1
|
Wei X, Qian W, Sizhu S, Li Y, Guo K, Jin M, Zhou H. Negative Regulation of Interferon-β Production by Alternative Splicing of Tumor Necrosis Factor Receptor-Associated Factor 3 in Ducks. Front Immunol 2018; 9:409. [PMID: 29599773 PMCID: PMC5863512 DOI: 10.3389/fimmu.2018.00409] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 02/14/2018] [Indexed: 02/06/2023] Open
Abstract
Tumor necrosis factor receptor-associated factor 3 (TRAF3), an intracellular signal transducer, is identified as an important component of Toll-like receptors and RIG-I-like receptors induced type I interferon (IFN) signaling pathways. Previous studies have clarified TRAF3 function in mammals, but little is known about the role of TRAF3 in ducks. Here, we cloned and characterized the full-length duck TRAF3 (duTRAF3) gene and an alternatively spliced isoform of duTRAF3 (duTRAF3-S) lacking the fragment encoding amino acids 217–319, from duck embryo fibroblasts (DEFs). We found that duTRAF3 and duTRAF3-S played different roles in regulating IFN-β production in DEFs. duTRAF3 through its TRAF domain interacted with duMAVS or duTRIF, leading to the production of IFN-β. However, duTRAF3-S, containing the TRAF domain, was unable to bind duMAVS or duTRIF due to the intramolecular binding between the N- and C-terminal of duTRAF3-S that blocked the function of its TRAF domain. Further analysis identified that duTRAF3-S competed with duTRAF3 itself for binding to duTRAF3, perturbing duTRAF3 self-association, which impaired the assembly of duTRAF3-duMAVS/duTRIF complex, ultimately resulted in a reduced production of IFN-β. These findings suggest that duTRAF3 is an important regulator of duck innate immune signaling and reveal a novel mechanism for the negative regulation of IFN-β production via changing the formation of the homo-oligomerization of wild molecules, implying a novel regulatory role of truncated proteins.
Collapse
Affiliation(s)
- Xiaoqin Wei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Department of Animal Science, XiZang Agriculture and Animal Husbandry College, Linzhi, China
| | - Wei Qian
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Suolang Sizhu
- Department of Animal Science, XiZang Agriculture and Animal Husbandry College, Linzhi, China
| | - Yongtao Li
- College of Animal Husbandry & Veterinary Science, Henan Agricultural University, Zhengzhou, China
| | - Kelei Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Meilin Jin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Hongbo Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
2
|
López-Urrutia E, Campos-Parra A, Herrera LA, Pérez-Plasencia C. Alternative splicing regulation in tumor necrosis factor-mediated inflammation. Oncol Lett 2017; 14:5114-5120. [PMID: 29113151 PMCID: PMC5656035 DOI: 10.3892/ol.2017.6905] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 07/07/2017] [Indexed: 02/06/2023] Open
Abstract
It is generally accepted that alternative splicing has an effect on disease when it leads to conspicuous changes in relevant proteins, but that the combinatorial effect of several small modifications can have marked outcomes as well. Inflammation is a complex process involving numerous signaling pathways, among which the tumor necrosis factor (TNF) pathway is one of the most studied. Signaling pathways are commonly represented as intricate cascades of molecular interactions that eventually lead to the activation of one or several genes. Alternative splicing is a common means of controlling protein expression in time and space; therefore, it can modulate the outcome of signaling pathways through small changes in their elements. Notably, the overall process is tightly regulated, which is easily overlooked when analyzing the pathway as a whole. The present review summarizes recent studies of the alternative splicing of key players of the TNF pathway leading to inflammation, and hypothesizes on the cumulative results of those modifications and the impact on cancer development.
Collapse
Affiliation(s)
- Eduardo López-Urrutia
- Genomics Laboratory, UBIMED, Faculty of Higher Studies-Iztacala, National Autonomous University, Tlalnepantla, 54090 State of Mexico, Mexico
| | - Alma Campos-Parra
- Genomics Laboratory, National Cancer Institute of Mexico, Tlalpan, 14680 Mexico City, Mexico
| | - Luis Alonso Herrera
- Epigenetics Laboratory, National Cancer Institute of Mexico, Tlalpan, 14680 Mexico City, Mexico
| | - Carlos Pérez-Plasencia
- Genomics Laboratory, UBIMED, Faculty of Higher Studies-Iztacala, National Autonomous University, Tlalnepantla, 54090 State of Mexico, Mexico.,Genomics Laboratory, National Cancer Institute of Mexico, Tlalpan, 14680 Mexico City, Mexico
| |
Collapse
|
3
|
Leeman JR, Gilmore TD. Alternative splicing in the NF-kappaB signaling pathway. Gene 2008; 423:97-107. [PMID: 18718859 DOI: 10.1016/j.gene.2008.07.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 07/08/2008] [Accepted: 07/09/2008] [Indexed: 10/21/2022]
Abstract
Activation of transcription factor NF-kappaB can affect the expression of several hundred genes, many of which are involved in inflammation and immunity. The proper NF-kappaB transcriptional response is primarily regulated by post-translational modification of NF-kappaB signaling constituents. Herein, we review the accumulating evidence suggesting that alternative splicing of NF-kappaB signaling components is another means of controlling NF-kappaB signaling. Several alternative splicing events in both the tumor necrosis factor and Toll/interleukin-1 NF-kappaB signaling pathways can inhibit the NF-kappaB response, whereas others enhance NF-kappaB signaling. Alternative splicing of mRNAs encoding some NF-kappaB signaling components can be induced by prolonged exposure to an NF-kappaB-activating signal, such as lipopolysaccharide, suggesting a mechanism for negative feedback to dampen excessive NF-kappaB signaling. Moreover, some NF-kappaB alternative splicing events appear to be specific for certain diseases, and could serve as therapeutic targets or biomarkers.
