1
|
Nova A, Fazia T, Beecham A, Saddi V, Piras M, McCauley JL, Berzuini C, Bernardinelli L. Plasma Protein Levels Analysis in Multiple Sclerosis Sardinian Families Identified C9 and CYP24A1 as Candidate Biomarkers. Life (Basel) 2022; 12:life12020151. [PMID: 35207439 PMCID: PMC8879906 DOI: 10.3390/life12020151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/05/2022] [Accepted: 01/13/2022] [Indexed: 12/24/2022] Open
Abstract
Here we investigate protein levels in 69 multiple sclerosis (MS) cases and 143 healthy controls (HC) from twenty Sardinian families to search for promising biomarkers in plasma. Using antibody suspension bead array technology, the plasma levels of 56 MS-related proteins were obtained. Differences between MS cases and HC were estimated using Linear Mixed Models or Linear Quantile Mixed Models. The proportion of proteins level variability, explained by a set of 119 MS-risk SNPs as to the literature, was also quantified. Higher plasma C9 and CYP24A1 levels were found in MS cases compared to HC (p < 0.05 after Holm multiple testing correction), with protein level differences estimated as, respectively, 0.53 (95% CI: 0.25, 0.81) and 0.42 (95% CI: 0.19, 0.65) times plasma level standard deviation measured in HC. Furthermore, C9 resulted in both statistically significantly higher relapsing-remitting MS (RRMS) and secondary-progressive MS (SPMS) compared to HC, with SPMS showing the highest differences. Instead, CYP24A1 was statistically significantly higher only in RRMS as compared to HC. Respectively, 26% (95% CI: 10%, 44%) and 16% (95% CI: 9%, 39%) of CYP24A1 and C9 plasma level variability was explained by known MS-risk SNPs. Our results highlight C9 and CYP24A1 as potential biomarkers in plasma for MS and allow us to gain insight into molecular disease mechanisms.
Collapse
Affiliation(s)
- Andrea Nova
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.F.); (L.B.)
- Correspondence:
| | - Teresa Fazia
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.F.); (L.B.)
| | - Ashley Beecham
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33146, USA; (A.B.); (J.L.M.)
- Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, Miami, FL 33136, USA
| | - Valeria Saddi
- Divisione di Neurologia, Presidio Ospedaliero S. Francesco, ASL Numero 3 Nuoro, 08100 Nuoro, Italy; (V.S.); (M.P.)
| | - Marialuisa Piras
- Divisione di Neurologia, Presidio Ospedaliero S. Francesco, ASL Numero 3 Nuoro, 08100 Nuoro, Italy; (V.S.); (M.P.)
| | - Jacob L. McCauley
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33146, USA; (A.B.); (J.L.M.)
- Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, Miami, FL 33136, USA
| | - Carlo Berzuini
- Centre for Biostatistics, The University of Manchester, Manchester M13 9PL, UK;
| | - Luisa Bernardinelli
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (T.F.); (L.B.)
| |
Collapse
|
2
|
Peteri UK, Pitkonen J, de Toma I, Nieminen O, Utami KH, Strandin TM, Corcoran P, Roybon L, Vaheri A, Ethell I, Casarotto P, Pouladi MA, Castrén ML. Urokinase plasminogen activator mediates changes in human astrocytes modeling fragile X syndrome. Glia 2021; 69:2947-2962. [PMID: 34427356 DOI: 10.1002/glia.24080] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 12/25/2022]
Abstract
The function of astrocytes intertwines with the extracellular matrix, whose neuron and glial cell-derived components shape neuronal plasticity. Astrocyte abnormalities have been reported in the brain of the mouse model for fragile X syndrome (FXS), the most common cause of inherited intellectual disability, and a monogenic cause of autism spectrum disorder. We compared human FXS and control astrocytes generated from human induced pluripotent stem cells and we found increased expression of urokinase plasminogen activator (uPA), which modulates degradation of extracellular matrix. Several pathways associated with uPA and its receptor function were activated in FXS astrocytes. Levels of uPA were also increased in conditioned medium collected from FXS hiPSC-derived astrocyte cultures and correlated inversely with intracellular Ca2+ responses to activation of L-type voltage-gated calcium channels in human astrocytes. Increased uPA augmented neuronal phosphorylation of TrkB within the docking site for the phospholipase-Cγ1 (PLCγ1), indicating effects of uPA on neuronal plasticity. Gene expression changes during neuronal differentiation preceding astrogenesis likely contributed to properties of astrocytes with FXS-specific alterations that showed specificity by not affecting differentiation of adenosine triphosphate (ATP)-responsive astrocyte population. To conclude, our studies identified uPA as an important regulator of astrocyte function and demonstrated that increased uPA in human FXS astrocytes modulated astrocytic responses and neuronal plasticity.
