1
|
Petro-Turnquist E, Pekarek MJ, Weaver EA. Swine influenza A virus: challenges and novel vaccine strategies. Front Cell Infect Microbiol 2024; 14:1336013. [PMID: 38633745 PMCID: PMC11021629 DOI: 10.3389/fcimb.2024.1336013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/21/2024] [Indexed: 04/19/2024] Open
Abstract
Swine Influenza A Virus (IAV-S) imposes a significant impact on the pork industry and has been deemed a significant threat to global public health due to its zoonotic potential. The most effective method of preventing IAV-S is vaccination. While there are tremendous efforts to control and prevent IAV-S in vulnerable swine populations, there are considerable challenges in developing a broadly protective vaccine against IAV-S. These challenges include the consistent diversification of IAV-S, increasing the strength and breadth of adaptive immune responses elicited by vaccination, interfering maternal antibody responses, and the induction of vaccine-associated enhanced respiratory disease after vaccination. Current vaccination strategies are often not updated frequently enough to address the continuously evolving nature of IAV-S, fail to induce broadly cross-reactive responses, are susceptible to interference, may enhance respiratory disease, and can be expensive to produce. Here, we review the challenges and current status of universal IAV-S vaccine research. We also detail the current standard of licensed vaccines and their limitations in the field. Finally, we review recently described novel vaccines and vaccine platforms that may improve upon current methods of IAV-S control.
Collapse
Affiliation(s)
- Erika Petro-Turnquist
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, United States
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Matthew J. Pekarek
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, United States
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Eric A. Weaver
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, United States
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
2
|
Gunasekaran B, Gothandam KM. A review on edible vaccines and their prospects. ACTA ACUST UNITED AC 2020; 53:e8749. [PMID: 31994600 PMCID: PMC6984374 DOI: 10.1590/1414-431x20198749] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 11/04/2019] [Indexed: 01/07/2023]
Abstract
For a long time, vaccines have been the main mode of defense and protection against several bacterial, viral, and parasitic diseases. However, the process of production and purification makes them expensive and unaffordable to many developing nations. An edible vaccine is when the antigen is expressed in the edible part of the plant. This reduces the cost of production of the vaccine because of ease of culturing. In this article, various types of edible vaccines that include algal and probiotics in addition to plants are discussed. Various diseases against which research has been carried out are also reviewed. This article focused on the conception of edible vaccines highlighting the various ways by which vaccines can be delivered.
Collapse
Affiliation(s)
- B Gunasekaran
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - K M Gothandam
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
3
|
Brun A, Bárcena J, Blanco E, Borrego B, Dory D, Escribano JM, Le Gall-Reculé G, Ortego J, Dixon LK. Current strategies for subunit and genetic viral veterinary vaccine development. Virus Res 2011; 157:1-12. [PMID: 21316403 DOI: 10.1016/j.virusres.2011.02.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 02/03/2011] [Accepted: 02/04/2011] [Indexed: 12/24/2022]
Abstract
Developing vaccines for livestock provides researchers with the opportunity to perform efficacy testing in the natural hosts. This enables the evaluation of different strategies, including definition of effective antigens or antigen combinations, and improvement in delivery systems for target antigens so that protective immune responses can be modulated or potentiated. An impressive amount of knowledge has been generated in recent years on vaccine strategies and consequently a wide variety of antigen delivery systems is now available for vaccine research. This paper reviews several antigen production and delivery strategies other than those based on the use of live viral vectors. Genetic and protein subunit vaccines as well as alternative production systems are considered in this review.
Collapse
Affiliation(s)
- Alejandro Brun
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, 28130 Madrid, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Wan C, Yi L, Yang Z, Yang J, Shao H, Zhang C, Pan Z. The Toll-like receptor adaptor molecule TRIF enhances DNA vaccination against classical swine fever. Vet Immunol Immunopathol 2010; 137:47-53. [PMID: 20466439 DOI: 10.1016/j.vetimm.2010.04.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 03/19/2010] [Accepted: 04/12/2010] [Indexed: 10/19/2022]
Abstract
To evaluate the effects of the Toll/interleukin-1 receptor domain-containing adaptor-inducing interferon-beta (TRIF) on immune responses induced by DNA vaccines, mice were immunized with the eukaryotic expression plasmid pcDNA/E2 encoding classical swine fever virus (CSFV) E2 alone or in combination with the TRIF genetic adjuvant. Immune responses were examined in immunized mice. Our data demonstrates that co-delivery of the DNA vaccine pcDNA/E2 with the TRIF adjuvant augmented specific humoral and cellular immune responses in a mouse model. Vaccination of pigs confirmed that the pcDNA/E2 in combination with TRIF conferred total protection against lethal challenge with highly virulent CSFV. We conclude that TRIF enhances the effects of the DNA vaccine against CSFV infection and could be used as a potential genetic adjuvant for DNA vaccines in large animal species.
