1
|
Wang E, Wang LC, Tsai CY, Bhoj V, Gershenson Z, Moon E, Newick K, Sun J, Lo A, Baradet T, Feldman MD, Barrett D, Puré E, Albelda S, Milone MC. Generation of Potent T-cell Immunotherapy for Cancer Using DAP12-Based, Multichain, Chimeric Immunoreceptors. Cancer Immunol Res 2015; 3:815-26. [PMID: 25941351 PMCID: PMC4490943 DOI: 10.1158/2326-6066.cir-15-0054] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/14/2015] [Indexed: 11/16/2022]
Abstract
Chimeric antigen receptors (CAR) bearing an antigen-binding domain linked in cis to the cytoplasmic domains of CD3ζ and costimulatory receptors have provided a potent method for engineering T-cell cytotoxicity toward B-cell leukemia and lymphoma. However, resistance to immunotherapy due to loss of T-cell effector function remains a significant barrier, especially in solid malignancies. We describe an alternative chimeric immunoreceptor design in which we have fused a single-chain variable fragment for antigen recognition to the transmembrane and cytoplasmic domains of KIR2DS2, a stimulatory killer immunoglobulin-like receptor (KIR). We show that this simple, KIR-based CAR (KIR-CAR) triggers robust antigen-specific proliferation and effector function in vitro when introduced into human T cells with DAP12, an immunotyrosine-based activation motifs-containing adaptor. T cells modified to express a KIR-CAR and DAP12 exhibit superior antitumor activity compared with standard first- and second-generation CD3ζ-based CARs in a xenograft model of mesothelioma highly resistant to immunotherapy. The enhanced antitumor activity is associated with improved retention of chimeric immunoreceptor expression and improved effector function of isolated tumor-infiltrating lymphocytes. These results support the exploration of KIR-CARs for adoptive T-cell immunotherapy, particularly in immunotherapy-resistant solid tumors.
Collapse
Affiliation(s)
- Enxiu Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Liang-Chuan Wang
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ching-Yi Tsai
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Vijay Bhoj
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Zack Gershenson
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Edmund Moon
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kheng Newick
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jing Sun
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Albert Lo
- Department of Animal Biology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania
| | - Timothy Baradet
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael D Feldman
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - David Barrett
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Ellen Puré
- Department of Animal Biology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania
| | - Steven Albelda
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael C Milone
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
2
|
The polyomavirus BK large T-antigen-derived peptide elicits an HLA-DR promiscuous and polyfunctional CD4+ T-cell response. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:815-24. [PMID: 21367979 DOI: 10.1128/cvi.00487-10] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BK virus (BKV) nephropathy and hemorrhagic cystitis are increasingly recognized causes of disease in renal and hematopoietic stem cell transplant recipients, respectively. Functional characterization of the immune response to BKV is important for clinical diagnosis, prognosis, and vaccine design. A peptide mix (PepMix) and overlapping (OPP) or random (RPP) peptide pools derived from BKV large T antigen (LTA) were used to restimulate 14-day-expanded peripheral blood mononuclear cells (PBMC) from 27 healthy control subjects in gamma interferon (IFN-γ)-specific enzyme-linked immunospot (ELISPOT) assays. A T-cell response to LTA PepMix was detected in 15/27 subjects. A response was frequently observed with peptides derived from the helicase domain (9/15 subjects), while the DNA binding and host range domains were immunologically inert (0/15 subjects). For all nine subjects who responded to LTA peptide pools, the immune response could be explained largely by a 15-mer peptide designated P313. P313-specific CD4(+) T-cell clones demonstrated (i) stringent LTA peptide specificity; (ii) promiscuous recognition in the context of HLA-DR alleles; (iii) cross recognition of homologous peptides from the polyomavirus simian virus 40 (SV40); (iv) an effector memory phenotype, CD107a expression, and intracellular production of IFN-γ and tumor necrosis factor alpha (TNF-α); (v) cytotoxic activity in a chromium release assay; and (vi) the ability to directly present cognate antigen to autologous T cells. In conclusion, T-cell-mediated immunity to BKV in healthy subjects is associated with a polyfunctional population of CD4(+) T cells with dual T-helper and T-cytotoxic properties. HLA class II promiscuity in antigen presentation makes the targeted LTA peptide sequence a suitable candidate for inclusion in immunotherapy protocols.
