adaptive cortical recruitment consistent with evidence in human studies of neurocognitive aging. (PsycINFO Database Record (c) 2019 APA, all rights reserved).
Collapse
|
5
|
Haberman RP, Koh MT, Gallagher M. Heightened cortical excitability in aged rodents with memory impairment. Neurobiol Aging 2017; 54:144-151. [PMID: 28104309 DOI: 10.1016/j.neurobiolaging.2016.12.021] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/15/2016] [Accepted: 12/23/2016] [Indexed: 10/20/2022]
Abstract
Elevated excitability in the hippocampus has emerged as a key contributor to reduced memory function in aging and in cognitive impairment prodromal to Alzheimer's disease. Here, we investigated the relationship between neural activity and memory in the hippocampus and a connectional cortical network using an aged rat model of individual differences for memory impairment. The expression of cFos was used as a measure of pharmacologically induced neural activity. Aged memory-impaired rats exhibited elevated cFos relative to young adult and aged unimpaired rats in the CA3 subfield of the hippocampus and in several cortical regions including the retrosplenial, parietal, and orbitofrontal cortices. Strong correlations between cFos intensity and task performance across the activated network showed a tight coupling between excitability and cognitive phenotype in aging. Elevated neural excitability extending beyond the hippocampus to interconnected posterior cortex (retrosplenial/parietal) was reduced by treatment with levetiracetam, a therapeutic with behavioral efficacy that has previously translated from rodent models of age-related impairment and Alzheimer's disease to humans with amnestic mild cognitive impairment.
Collapse
Affiliation(s)
- Rebecca P Haberman
- Department of Psychological and Brain Sciences, The Johns Hopkins University, Baltimore, MD, USA.
| | - Ming Teng Koh
- Department of Psychological and Brain Sciences, The Johns Hopkins University, Baltimore, MD, USA
| | - Michela Gallagher
- Department of Psychological and Brain Sciences, The Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
6
|
Shin SS, Dixon CE. Alterations in Cholinergic Pathways and Therapeutic Strategies Targeting Cholinergic System after Traumatic Brain Injury. J Neurotrauma 2015; 32:1429-40. [PMID: 25646580 DOI: 10.1089/neu.2014.3445] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Traumatic brain injury (TBI) results in varying degrees of disability in a significant number of persons annually. The mechanisms of cognitive dysfunction after TBI have been explored in both animal models and human clinical studies for decades. Dopaminergic, serotonergic, and noradrenergic dysfunction has been described in many previous reports. In addition, cholinergic dysfunction has also been a familiar topic among TBI researchers for many years. Although pharmacological agents that modulate cholinergic neurotransmission have been used with varying degrees of success in previous studies, improving their function and maximizing cognitive recovery is an ongoing process. In this article, we review the previous findings on the biological mechanism of cholinergic dysfunction after TBI. In addition, we describe studies that use both older agents and newly developed agents as candidates for targeting cholinergic neurotransmission in future studies.
Collapse
Affiliation(s)
- Samuel S Shin
- 1 Brain Trauma Research Center, University of Pittsburgh , Pittsburgh, Pennsylvania.,2 Department of Neurological Surgery, University of Pittsburgh , Pittsburgh, Pennsylvania.,3 Safar Center for Resuscitation Research, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - C Edward Dixon
- 1 Brain Trauma Research Center, University of Pittsburgh , Pittsburgh, Pennsylvania.,2 Department of Neurological Surgery, University of Pittsburgh , Pittsburgh, Pennsylvania.,3 Safar Center for Resuscitation Research, University of Pittsburgh , Pittsburgh, Pennsylvania.,4 Veterans Affairs Pittsburgh Healthcare System , Pittsburgh, Pennsylvania
| |
Collapse
|
7
|
Chawla MK, Penner MR, Olson KM, Sutherland VL, Mittelman-Smith MA, Barnes CA. Spatial behavior and seizure-induced changes in c-fos mRNA expression in young and old rats. Neurobiol Aging 2012; 34:1184-98. [PMID: 23158763 DOI: 10.1016/j.neurobiolaging.2012.10.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 10/03/2012] [Accepted: 10/19/2012] [Indexed: 12/21/2022]
Abstract
The subcellular processes of gene induction and expression in the hippocampus are likely to underlie some of the known age-related impairments in spatial learning and memory. It is well established that immediate-early genes are rapidly and transiently induced in response to neuronal activity and this expression is required for stabilization of durable memories. To examine whether age-related memory impairment might be caused, in part, by differences in the level of cellular activation or subcellular processing, c-fos expression in CA1 pyramidal and dentate gyrus granule cells in the dorsal hippocampus of young and old rats was determined using fluorescence in situ hybridization and reverse transcription polymerase chain reaction. No significant age differences were found in the numbers of pyramidal or granule cells that show c-fos expression; however, c-fos mRNA transcripts were altered in these 2 cell types in aged animals. These findings suggest that though the networks of cells that participate in behavior or seizure-induced activity are largely maintained in aged rats, their RNA transcript levels are altered. This might, in part, contribute to cognitive deficits frequently observed with advancing age.