Collapse
Affiliation(s)
- Joshua R Leeman
- Department of Biology, Boston University, 5 Cummington Street, Boston, MA 02215, USA
| | | |
Collapse
|
4
|
Bishop GA, Moore CR, Xie P, Stunz LL, Kraus ZJ. TRAF proteins in CD40 signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 597:131-51. [PMID: 17633023 DOI: 10.1007/978-0-387-70630-6_11] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The tumor necrosis factor receptor (TNFR) superfamily molecule CD40 is expressed by a wide variety of cell types following activation signals, and constitutively on B lymphocytes, macrophages, and dendritic cells. CD40 signals to cells stimulate kinase activation, gene expression, production of a antibody and a variety of cytokines, expression or upregulation of surface molecules, and protection or promotion of apoptosis. Initial steps in CD40-mediated signal cascades involve the interactions of CD40 with various members of the TNFR-associated factor (TRAF) family of cytoplasmic proteins. This review summarizes current understanding of the nature of these interactions, and how they induce and regulate CD40 functions.
Collapse
Affiliation(s)
- Gail A Bishop
- Department of Microbiology, Interdisciplinary Graduate Program in Immunology, University of Iowa and the Iowa City VAMC, Iowa City, Iowa 52242, USA.
| | | | | | | | | |
Collapse
|
5
|
He L, Grammer AC, Wu X, Lipsky PE. TRAF3 forms heterotrimers with TRAF2 and modulates its ability to mediate NF-{kappa}B activation. J Biol Chem 2004; 279:55855-65. [PMID: 15383523 DOI: 10.1074/jbc.m407284200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
FRET experiments utilizing confocal microscopy or flow cytometry assessed homo- and heterotrimeric association of human tumor necrosis factor receptor-associated factors (TRAF) in living cells. Following transfection of HeLa cells with plasmids expressing CFP- or YFP-TRAF fusion proteins, constitutive homotypic association of TRAF2, -3, and -5 was observed, as well as heterotypic association of TRAF1-TRAF2 and TRAF3-TRAF5. A novel heterotypic association between TRAF2 and -3 was detected and confirmed by immunoprecipitation in Ramos B cells that constitutively express both TRAF2 and -3. Experiments employing deletion mutants of TRAF2 and TRAF3 revealed that this heterotypic interaction minimally involved the TRAF-C domain of TRAF3 as well as the TRAF-N domain and zinc fingers 4 and 5 of TRAF2. A novel flow cytometric FRET analysis utilizing a two-step approach to achieve linked FRET from CFP to YFP to HcRed established that TRAF2 and -3 constitutively form homo- and heterotrimers. The functional importance of TRAF2-TRAF3 heterotrimerization was demonstrated by the finding that TRAF3 inhibited spontaneous NF-kappaB, but not AP-1, activation induced by TRAF2. Ligation of CD40 on Ramos B cells by recombinant CD154 caused TRAF2 and TRAF3 to dissociate, whereas overexpression of TRAF3 in Ramos B cells inhibited CD154-induced TRAF2-mediated activation of NF-kappaB. Together, these results reveal a novel association between TRAF2 and TRAF3 that is mediated by unique portions of each protein and that specifically regulates activation of NF-kappaB, but not AP-1.
Collapse
Affiliation(s)
- Liusheng He
- Flow Cytometry Section in the Office of Science and Technology, National Institute of Arthritis and Musculoskeletal and Skin Diseases/NIH, 9000 Rockville Pike, Building 10, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
6
|
Wu JY, Tang H, Havlioglu N. Alternative pre-mRNA splicing and regulation of programmed cell death. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2003; 31:153-85. [PMID: 12494766 DOI: 10.1007/978-3-662-09728-1_6] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- J Y Wu
- Department of Pediatrics and Department of Molecular Biology and Pharmacology, MPRB Rm3107, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | |
Collapse
|
7
|
Sinha SK, Zachariah S, Quiñones HI, Shindo M, Chaudhary PM. Role of TRAF3 and -6 in the activation of the NF-kappa B and JNK pathways by X-linked ectodermal dysplasia receptor. J Biol Chem 2002; 277:44953-61. [PMID: 12270937 DOI: 10.1074/jbc.m207923200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
X-linked ectodermal dysplasia receptor (XEDAR) is a recently isolated member of the tumor necrosis factor receptor family that has been shown to be highly expressed in ectodermal derivatives during embryonic development and binds to ectodysplasin-A2 (EDA-A2). By using a subclone of 293F cells with stable expression of XEDAR, we report that XEDAR activates the NF-kappaB and JNK pathways in an EDA-A2-dependent fashion. Treatment with EDA-A2 leads to the recruitment of TRAF3 and -6 to the aggregated XEDAR complex, suggesting a central role of these adaptors in the proximal aspect of XEDAR signaling. Whereas TRAF3 and -6, IKK1/IKKalpha, IKK2/IKKbeta, and NEMO/IKKgamma are involved in XEDAR-induced NF-kappaB activation, XEDAR-induced JNK activation seems to be mediated via a pathway dependent on TRAF3, TRAF6, and ASK1. Deletion and point mutagenesis studies delineate two distinct regions in the cytoplasmic domain of XEDAR, which are involved in binding to TRAF3 and -6, respectively, and play a major role in the activation of the NF-kappaB and JNK pathways. Taken together, our results establish a major role of TRAF3 and -6 in XEDAR signaling and in the process of ectodermal differentiation.