Collapse
|
3
|
Moya-Quiles MR, Alvarez R, Miras M, Gomez-Mateo J, Lopez-Alvarez MR, Marin-Moreno I, Martínez-Barba E, Sanchez-Mozo MPS, Gomez M, Arnal F, Sanchez-Bueno F, Marin LA, Garcia-Alonso AM, Minguela A, Muro M, Parrilla P, Alonso C, Alvarez-López MR. Impact of recipient HLA-C in liver transplant: a protective effect of HLA-Cw*07 on acute rejection. Hum Immunol 2006; 68:51-8. [PMID: 17207712 DOI: 10.1016/j.humimm.2006.10.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 10/05/2006] [Accepted: 10/13/2006] [Indexed: 01/09/2023]
Abstract
The involvement of the human leukocyte antigen (HLA) in liver graft acceptance is controversial, but the frequency of acute rejection (AR) remains high in spite of the use of the modern immunosuppressive agents. The present study was aimed at determining whether an association exists between liver recipient HLA-C polymorphism and AR development that could influence graft acceptance. Four hundred and forty-six liver recipients and 473 controls were studied within the framework of a collaborative study carried out by the Spanish Transplant Immunotolerance Group (RED-GIT). HLA-A and -B were typed by the standard microlymphocytotoxicity technique, and HLA-C by polymerase chain reaction-sequence-specific oligonucleotide probes (PCR-SSOP). A statistically significant decrease in the HLA-Cw*07 allele frequency was found in liver recipients suffering AR episodes compared to those without AR (NAR). Studies regarding the possible influence of the Asn80 and Lys80 epitopes showed that the Asn80 epitope also could be associated with AR. However, further analysis considering Asn80 alleles others than HLA-Cw*07, confirmed that the apparent protective effect of the Asn80 epitope was actually from the HLA-Cw*07 allele. In conclusion, the HLA-Cw*07 allele carried by the liver recipient is negatively associated with AR development, and could be considered a predictive factor for liver graft acceptance.
Collapse
Affiliation(s)
- Maria R Moya-Quiles
- Immunology Service, University Hospital Virgen de la Arrixaca, 30120 El Palmar, Murcia, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Geiger C, Regn S, Weinzierl A, Noessner E, Schendel DJ. A generic RNA-pulsed dendritic cell vaccine strategy for renal cell carcinoma. J Transl Med 2005; 3:29. [PMID: 16045799 PMCID: PMC1188079 DOI: 10.1186/1479-5876-3-29] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Accepted: 07/26/2005] [Indexed: 11/18/2022] Open
Abstract
We present a generic dendritic cell (DC) vaccine strategy for patients with renal cell carcinoma (RCC) based on the use of RNA as a source of multiplex tumor-associated antigens (TAAs). Instead of preparing RNA from tumor tissue of each individual RCC patient, we propose to substitute RNA prepared from a well characterized highly immunogenic RCC cell line (RCC-26 tumor cells) as a generic source of TAAs for loading of DCs. We demonstrate here that efficient RNA transfer can be achieved using lipofection of immature DCs, which are subsequently matured with a cytokine cocktail to express high levels of MHC and costimulatory molecules as well as the chemokine receptor CCR7. Neither RNA itself nor the lipid component impacted on the phenotype or the cytokine secretion of mature DCs. Following RNA loading, DCs derived from HLA-A2-positive donors were able to activate effector-memory cytotoxic T lymphocytes (CTLs) specific for a TAA ligand expressed by the RCC-26 cell line. CTL responses to RNA-loaded DCs reached levels comparable to those stimulated directly by the RCC-26 tumor cells. Furthermore, DCs expressing tumor cell RNA primed naïve T cells, yielding T cell lines with cytotoxicity and cytokine secretion after contact with RCC tumor cells. RCC-26 cell lines are available as good manufacturing practice (GMP)-certified reagents enabling this source of RNA to be easily standardized and adapted for clinical testing. In addition, well defined immune monitoring tools, including the use of RNA expressing B cell lines, are available. Thus, this DC vaccine strategy can be directly compared with an ongoing gene therapy trial using genetically-engineered variants of the RCC-26 cell line as vaccines for RCC patients with metastatic disease.