Collapse
Affiliation(s)
- Chao Wan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | | | | | | | | | | | | |
Collapse
|
5
|
Xu XG, Tong DW, Chiou MT, Hsieh YC, Shih WL, Chang CD, Liao MH, Zhang YM, Liu HJ. Baculovirus surface display of NS3 nonstructural protein of classical swine fever virus. J Virol Methods 2009; 159:259-64. [PMID: 19406162 DOI: 10.1016/j.jviromet.2009.04.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2009] [Revised: 04/11/2009] [Accepted: 04/20/2009] [Indexed: 02/02/2023]
Abstract
Classical swine fever virus (CSFV) causes significant losses in the pig industry in many countries. NS3 proteins of CSFV, which include serine protease and RNA helicase/nucleotide triphosphatase (NTPase) activities, are multifunctional proteins involved in polyprotein processing and viral replication. Previous reports showed that NS3 protein can induce apoptosis in host cells that present cytopathic effects (CPE). Baculovirus/insect cell systems are used widely for recombinant protein production. In this study, one recombinant baculovirus BacSC-NS3 expressing histidine-tagged NS3 with the transmembrane domain (TM) and cytoplasmic domain (CTD) derived from baculovirus envelope protein gp64 of baculovirus was constructed. After infection, NS3 was expressed and anchored to the plasma membrane of Sf-9 cells, as demonstrated by Western blot assay and confocal microscopy. Immunogold electron microscopy demonstrated that the NS3 glycoprotein successfully displayed on the baculoviral envelope. Animal vaccine tests showed that recombinant baculovirus BacSC-NS3 elicited significantly higher NS3 antibody titers in the treated mouse models than the control group. This report demonstrated the potential of NS3-pseudotyped baculovirus expression of NS3 protein successfully.
Collapse
Affiliation(s)
- Xin-Gang Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Xu XG, Chiou MT, Zhang YM, Tong DW, Hu JH, Zhang MT, Liu HJ. Baculovirus surface display of E(rns) envelope glycoprotein of classical swine fever virus. J Virol Methods 2008; 153:149-55. [PMID: 18727937 DOI: 10.1016/j.jviromet.2008.07.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 07/18/2008] [Accepted: 07/22/2008] [Indexed: 10/21/2022]
Abstract
Classical swine fever virus (CSFV) causes significant losses in the pig industry in many countries. E(rns) is an envelope glycoprotein of CSFV which is known to induce virus-neutralizing antibodies and protective immunity in the natural host. In this study, one recombinant baculoviruses BacSC-E(rns) expressing histidine-tagged E(rns) with the transmembrane domain (TM) and cytoplasmic domain (CTD) derived from baculovirus envelope protein gp64 was constructed and its immunizing efficacy was evaluated in a mouse model. After infection, E(rns) was expressed and anchored on the plasma membrane of Sf-9 cells, as demonstrated by Western-blot and confocal microscopy. Immunogold electron microscopy demonstrated that the E(rns) glycoprotein was successfully displayed on the baculoviral envelope. Vaccine tests in animals showed that BacSC-E(rns) elicited significantly higher E(rns) antibody titers in the immunized mouse models than the control group. This demonstrates that the BacSC-E(rns) vaccine can be used potentially against CSFV infections. This is the first report demonstrating the potential of E(rns)-pseudotyped baculovirus as a CSFV vaccine.
Collapse
Affiliation(s)
- Xin-Gang Xu
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | | | | | | | | | | | | |
Collapse
|
7
|
Ganges L, Núñez JI, Sobrino F, Borrego B, Fernández-Borges N, Frías-Lepoureau MT, Rodríguez F. Recent advances in the development of recombinant vaccines against classical swine fever virus: cellular responses also play a role in protection. Vet J 2007; 177:169-77. [PMID: 17804267 DOI: 10.1016/j.tvjl.2007.01.030] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Revised: 01/24/2007] [Accepted: 01/25/2007] [Indexed: 11/26/2022]
Abstract
Classical swine fever virus (CSFV) is the causative agent of one of the most devastating porcine haemorrhagic viral diseases, classical swine fever (CSF). CSFV mainly infects endothelial cells and macrophages and at the same time promotes bystander apoptosis of the surrounding T cells, causing strong immune suppression and high mortality rates. Most animals experience acute infection, during which they either die or survive by producing neutralising antibodies to the virus. However, in a few cases, the impaired immune system cannot control viral progression, leading to chronic infection. Efficient live attenuated vaccines against CSFV exist and are routinely used only in endemic countries. The ability of these vaccines to replicate in the host, even at very low rates, makes it extremely difficult to distinguish vaccinated from infected animals, favouring a restricted policy regarding vaccination against CSFV in non-endemic countries. There is a clear need for efficient and safer marker vaccines to assist in the control of future CSF outbreaks. In this review article, some of the most recent advances in the field of recombinant vaccines against CSFV are presented and the nature of the protective immune responses they induce is discussed.