Collapse
Affiliation(s)
- Suwan K Sinha
- Hamon Center for Therapeutic Oncology Research and Division of Hematology-Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8593, USA
| | | | | | | | | |
Collapse
|
8
|
Glauner H, Siegmund D, Motejadded H, Scheurich P, Henkler F, Janssen O, Wajant H. Intracellular localization and transcriptional regulation of tumor necrosis factor (TNF) receptor-associated factor 4 (TRAF4). EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:4819-29. [PMID: 12354113 DOI: 10.1046/j.1432-1033.2002.03180.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To gain insight in the subcellular localization of tumor necrosis factor receptor-associated factor (TRAF4) we analyzed GFP chimeras of full-length TRAF4 and various deletion mutants derived thereof. While TRAF4-GFP (T4-GFP) was clearly localized in the cytoplasm, the N-terminal deletion mutant, T4(259-470), comprising the TRAF domain of the molecule, and a C-terminal deletion mutant consisting mainly of the RING and zinc finger domains of TRAF4 were both localized predominantly to the nucleus. Passive nuclear localization of T4(259-470) can be ruled out as the TRAF domain of TRAF4 was sufficient to form high molecular weight complexes. T4(259-470) recruited full-length TRAF4 into the nucleus whereas TRAF4 was unable to change the nuclear localization of T4(259-470). Thus, it seems that individual T4(259-470) mutant molecules are sufficient to direct the respective TRAF4-T4(259-470) heteromeric complexes into the nucleus. In cells forming cell-cell contacts, TRAF4 was recruited to the sites of contact via its C-TRAF domain. The expression of some TRAF proteins is regulated by the NF-kappaB pathway. Thus, we investigated whether this pathway is also involved in the regulation of the TRAF4 gene. Indeed, in primary T-cells and Jurkat cells stimulated with the NF-kappaB inducers TNF or phorbol 12-myristate 13-acetate (PMA), TRAF4-mRNA was rapidly up-regulated. In Jurkat T-cells deficient for I-kappaB kinase gamma (IKKgamma, also known as NEMO), an essential component of the NF-kappaB-inducing-IKK complex, induction of TRAF4 was completely inhibited. In cells deficient for RIP (receptor interactive protein), an essential signaling intermediate of TNF-dependent NF-kappaB activation, TNF-, but not PMA-induced up-regulation of TRAF4 was blocked. These data suggest that activation of the NF-kappaB pathway is involved in up-regulation of TRAF4 in T-cells.
Collapse
Affiliation(s)
- Heike Glauner
- Institute of Cell Biology and Immunology and Institute of Industrial Genetics, University of Stuttgart, Germany; Institute of Immunology, Christian-Albrechts-University of Kiel, Germany
| | | | | | | | | | | | | |
Collapse
|
9
|
Qian Y, Zhao Z, Jiang Z, Li X. Role of NF kappa B activator Act1 in CD40-mediated signaling in epithelial cells. Proc Natl Acad Sci U S A 2002; 99:9386-91. [PMID: 12089335 PMCID: PMC123150 DOI: 10.1073/pnas.142294499] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
CD40, a cell surface receptor in the tumor necrosis factor receptor family, first identified and functionally characterized on B lymphocytes, is also expressed on epithelial and other cells and is now thought to play a more general role in immune regulation. Overexpression of the NF kappa B activator 1 (Act1) leads to the activation of both NF kappa B and Jun kinase in epithelial cell lines. Endogenous Act1 is recruited to the CD40 receptor in human intestinal (HT29) and cervical (HeLa) epithelial cells upon stimulation with CD40 ligand, indicating that Act1 is involved in this signaling pathway. Act1 also interacts with tumor necrosis factor receptor-associated factor 3, a component involved in CD40-activated pathway. Furthermore, transfection of Act1 into C33A cervical epithelial cells, which do not express it, renders these cells sensitive to CD40 ligand-induced NF kappa B activation and protects them from CD40 ligand-induced apoptosis. We conclude that Act1 plays an important role in CD40-mediated signaling in epithelial cells.
Collapse
Affiliation(s)
- Youcun Qian
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | | | |
Collapse
|