Collapse
Affiliation(s)
- Ulla-Kaisa Peteri
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Juho Pitkonen
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ilario de Toma
- Systems Neurobiology Laboratory, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Otso Nieminen
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kagistia Hana Utami
- Department of Physiology, National University of Singapore (NUS), Singapore, Singapore
| | - Tomas M Strandin
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Padraic Corcoran
- Array and Analysis Facility, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Laurent Roybon
- iPSC Laboratory for CNS Disease Modeling, Department of Experimental Medical Science, BMC D10, and MultiPark and the Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Antti Vaheri
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Iryna Ethell
- Biomedical Sciences, University of California Riverside School of Medicine, Riverside, California, USA
| | | | - Mahmoud A Pouladi
- Department of Physiology, National University of Singapore (NUS), Singapore, Singapore.,British Columbia Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Maija L Castrén
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Bogie JFJ, Stinissen P, Hendriks JJA. Macrophage subsets and microglia in multiple sclerosis. Acta Neuropathol 2014; 128:191-213. [PMID: 24952885 DOI: 10.1007/s00401-014-1310-2] [Citation(s) in RCA: 206] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/10/2014] [Accepted: 06/15/2014] [Indexed: 12/11/2022]
Abstract
Along with microglia and monocyte-derived macrophages, macrophages in the perivascular space, choroid plexus, and meninges are the principal effector cells in neuroinflammatory and neurodegenerative disorders. These phagocytes are highly heterogeneous cells displaying spatial- and temporal-dependent identities in the healthy, injured, and inflamed CNS. In the last decade, researchers have debated on whether phagocytes subtypes and phenotypes are pathogenic or protective in CNS pathologies. In the context of this dichotomy, we summarize and discuss the current knowledge on the spatiotemporal physiology of macrophage subsets and microglia in the healthy and diseased CNS, and elaborate on factors regulating their behavior. In addition, the impact of macrophages present in lymphoid organs on CNS pathologies is defined. The prime focus of this review is on multiple sclerosis (MS), which is characterized by inflammation, demyelination, neurodegeneration, and CNS repair, and in which microglia and macrophages have been extensively scrutinized. On one hand, microglia and macrophages promote neuroinflammatory and neurodegenerative events in MS by releasing inflammatory mediators and stimulating leukocyte activity and infiltration into the CNS. On the other hand, microglia and macrophages assist in CNS repair through the production of neurotrophic factors and clearance of inhibitory myelin debris. Finally, we define how microglia and macrophage physiology can be harnessed for new therapeutics aimed at suppressing neuroinflammatory and cytodegenerative events, as well as promoting CNS repair. We conclude that microglia and macrophages are highly dynamic cells displaying disease stage and location-specific fates in neurological disorders. Changing the physiology of divergent phagocyte subsets at particular disease stages holds promise for future therapeutics for CNS pathologies.
Collapse
Affiliation(s)
- Jeroen F J Bogie
- Hasselt University, Biomedisch Onderzoeksinstituut and Transnationale Universiteit Limburg, School of Life Sciences, Diepenbeek, Belgium
| | | | | |
Collapse
|
4
|
Sellebjerg F, Sørensen TL. Chemokines and matrix metalloproteinase-9 in leukocyte recruitment to the central nervous system. Brain Res Bull 2003; 61:347-55. [PMID: 12909304 DOI: 10.1016/s0361-9230(03)00097-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chemokines and matrix metalloproteinases (MMPs) play key roles in leukocyte migration across the blood-brain barrier (BBB) in infectious and inflammatory diseases, including multiple sclerosis (MS). In MS some chemokine receptors are expressed by an increased percentage of T cells in blood, the CSF concentration of chemokine ligands for these receptors is increased, and there is accumulation of T cells expressing relevant chemokine receptors in CSF and in the CNS parenchyma. Chemokine receptor expression patterns appear to reflect disease activity and disease stage in MS. MMPs are constitutively expressed or induced by proinflammatory cytokines and chemokines in leukocytes and CNS-resident cells. Several MMPs are expressed in MS plaques, and the CSF concentration of MMP-9 is increased in MS. The CSF concentration of MMP-9 may reflect disease activity in MS, and the CSF concentration of MMP-9 is higher in patients carrying the MS-associated HLA type DRB1 1501. We review how chemokines and MMP-9 may be involved in the pathogenesis of MS by controlling leukocyte migration between different functional compartments. Measuring expression of these molecules may find use as surrogate markers of disease activity in MS, and interfering with their function holds promise as a novel therapeutic strategy in MS.