Collapse
Affiliation(s)
- Llilianne Ganges
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, INIA, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
8
|
Dong XN, Chen YH. Marker vaccine strategies and candidate CSFV marker vaccines. Vaccine 2007; 25:205-30. [PMID: 16934915 DOI: 10.1016/j.vaccine.2006.07.033] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2006] [Revised: 07/21/2006] [Accepted: 07/21/2006] [Indexed: 11/24/2022]
Abstract
Classical swine fever (CSF) is an economically important highly contagious disease of swine worldwide. Classical swine fever virus (CSFV) is its etiological agent, and the only natural hosts are domestic pigs and wild boars. Although field CSFV strains vary in the virulence, they all result in serious losses in pig industry. Highly virulent field strains generally cause acute disease and high mortality; moderately virulent field strains raise subacute or chronic infections; postnatal infection by low virulent field strains produces subclinical infection and mortality in the new-born piglets. CSFV can cross the placental barrier, and this transplacental transmission usually results in mortality of fetuses and birth of congenitally infected pigs with a late-onset disease and death. Two main strategies to control CSF epidemic are systematic prophylactic vaccination with live attenuated vaccines (such as C-strain) and non-vaccination stamping-out policy. But neither of them is satisfying enough. Marker vaccine and companion serological diagnostic test is thought to be a promising strategy for future control and eradication of CSF. During the past 15 years, various candidate marker vaccines were constructed and evaluated in the animal experiments, including recombinant chimeric vaccines, recombinant deletion vaccines, DNA vaccines, subunit vaccines and peptide vaccines. Among them, two subunit vaccines entered the large scale marker vaccine trial of EU in 1999. Although they failed to fulfil all the demands of the Scientific Veterinary Committee, they successfully induced solid immunity against CSFV in the vaccinated pigs. It can be expected that new potent marker vaccines might be commercially available and used in systematic prophylactic vaccination campaign or emergency vaccination in the next 15 years. Here, we summarized current strategies and candidate CSFV marker vaccines. These strategies and methods are also helpful for the development of new-generation vaccines against other diseases.
Collapse
Affiliation(s)
- Xiao-Nan Dong
- Laboratory of Immunology, Department of Biology, Tsinghua University, Protein Science Laboratory of the Ministry of Education, Beijing 100084, PR China.
| | | |
Collapse
|
9
|
He DM, Qian KX, Shen GF, Zhang ZF, Li YN, Su ZL, Shao HB. Recombination and expression of classical swine fever virus (CSFV) structural protein E2 gene in Chlamydomonas reinhardtii chroloplasts. Colloids Surf B Biointerfaces 2006; 55:26-30. [PMID: 17188850 DOI: 10.1016/j.colsurfb.2006.10.042] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Revised: 09/23/2006] [Accepted: 10/25/2006] [Indexed: 11/23/2022]
Abstract
The expression of classical swine fever virus (CSFV) structural protein E2 in different vectors, which has been shown to carry critical epitopes, has been established. Here, we reported a Chlamydomonas reinhardtii chloroplast expression vector, P64E2, containing classical swine fever virus structural protein E2 gene, which was constructed and transferred to C. reinhardtii by biolistic bombardment method. The transformants were identified by PCR, Southern blotting, Western blotting after selecting on resistant media. ELISA quantification assay showed that the expressed E2 protein accumulated up to 1.5-2% of the total soluble protein. The results of the study on the immunological activity indicated that the protein E2 expressed in C. reinhardtii chloroplasts could elicit animal bodies to produce antibodies against protein E2.