Collapse
Affiliation(s)
- Christiane Geiger
- Institute of Molecular Immunology, GSF-National Research Center for Environment and Health, Munich, Germany
| | - Sybille Regn
- Institute of Molecular Immunology, GSF-National Research Center for Environment and Health, Munich, Germany
| | - Andreas Weinzierl
- Institute of Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Elfriede Noessner
- Institute of Molecular Immunology, GSF-National Research Center for Environment and Health, Munich, Germany
| | - Dolores J Schendel
- Institute of Molecular Immunology, GSF-National Research Center for Environment and Health, Munich, Germany
| |
Collapse
|
5
|
Frankenberger B, Regn S, Geiger C, Noessner E, Falk CS, Pohla H, Javorovic M, Silberzahn T, Wilde S, Buchner A, Siebels M, Oberneder R, Willimsky G, Pezzutto A, Blankenstein T, Schendel DJ. Cell-based vaccines for renal cell carcinoma: genetically-engineered tumor cells and monocyte-derived dendritic cells. World J Urol 2005; 23:166-74. [PMID: 15997395 DOI: 10.1007/s00345-005-0505-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Accepted: 11/15/2004] [Indexed: 10/25/2022] Open
Abstract
Initial vaccine developments for renal cell carcinoma (RCC) have concentrated on cell-based approaches in which tumor cells themselves provide mixtures of unknown tumor-associated antigens as immunizing agents. Antigens derived from autologous tumors can direct responses to molecular composites characteristic of individual tumors, whereas antigens derived from allogeneic tumor cells must be commonly shared by RCC. Three types of cell-based vaccine for RCC have been investigated: isolated tumor cell suspensions, gene modified tumor cells and dendritic cells (DCs) expressing RCC-associated antigens. Approaches using genetic modification of autologous RCC have included ex vivo modification of tumor cells or modification of tumors in vivo. We have used gene-modification of allogeneic tumor cell lines to create generic RCC vaccines. More recently, emphasis has shifted to the use of DCs as cell-based vaccines for RCC. DCs have moved to a position of central interest because of their excellent stimulatory capacity, combined with their ability to process and present antigens to both naive CD4 and CD8 cells. The long impasse in identifying molecular targets for specific immunotherapy of RCC is now rapidly being overcome through the use of tools and information emerging from human genome research. Identification of candidate molecules expressed by RCC using cDNA arrays, combined with protein arrays and identification of peptides presented by MHC molecules, allow specific vaccines to be tailored to the antigenic profile of individual tumors, providing the basis for development of patient-specific vaccines.
Collapse
Affiliation(s)
- Bernhard Frankenberger
- Institute of Molecular Immunology, GSF-National Research Center for Environment and Health, Marchioninistrasse 25, 81377 Munich, Germany,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Schleypen JS, Von Geldern M, Weiss EH, Kotzias N, Rohrmann K, Schendel DJ, Falk CS, Pohla H. Renal cell carcinoma-infiltrating natural killer cells express differential repertoires of activating and inhibitory receptors and are inhibited by specific HLA class I allotypes. Int J Cancer 2003; 106:905-12. [PMID: 12918068 DOI: 10.1002/ijc.11321] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Among tumor-infiltrating lymphocytes (TILs) directly isolated from renal cell carcinomas (RCCs), we found substantial numbers of natural killer (NK) cells in most tumor tissues. They could be identified reliably in situ with an antibody directed against the activating receptor (AR) NKp46 that is exclusively expressed by all NK cells. NK-enriched TILs (NK-TILs) showed cytotoxicity against major histocompatibility complex (MHC) class I-negative cell lines. The ability to detect lysis of target cells was dependent on the percentage of NK cells within the TILs, and cytotoxicity was only observed after overnight activation with low-dose interleukin-2 (IL-2). Infiltrating NK cells were found to express various inhibitory receptors (IRs); among these the CD94/NKG2A receptor complex was overrepresented compared to the autologous peripheral blood mononuclear cell (PBMC) population. Other IRs were underrepresented, indicating that NK subpopulations vary in their tumor-infiltrating capacity. IRs expressed by NK-TILs are functional since receptor engagement with MHC class I ligands presented by human leukocyte antigen (HLA)-transfected target cell lines was able to inhibit NK-mediated cytotoxicity. NK-TILs were also able to lyse autologous or allogeneic tumor cell lines in vitro. This activity correlated with low HLA class I surface expression since lysis could be inhibited by interferon (IFN)-gamma-expressing RCC transductants that displayed a higher surface density of HLA class I molecules. Therefore, NK cells infiltrating tumor tissues have an inherent ability to recognize transformed cells, but they require cytokine activation and are sensitive to inhibition by IR ligands.