Collapse
Affiliation(s)
- Monica K Chawla
- ARL Division of Neural Systems, Memory and Aging and Evelyn F McKnight Brain Institute, University of Arizona, Tucson, AZ 85724-5115, USA
| | | | | | | | | | | |
Collapse
|
8
|
Meyza KZ, Boguszewski PM, Nikolaev E, Zagrodzka J. Age increases anxiety and reactivity of the fear/anxiety circuit in Lewis rats. Behav Brain Res 2011; 225:192-200. [PMID: 21782853 DOI: 10.1016/j.bbr.2011.07.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 07/05/2011] [Accepted: 07/06/2011] [Indexed: 11/19/2022]
Abstract
A growing body of data indicates that changes in emotional behavior occur with age. Young Lewis rats are known to display hypofunction of the HPA axis. With age the reactivity of this axis is thought to increase with a concomitant rise in anxiety. In the current study, we investigate how and if the pattern of neuronal activation (measured as c-Fos protein expression) in Lewis rat brains changes with age and in response to novel environments differing in aversiveness. We found that distinct parts of the fear/anxiety circuit (i.e., the amygdalar complex, hippocampus and hypothalamus) undergo diverse age-related changes in response to behavioral challenges. While in the hypothalamus an increase in responsivity to mild stressors was observed with age, no such effect was present in the hippocampus. The amygdalar complex (especially the medial and cortical nuclei) on the other hand exhibited an age-dependent decrease in neuronal activation to mild stressors. This was accompanied by a marked increase in anxiety not correlated with a decline in locomotor activity.
Collapse
Affiliation(s)
- Ksenia Z Meyza
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St. 02-093 Warsaw, Poland
| | | | | | | |
Collapse
|
9
|
Hunt GE, Van Nieuwenhuijzen PS, Chan-Ling T, McGregor IS. 'When an old rat smells a cat': A decline in defense-related, but not accessory olfactory, Fos expression in aged rats. Neurobiol Aging 2009; 32:737-49. [PMID: 19394115 DOI: 10.1016/j.neurobiolaging.2009.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2008] [Revised: 02/11/2009] [Accepted: 03/24/2009] [Indexed: 11/25/2022]
Abstract
Comparisons were made between young (3-6 months) and aged (20-30 months) Wistar rats on locomotor activity, emergence, social interaction and cat odor avoidance. Aged rats were less active and spent less time in the open field during the emergence test than younger rats. Older rats also showed fewer contacts with a novel conspecific in the social interaction test, although total duration of interaction did not differ. There were very few behavioral differences between male and female rats. Older rats were less reactive than younger rats in a test of cat odor avoidance. However, they expressed similar amounts of cat odor-induced Fos in the posterior accessory olfactory bulb, a critical region for processing the predator odor stimulus. Older rats had reduced Fos expression in several defense-related brain regions that are normally activated by predator odors such as the medial amygdala and dorsal premammillary nucleus. These results indicate that aged rats are less reactive than younger rats to predator odors due to decreased responsiveness in defense-related but not necessarily olfactory circuits.