Collapse
Affiliation(s)
- Dong-Mei He
- Department of Biotechnology, College of Life Science, Zhejiang University, Hangzhou 310027, China
| | | | | | | | | | | | | |
Collapse
|
10
|
Li N, Qiu HJ, Zhao JJ, Li Y, Wang MJ, Lu BW, Han CG, Hou Q, Wang ZH, Gao H, Peng WP, Li GX, Zhu QH, Tong GZ. A Semliki Forest virus replicon vectored DNA vaccine expressing the E2 glycoprotein of classical swine fever virus protects pigs from lethal challenge. Vaccine 2006; 25:2907-12. [PMID: 17007970 DOI: 10.1016/j.vaccine.2006.08.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Revised: 06/24/2006] [Accepted: 08/13/2006] [Indexed: 10/24/2022]
Abstract
Classical swine fever virus (CSFV) causes significant losses in pig industry in many countries in Asia and Europe. The E2 glycoprotein of CSFV is the main target for neutralizing antibodies. Recently, the replicon of alphaviruses, such as Semliki Forest virus (SFV), has been developed as replicative expression vectors for gene delivery. In this study, we constructed a plasmid DNA based on SFV replicon encoding the E2 glycoprotein of CSFV and evaluated its efficacy in rabbits and pigs. The results showed that the animals immunized with the DNA vaccine developed CSFV-specific neutralizing antibodies and were protected from virulent or lethal challenge. This demonstrates that the SFV replicon-derived DNA vaccine can be a potential marker vaccine against CSFV infections.
Collapse
Affiliation(s)
- Na Li
- Division of Swine Infectious Diseases, National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Harbin 150001, Heilongjiang, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Zeng F, Chow KYC, Hon CC, Law KM, Yip CW, Chan KH, Peiris JS, Leung FCC. Characterization of humoral responses in mice immunized with plasmid DNAs encoding SARS-CoV spike gene fragments. Biochem Biophys Res Commun 2004; 315:1134-9. [PMID: 14985131 PMCID: PMC7111006 DOI: 10.1016/j.bbrc.2004.01.166] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2004] [Indexed: 01/01/2023]
Abstract
The immunological characteristics of SARS-CoV spike protein were investigated by administering mice with plasmids encoding various S gene fragments. We showed that the secreting forms of S1, S2 subunits and the N-terminus of S1 subunit (residues 18-495) were capable of eliciting SARS-CoV specific antibodies and the region immediate to N-terminus of matured S1 protein contained an important immunogenic determinant for elicitation of SARS-CoV specific antibodies. In addition, mice immunized with plasmids encoding S1 fragment developed a Th1-mediated antibody isotype switching. Another interesting finding was that mouse antibodies elicited separately by plasmids encoding S1 and S2 subunits cooperatively neutralized SARS-CoV but neither the S1 nor S2 specific antibodies did, suggesting the possible role of both S1 and S2 subunits in host cell docking and entry. These results provide insights into understanding the immunological characteristics of spike protein and the development of subunit vaccines against SARS-CoV.
Collapse
Affiliation(s)
- Fanya Zeng
- Department of Zoology, The University of Hong Kong, Pokfulam Rd, Hong Kong, SAR, China
| | - Ken Yan Ching Chow
- Department of Zoology, The University of Hong Kong, Pokfulam Rd, Hong Kong, SAR, China
| | - Chung Chau Hon
- Department of Zoology, The University of Hong Kong, Pokfulam Rd, Hong Kong, SAR, China
| | - Ka Man Law
- Department of Zoology, The University of Hong Kong, Pokfulam Rd, Hong Kong, SAR, China
| | - Chi Wai Yip
- Department of Zoology, The University of Hong Kong, Pokfulam Rd, Hong Kong, SAR, China
| | - Kwok Hung Chan
- Department of Microbiology, The University of Hong Kong, Pokfulam Rd, Hong Kong, SAR, China
| | - Joseph S.Malik Peiris
- Department of Microbiology, The University of Hong Kong, Pokfulam Rd, Hong Kong, SAR, China
| | | |
Collapse
|
12
|
Abstract
Classical swine fever (CSF) is a serious and contagious viral disease of pigs and wild boar with a widespread worldwide distribution. The immunopathology of the disease is poorly understood, but the ability of the CSF virus to infect cells without triggering apoptosis and to kill uninfected cells is probably highly significant. The virus may be spread by various direct and indirect methods, but in most cases the exact mechanisms involved in local spread between farms are not known. Excellent diagnostic tools and typing methods are available, but tests that could be performed on-farm, in pre-clinically infected pigs or on meat would also be advantageous. A more complete picture of the viruses circulating in different parts of the world is needed. There is great interest to develop and use marker vaccines for the control of CSF in domestic pigs and in wild boar. Epidemiological modelling is increasingly used to evaluate control options.