Collapse
Affiliation(s)
- F Sellebjerg
- Department of Neurology, The MS Clinic, University of Copenhagen, Glostrup Hospital, DK-2600 Glostrup, Denmark.
| | | |
Collapse
|
5
|
Teesalu T, Hinkkanen AE, Vaheri A. Coordinated induction of extracellular proteolysis systems during experimental autoimmune encephalomyelitis in mice. THE AMERICAN JOURNAL OF PATHOLOGY 2001; 159:2227-37. [PMID: 11733372 PMCID: PMC1850601 DOI: 10.1016/s0002-9440(10)63073-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/12/2001] [Indexed: 02/02/2023]
Abstract
Plasminogen activators (PAs) and matrix metalloproteinases (MMPs) are considered to play an important role in the pathogenesis of multiple sclerosis. Experimental autoimmune encephalomyelitis (EAE) is widely used as an animal model of multiple sclerosis. Whereas several studies have addressed the expression of various MMPs and their inhibitors in the pathogenesis of EAE, the expression of the molecules of the PA system during EAE has not been reported previously. The present study was undertaken to investigate the expression of the molecules of the PA system (tPA, uPA, PAI-1, uPAR, LRP), as well as several members of the MMP family and their inhibitors in the course of actively induced EAE in BALB/c mice. During clinical EAE, the PA system was up-regulated in the central nervous system at several levels. Induction of expression of tPA and PAI-1 transcripts was detected in activated astrocytes in the white matter. Inflammatory cells expressed uPA receptor, uPAR. In situ zymography demonstrated the presence of increased tPA and uPA activities in the areas of the inflammatory damage. Accumulation of fibrin, fibronectin, and vitronectin immunoreactivity was seen in perivascular matrices of symptomatic animals. In addition, transcription of MT1-MMP and metalloelastase (in inflammatory cells), and TIMP-1 (in activated astrocytes) was induced during EAE. Increased gelatinolytic activity was detected at the sites of inflammatory cell accumulation by in situ zymography of fluorescently labeled gelatin; substrate gel zymography identified the up-regulated gelatinolytic activity as gelatinase B. Overall, our study demonstrates concurrent induction of PA and MMP systems during active EAE, supporting further the concept that the neuroinflammatory damage in EAE involves altered balance between multiple extracellular proteases and their inhibitors.
Collapse
MESH Headings
- Animals
- Central Nervous System/metabolism
- Central Nervous System/pathology
- Electrophoresis, Polyacrylamide Gel
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Extracellular Matrix/metabolism
- Extracellular Matrix Proteins/analysis
- Female
- Fibrin/analysis
- Fibronectins/analysis
- Gene Expression Regulation
- Immunohistochemistry
- In Situ Hybridization
- Male
- Matrix Metalloproteinase 14
- Matrix Metalloproteinases/genetics
- Matrix Metalloproteinases/metabolism
- Matrix Metalloproteinases, Membrane-Associated
- Metalloendopeptidases/genetics
- Metalloendopeptidases/metabolism
- Mice
- Mice, Inbred BALB C
- Plasminogen Activator Inhibitor 1/genetics
- Plasminogen Activator Inhibitor 1/metabolism
- Plasminogen Activators/genetics
- Plasminogen Activators/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Urokinase Plasminogen Activator
- Tissue Inhibitor of Metalloproteinase-1/genetics
- Tissue Inhibitor of Metalloproteinase-1/metabolism
- Tissue Plasminogen Activator/genetics
- Tissue Plasminogen Activator/metabolism
- Vitronectin/analysis
Collapse
Affiliation(s)
- T Teesalu
- Haartman Institute, University of Helsinki, Helsinki, Finland.
| | | | | |
Collapse
|
6
|
|
7
|
Akenami F, Koskiniemi M, Färkkilä M, Vaheri A. Cerebrospinal fluid plasminogen, plasmin and protease inhibitors in multiple sclerosis. ACTA ACUST UNITED AC 1999. [DOI: 10.1016/s0268-9499(99)90095-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
8
|
Akenami FO, Sirén V, Wessman M, Koskiniemi M, Vaheri A. Tissue plasminogen activator gene expression in multiple sclerosis brain tissue. J Neurol Sci 1999; 165:71-6. [PMID: 10426151 DOI: 10.1016/s0022-510x(99)00080-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent studies have implicated tissue-type plasminogen activator (tPA) in neurodegeneration. We studied multiple sclerosis (MS) brain tissue for tPA gene and protein expression in comparison with reference tissue, by in situ hybridisation and immunohistochemistry. MS is characterised by demyelination in the central nervous system. In this study, neuronal cell bodies in MS brain showed high expression of tPA mRNA and protein, while in reference brains, staining for protein and mRNA expression were very low in neurons and mostly restricted to blood vessel walls. In MS, there was an additional staining of mononuclear cells within perivascular cuffs and foamy macrophages within demyelinating plaques. In view of evidence that the final process of demyelination in MS is thought to be enzyme-mediated, our work suggests the involvement of tPA and by inference plasmin, in the demyelinating process. Blocking tPA or plasmin activity may be a potentially beneficial therapeutic approach in MS.
Collapse
Affiliation(s)
- F O Akenami
- Haartman Institute, Department of Virology, University of Helsinki, Finland.
| | | | | | | | | |
Collapse
|