Collapse
Affiliation(s)
- Glenn E Hunt
- Discipline of Psychological Medicine, Concord Repatriation General Hospital, University of Sydney, NSW 2139, Australia.
| | | | | | | |
Collapse
|
10
|
Andrioli A, Fabene PF, Spreafico R, Cavalheiro EA, Bentivoglio M. Different patterns of neuronal activation and neurodegeneration in the thalamus and cortex of epilepsy-resistant Proechimys rats versus Wistar rats after pilocarpine-induced protracted seizures. Epilepsia 2009; 50:832-48. [PMID: 19220411 DOI: 10.1111/j.1528-1167.2008.01953.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE To analyze cellular mechanisms of limbic-seizure suppression, the response to pilocarpine-induced seizures was investigated in cortex and thalamus, comparing epilepsy-resistant rats Proechimys guyannensis with Wistar rats. METHODS Fos immunoreactivity revealing neuronal activation, and degenerating neurons labeled by Fluoro-Jade B (FJB) histochemistry were analyzed on the first day after onset of seizures lasting 3 h. Subpopulations of gamma-aminobutyric acid (GABA)ergic cells were characterized with double Fos-parvalbumin immunohistochemistry. RESULTS In both cortex and thalamus, degenerating neurons were much fewer in Proechimys than Wistar rats. Fos persisted at high levels at 24 h only in the Proechimys thalamus and cortex, especially in layer VI where corticothalamic neurons reside. In the parietal cortex, about 50% of parvalbumin-containing interneurons at 8 h, and 10-20% at 24 h, were Fos-positive in Wistar rats, but in Proechimys, Fos was expressed in almost all parvalbumin-containing interneurons at 8 h and dropped at 24 h. Fos positivity in cingulate cortex interneurons was similar in both species. In the Wistar rat thalamus, Fos was induced in medial and midline nuclei up to 8 h, when <30% of reticular nucleus cells were Fos-positive, and then decreased, with no relationship with cell loss, evaluated in Nissl-stained sections. In Proechimys, almost all reticular nucleus neurons were Fos-positive at 24 h. DISCUSSION At variance with laboratory rats, pilocarpine-induced protracted seizures elicit in Proechimys limited neuronal death, and marked and long-lasting Fos induction in excitatory and inhibitory cortical and thalamic cell subsets. The findings implicate intrathalamic and intracortical regulation, and circuits linking thalamus and cortex in limbic seizure suppression leading to epilepsy resistance.
Collapse
Affiliation(s)
- Anna Andrioli
- Department of Morphological and Biomedical Sciences, Faculty of Medicine, University of Verona, Verona, Italy.
| | | | | | | | | |
Collapse
|
11
|
Bucci DJ, Macleod JE. Changes in neural activity associated with a surprising change in the predictive validity of a conditioned stimulus. Eur J Neurosci 2007; 26:2669-76. [PMID: 17970737 DOI: 10.1111/j.1460-9568.2007.05902.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Changes in how well a conditioned stimulus (CS) predicts future events can alter the amount of attention paid to that cue. For example, the unexpected violation of a previously established relationship between a CS and another stimulus can increase attentional processing and subsequent conditioning to that cue [J.M. Pearce & G. Hall (1980)Psych. Rev., 106, 532-552]. Previous lesion studies have implicated the central nucleus of the amygdala (CN) and basal forebrain corticopetal cholinergic system in mediating surprise-induced changes in attention. Here, expression of the immediate-early gene c-fos was used to determine which cortical targets of the basal forebrain cholinergic system are activated during an increase in attentional processing. Consistent with previous studies, increased Fos expression was observed in the posterior parietal cortex (PPC) when a visual stimulus no longer reliably predicted occurrence of a tone. Similar results were observed in the secondary auditory cortex; however, there were no significant changes in Fos expression in other auditory or visual cortices or in other cortical association areas that have been implicated in attentional function (frontal, cingulate or retrosplenial cortex). These findings support the notion that the PPC is the primary cortical component of a neural system mediating incremental changes in attention. In addition, an increase in Fos-positive cells was detected in the substantia innominata/nucleus basalis and the CN at the time of surprise. An opposite pattern of results was observed in the basal lateral nucleus of the amygdala, providing evidence for different stimulus-processing mechanisms in regions of the amygdala.