Collapse
Affiliation(s)
- D J Paton
- Institute for Animal Health, Pirbright Laboratory, Ash Road, Pirbright, Surrey GU24 0NF, UK.
| | | |
Collapse
|
13
|
Abstract
There are two types of classical swine fever vaccines available: the classical live and the recently developed E2 subunit vaccines. The live Chinese strain vaccine is the most widely used. After a single vaccination, it confers solid immunity within a few days that appears to persist lifelong. The E2 subunit vaccine induces immunity from approximately 10-14 days after a single vaccination. The immunity may persist for more than a year, but is then not complete. The Chinese strain vaccine may establish a strong herd immunity 1-2 weeks earlier than the E2 vaccine. The ability of the Chinese vaccine strain to prevent congenital infection has not been reported, but the E2 subunit vaccine does not induce complete protection against congenital infection. Immunological mechanisms that underlie the protective immunity are still to be elucidated. Both types of vaccine are considered to be safe. A great advantage of the E2 subunit vaccine is that it allows differentiation of infected pigs from vaccinated pigs and is referred to as a DIVA vaccine. However, the companion diagnostic E(rns) ELISA to actually make that differentiation should be improved. Many approaches to develop novel vaccines have been described, but none of these is likely to result in a new DIVA vaccine reaching the market in the next 5-10 years. Countries where classical swine fever is endemic can best control the infection by systematic vaccination campaigns, accompanied by the normal diagnostic procedures and control measures. Oral vaccination of wild boar may contribute to lowering the incidence of classical swine fever, and consequently diminishing the threat of virus introduction into domestic pigs. Free countries should not vaccinate and should be highly alert to rapidly diagnose any new outbreak. Once a new introduction of classical swine fever virus in dense pig areas has been confirmed, an emergency vaccination programme should be immediately instituted, for maximum benefit. The question is whether the time is ripe to seriously consider global eradication of classical swine fever virus.
Collapse
Affiliation(s)
- J T van Oirschot
- Virus Discovery Unit, ID-Lelystad, PO Box 65, 8200 AB, Lelystad, The Netherlands.
| |
Collapse
|
14
|
Terzić S, Sver L, Valpotić I, Jemersić L, Lojkić M, Miletić Z, Orsolić N, Forsek J. Proportions and phenotypic expression of peripheral blood leucocytes in pigs vaccinated with an attenuated C strain and a subunit E2 vaccine against classical swine fever. JOURNAL OF VETERINARY MEDICINE. B, INFECTIOUS DISEASES AND VETERINARY PUBLIC HEALTH 2003; 50:166-71. [PMID: 12916689 DOI: 10.1046/j.1439-0450.2003.00652.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The influence of an attenuated classical swine fever virus C strain vaccine and a subunit E2 vaccine against classical swine fever on the peripheral blood leucocyte proportion and phenotypic expression in 12-week-old pigs was studied. The C strain was amplified in minipig kidney cell culture and final product contained 10(4 +/- 0.15) TCID50/ml, while the subunit vaccine contained 32 microg per dose of gp E2. Haematological findings showed that the vaccines did not cause leucopenia or lymphocytopenia and the number of neutrophils and eosinophils during the observation period was within physiological range. The results of the proportion of CD4a+, CD5a+, CD8a+, wCD21+, CD45RA+, CD45RC+ , non-T non-B, SWC3a+ and CD11b+ cells were gained by single-colour flow cytometry. At the end of the trial a significantly increase of percentage of CD4+, CD5a+, CD8+, wCD21+ cells has been found in pigs that received the subunit vaccine and the percentage of CD4+, CD5a+, CD8+, CD45RA+ and CD45RC+ cells was higher in pigs that received the attenuated vaccine. Twenty-eight days after vaccination the percentage of CD4+, CD45RA+ and CD45RC+ was significantly higher in pigs vaccinated with the C strain than in pigs vaccinated with the subunit vaccine. In contrary, the percentage of the wCD21- cells was higher in pigs that received the subunit vaccine. Statistically higher values of SWC3a+ and lower values of CD11b+ cells was observed in pigs that received the attenuated vaccine than in pigs vaccinated with the subunit vaccine. Taken altogether, our results showed that the subunit vaccine produced a better stimulation of B cells and CD11b+ monocytes/macrophages /granulocytes/NK cells, whereas the attenuated vaccine induced a higher response of Th cells, naive/memory cells and macrophages/neutrophils. Thus, both vaccines were able to influence the porcine immune system, by activating different subsets of the immune effector/accessory cells.
Collapse
Affiliation(s)
- S Terzić
- Croatian Veterinary Institute, Savska cesta 143, 10000 Zagreb, Croatia.
| | | | | | | | | | | | | | | |
Collapse
|