Collapse
Affiliation(s)
- Julia S Schleypen
- Institute of Molecular Immunology, GSF National Research Center for the Environment and Health, Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Herzer K, Falk CS, Encke J, Eichhorst ST, Ulsenheimer A, Seliger B, Krammer PH. Upregulation of major histocompatibility complex class I on liver cells by hepatitis C virus core protein via p53 and TAP1 impairs natural killer cell cytotoxicity. J Virol 2003; 77:8299-309. [PMID: 12857899 PMCID: PMC165225 DOI: 10.1128/jvi.77.15.8299-8309.2003] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The mechanisms of immune evasion and the role of the early immune response in chronic infection caused by hepatitis C virus (HCV) are still unclear. Here, we present evidence for a cascade of molecular events that the virus initiates to subvert the innate immune attack. The HCV core protein induced p53-dependent gene expression of TAP1 (transporter associated with antigen processing 1) and consecutive major histocompatibility complex (MHC) class I upregulation. Moreover, in p53-deficient liver cell lines, only reconstitution with wild-type p53, but not mutated p53 lacking DNA binding capacity, showed this effect. As a consequence of increased MHC class I expression, a significantly downregulated cytotoxic activity of natural killer (NK) cells against HCV core-transfected liver cells was observed, whereas lysis by HCV-specific cytotoxic T cells was not affected. These results demonstrate a way in which HCV avoids recognition by NK cells that may contribute to the establishment of a chronic infection.
Collapse
Affiliation(s)
- Kerstin Herzer
- Division of Immunogenetics, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
8
|
Falk CS, Mach M, Schendel DJ, Weiss EH, Hilgert I, Hahn G. NK cell activity during human cytomegalovirus infection is dominated by US2-11-mediated HLA class I down-regulation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:3257-66. [PMID: 12218145 DOI: 10.4049/jimmunol.169.6.3257] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A highly attractive approach to investigate the influence and hierarchical organization of viral proteins on cellular immune responses is to employ mutant viruses carrying deletions of various virus-encoded, immune-modulating genes. Here, we introduce a novel set of deletion mutants of the human CMV (HCMV) lacking the UL40 region either alone or on the background of a deletion mutant devoid of the entire US2-11 region. Deletion of UL40 had no significant effect on lysis of infected cells by NK cells, indicating that the expected enhancement of HLA-E expression by specific peptides derived from HCMV-encoded gpUL40 leader sequences was insufficient to confer target cell protection. Moreover, the kinetics of MHC class I down-regulation by US2-11 genes observed at early and late phases postinfection with wild-type virus correlated with increased susceptibility to NK lysis. Thus, the influence of HCMV genes on NK reactivity follows a hierarchy dominated by the US2-11 region, which encodes all viral genes capable of down-modulating expression of classical and non-classical MHC class I molecules. The insights gained from studies of such virus mutants may impact on future therapeutic strategies and vaccine development and incorporate NK cells in the line of defense mechanisms against HCMV infection.
Collapse
Affiliation(s)
- Christine S Falk
- Institute of Molecular Immunology, GSF National Research Center for the Environment and Health, Munich, Germany
| | | | | | | | | | | |
Collapse
|
9
|
Falk CS, Schendel DJ. Allogeneic MHC class I ligands and their role in positive and negative regulation of human cytotoxic effector cells. Hum Immunol 2002; 63:8-19. [PMID: 11916173 DOI: 10.1016/s0198-8859(01)00360-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The allogeneic mixed lymphocyte culture (MLC) has served as an important experimental system for elucidating the cellular and molecular basis of human lymphocyte responses. Complex mixtures of lymphocytes are stimulated by disparate alloantigens, inducing cellular activation and generating a cytokine milieu that is an excellent breeding ground for the proliferation and differentiation of many distinct lymphocyte subsets. Cloning of individual lymphocytes following alloactivation has allowed various cytotoxic lymphocytes to be isolated and characterized with respect to phenotype and specificity. These analyses have revealed that all types of cytotoxic effector cells are regulated by interactions with MHC-peptide ligands, however, the consequences of these interactions can result in opposite functional outcomes. In this review we summarize how allogeneic MHC class I-peptide ligands positively or negatively regulate the activities of four distinct groups of cytotoxic lymphocytes and how this information might be transferred into clinical use.
Collapse
Affiliation(s)
- Christine S Falk
- Institute of Molecular Immunology, GSF National Research Center for the Environment and Health, Munich, Germany.
| | | |
Collapse
|