Collapse
Affiliation(s)
- David J Bucci
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755, USA.
| | | |
Collapse
|
12
|
Carnicella S, de Vasconcelos AP, Pain L, Majchrzak M, Oberling P. Fos immunolabelling evidence for brain regions involved in the Pavlovian degraded contingency effect and in its disruption by atropine. Neuropharmacology 2006; 51:102-11. [PMID: 16678862 DOI: 10.1016/j.neuropharm.2006.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Revised: 03/03/2006] [Accepted: 03/06/2006] [Indexed: 10/24/2022]
Abstract
Using a fear conditioning preparation, [Carnicella, S., Pain, L., Oberling, P., 2005a. Cholinergic effects on fear conditioning I: The degraded contingency effect is disrupted by atropine but reinstated by physostigmine. Psychopharmacology 178, 524-532] showed that the muscarinic receptor antagonist atropine disrupted the degraded contingency effect (DCE) in the rat, that is, the processes by which contextual memory competes with cued memory for the control over conditioned responding. Here, we investigated neural substrates involved in the expression of normal and atropine-disrupted DCE, using the protein Fos as a marker of neuronal activity. Compared to contingent conditioning, the DCE was associated with a decrease of the amount of Fos immunoreactive neurons within the auditory system and the amygdala and an increase within the medial prefrontal cortex (mPFC). Compared to the normal DCE, atropine-induced disruption of the DCE was associated with an increase of the amount of Fos immunoreactive neurons within the central nucleus of the amygdala. When atropine-induced suppression of the DCE, Fos pattern was modified in the mPFC with a change in Fos immunoreactivity, but no longer associated with the DCE. However, the mPFC was the unique structure studied in which the amount of Fos immunoreactive neurons was differentially affected according to both the conditioning procedure and the pharmacological treatment. These results are discussed in the framework of the cholinergic modulation of context processing in the rat and are put in parallel with an emerging set of studies in humans regarding the role of the PFC in such processing.
Collapse
Affiliation(s)
- Sebastien Carnicella
- Laboratoire de Neurosciences Comportementales et Cognitives, ULP-CNRS FRE2855, 12 rue Goethe, 67000, Strasbourg, France
| | | | | | | | | |
Collapse
|
13
|
Wirtshafter D. Cholinergic involvement in the cortical and hippocampal Fos expression induced in the rat by placement in a novel environment. Brain Res 2005; 1051:57-65. [PMID: 15982643 DOI: 10.1016/j.brainres.2005.05.052] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2005] [Revised: 05/19/2005] [Accepted: 05/23/2005] [Indexed: 11/30/2022]
Abstract
Placing rats into a series of novel environments induced vigorous c-fos expression in the infralimbic, anterior cingulate and retrosplenial cortices, and in the hippocampus. Pretreatment with the antimuscarinic drugs scopolamine and atropine was able to greatly suppress novelty-induced Fos expression at these sites. Placement into the novel environments also induced Fos expression in the habenula and the paraventricular thalamic nucleus, but the response at these sites did not appear to be sensitive to cholinergic blockade. These findings suggest that cholinergic mechanisms play an important role in ability of behavioral events to influence cortical and hippocampal immediate-early gene expression and are consistent with the possibility that some of the effects of anticholinergic drugs on placticity and learning may be mediated through alterations in the expression of these genes.
Collapse
Affiliation(s)
- David Wirtshafter
- Laboratory of Integrative Neuroscience, Department of Psychology, M/C 285, University of Illinois at Chicago, IL 60607-7137, USA.
| |
Collapse
|
14
|
Teber I, Köhling R, Speckmann EJ, Barnekow A, Kremerskothen J. Muscarinic acetylcholine receptor stimulation induces expression of the activity-regulated cytoskeleton-associated gene (ARC). ACTA ACUST UNITED AC 2004; 121:131-6. [PMID: 14969744 DOI: 10.1016/j.molbrainres.2003.11.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2003] [Indexed: 10/26/2022]
Abstract
Muscarinic acetylcholine receptors (mAChR) are involved in learning and memory but their molecular function in these processes is not fully understood. In this study, the signal transduction pathway coupling mAChR activation to induction of the activity-regulated cytoskeleton-associated gene (ARC) was examined. ARC was first identified as an effector immediate early gene induced by neuronal activity and ARC protein is thought to play a role in synaptic plasticity. In rats, intraperitoneal injection of pilocarpine, a potent agonist of mAChR, led to increased ARC expression in the brain. In human SH-SY5Y neuroblastoma cells mAChR stimulation with carbachol caused a rapid and robust induction of ARC expression. This effect was inhibited by atropine, a nonselective muscarinic receptor antagonist as well as by M1/M3 subtype-specific antagonists. Analysis of mAChR downstream effectors revealed that protein kinase C (PKC) and tyrosine kinases of the src family are key molecules in the signal cascade leading to ARC expression. Our data suggest, for the first time, that a correlation exists among mAChR-controlled signal cascades, the induction of the effector immediate early gene ARC and synaptic plasticity.
Collapse
Affiliation(s)
- Iskender Teber
- Department for Experimental Tumorbiology, Institute for Neurobiology, University Muenster, Badestrasse 9, D-48149 Muenster, Germany
| | | | | | | | | |
Collapse
|
15
|
Smith DR, Hoyt EC, Gallagher M, Schwabe RF, Lund PK. Effect of age and cognitive status on basal level AP-1 activity in rat hippocampus. Neurobiol Aging 2001; 22:773-86. [PMID: 11705637 DOI: 10.1016/s0197-4580(01)00240-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Activator protein-1 (AP-1) was examined at multiple levels (mRNA, DNA binding, composition) in hippocampus of young and aged rats that were behaviorally characterized for spatial memory. GFAP mRNA was measured as a gene product known to increase with aging and to be regulated by AP-1. The activity of Jun-amino terminal-kinase (JNK) was also assessed. Levels of c-jun and c-fos mRNAs were unchanged with aging or spatial learning ability. Abundance of GFAP mRNA was significantly increased in aged hippocampus but did not correlate with spatial learning. Total AP-1 binding activity was unaltered with age or cognitive ability. In hippocampus of young, aged unimpaired and aged impaired rats, AP-1 consists mainly of c-Jun, phosphorylated c-Jun (p-c-Jun), JunD, and smaller amounts of c-Fos. JNK is constitutively active in young and aged hippocampus. We conclude that the basal expression of c-fos and c-jun mRNA, overall AP-1 binding activity and AP-1 composition are not influenced by aging or cognitive ability.
Collapse
Affiliation(s)
- D R Smith
- Department of Psychology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
16
|
Dent GW, Rule BL, Zhan Y, Grzanna R. The acetylcholine release enhancer linopirdine induces Fos in neocortex of aged rats. Neurobiol Aging 2001; 22:485-94. [PMID: 11378256 DOI: 10.1016/s0197-4580(00)00252-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Centrally acting cholinergic agents induce the immediate early gene c-fos in the rat brain resulting in transient increases of Fos protein, most notably in the cerebral cortex. In this study we have monitored by Fos immunohistochemistry the effect of the acetylcholine release enhancer linopirdine (DUP996) on the immediate early gene c-fos in brains of 3 months and 30 months old rats. In young rats linopirdine had only a marginal effect on Fos expression. In contrast, in aged rats linopirdine caused widespread expression of Fos throughout neocortex. In somatosensory cortex, the induction of the c-fos gene by linopirdine was nearly completely blocked by atropine and scopolamine and strongly attenuated by the NMDA receptor blockers CPP and MK-801. The results suggest that the age-related decline in acetylcholine release in rodents can be partially compensated for by administration of linopirdine.
Collapse
Affiliation(s)
- G W Dent
- The DuPont Pharmaceuticals Company, Wilmington, Delaware 19880-0400, USA
| | | | | | | |
Collapse
|