1
|
Weems AC, Easley A, Roach SR, Maitland DJ. Highly Cross-Linked Shape Memory Polymers with Tunable Oxidative and Hydrolytic Degradation Rates and Selected Products Based on Succinic Acid. ACS APPLIED BIO MATERIALS 2018; 2:454-463. [PMID: 32832879 DOI: 10.1021/acsabm.8b00650] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Minimally invasive medical devices are of great interest, with shape memory polymers (SMPs) representing one such possibility for producing these devices. Previous work with low density, highly porous SMPs has demonstrated oxidative degradation, while attempts to incorporate hydrolytic degradation have resulted in rapidly decreasing glass transition temperature (T g ), ultimately preventing strain fixity of the materials at clinically relevant temperatures. Through esterification of the amino alcohol triethanolamine, an alcohol containing network was synthesized and incorporated into SMPs. These ester networks were used to control the bulk morphology of the SMP, with the T g remaining above 37 °C when 50% of the alcohol was contributed by the ester network. This methodology also yielded SMPs that could degrade through both hydrolysis and oxidation; by oxidation, the SMPs degrade at a similar rate as the control materials (0.2%/day mass) for the first 30 days, at which point the rate changes to 3.5%/day until the samples become too fragile to examine at 80 days. By comparison, control materials have lost approximately 30% of mass by 140 days, at a constant rate of degradation, demonstrating that the ester SMPs are a promising material system for producing more rapidly degradable, soft, porous biomaterials.
Collapse
Affiliation(s)
- Andrew C Weems
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77840, United States
| | - Alexandra Easley
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77840, United States
| | - Sydney Reese Roach
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77840, United States
| | - Duncan J Maitland
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77840, United States
| |
Collapse
|
2
|
Fiume MM, Heldreth B, Bergfeld WF, Belsito DV, Hill RA, Klaassen CD, Liebler DC, Marks JG, Shank RC, Slaga TJ, Snyder PW, Andersen FA. Safety Assessment of Diethanolamine and Its Salts as Used in Cosmetics. Int J Toxicol 2018; 36:89S-110S. [PMID: 29025348 DOI: 10.1177/1091581817707179] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Cosmetic Ingredient Review (CIR) Expert Panel assessed the safety of diethanolamine and its salts as used in cosmetics. Diethanolamine functions as a pH adjuster; the 16 salts included in this rereview reportedly function as surfactants, emulsifying agents, viscosity increasing agents, hair or skin conditioning agents, foam boosters, or antistatic agents. The Panel reviewed available animal and clinical data, as well as information from previous CIR reports. Since data were not available for each individual ingredient, and since the salts dissociate freely in water, the Panel extrapolated from previous reports to support safety. The Panel concluded that diethanolamine and its salts are safe for use when formulated to be nonirritating. These ingredients should not be used in cosmetic products in which N-nitroso compounds can be formed.
Collapse
Affiliation(s)
- Monice M Fiume
- 1 Senior Director, Cosmetic Ingredient Review, Washington, DC, USA
| | - Bart Heldreth
- 2 Executive Director, Cosmetic Ingredient Review, Washington, DC, USA
| | - Wilma F Bergfeld
- 3 Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - Donald V Belsito
- 3 Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - Ronald A Hill
- 3 Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - Curtis D Klaassen
- 3 Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - Daniel C Liebler
- 3 Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - James G Marks
- 3 Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - Ronald C Shank
- 3 Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - Thomas J Slaga
- 3 Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - Paul W Snyder
- 3 Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - F Alan Andersen
- 4 Former Director, Cosmetic Ingredient Review, Washington, DC, USA
| |
Collapse
|
3
|
Kirman C, Hughes B, Becker R, Hays S. Derivation of a No-significant-risk-level (NSRL) for dermal exposures to diethanolamine. Regul Toxicol Pharmacol 2016; 76:137-51. [DOI: 10.1016/j.yrtph.2016.01.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 01/28/2016] [Accepted: 01/29/2016] [Indexed: 11/15/2022]
|
4
|
Yar M, Mushtaq N, Afzal S. Synthesis, reactions, applications, and biological activity of diethanolamine and its derivatives. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2013. [DOI: 10.1134/s1070428013070014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
The inhalation toxicity of di- and triethanolamine upon repeated exposure. Food Chem Toxicol 2008; 46:2173-83. [PMID: 18420328 DOI: 10.1016/j.fct.2008.02.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 02/19/2008] [Accepted: 02/19/2008] [Indexed: 11/23/2022]
Abstract
Systemic and respiratory tract (RT) toxicity of triethanolamine (TEA) was assessed in a 28-day nose-only inhalation study in Wistar rats (10animals/sex, concentrations: 0, 20, 100, 500mg/m3; 5 days/week, 6h/day). In two nose-only 90-day inhalation studies, with similar exposure design, Wistar rats were exposed to 0, 15, 150, 400mg/m3 diethanolamine (DEA) (DEA Study 1:13animals/sex, general subchronic study) and to 0, 1.5, 3, 8mg/m3 (DEA Study 2:10animals/sex) to specifically investigate respiratory tract toxicity. Only DEA induced systemic toxicity at or above 150mg/m3 (body and organ weight changes, clinical- and histo-pathological changes indicative for mild blood, liver, kidney and testicular effects). Neurotoxicity was not observed for both substances. Exposure to both substances resulted in laryngeal epithelial changes starting from 3mg/m3 for DEA (reversible metaplasia at the base of the epiglottis, inflammation at higher concentrations extending into the trachea) or from 20mg/m3 for TEA (focal inflammation, starting in single male animals). TEA appears to be less potent with respect to systemic toxicity and RT irritancy than DEA. The 90-day no adverse effect concentration" (NOAEC) for changes due to TEA exposure in the respiratory tract was 4.7mg/m3 derived by extrapolation from the NOAEC of the 28day study.
Collapse
|
6
|
Stott WT, Kleinert KM. Effect of diisopropanolamine upon choline uptake and phospholipid synthesis in Chinese hamster ovary cells. Food Chem Toxicol 2007; 46:761-6. [PMID: 17988777 DOI: 10.1016/j.fct.2007.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 09/13/2007] [Accepted: 10/01/2007] [Indexed: 11/30/2022]
Abstract
Aminoalcohols differ in mammalian toxicity at least in part based upon their ability to alter the metabolism of phospholipids and to cause depletion of the essential nutrient choline in animals. This study examined the incorporation of diisopropanolamine (DIPA) into phospholipids (PLs) and effects of DIPA upon choline uptake and phospholipid synthesis in Chinese hamster ovary (CHO) cells. Results were compared to those of a related secondary alcohol amine, diethanolamine (DEA), whose systemic toxicity is closely associated with its metabolic incorporation into PLs and depletion of choline pools. DIPA caused a dose-related inhibition of (3)H-choline uptake by CHO cells that was approximately 3-4 fold less potent, based upon an IC50, than that reported for DEA. DIPA, in contrast to DEA, did not cause changes in the synthesis rates of (33)P-phosphatidylethanolamine, (33)P-phosphatidylcholine or (33)P-sphingomyelin at either non-toxic or moderately toxic concentrations. Only approximately 0.004%, of administered (14)C-DIPA was metabolically incorporated into PLs, over 30-fold less than the incorporation of (14)C-DEA under similar conditions. Overall, these data and previous pharmacokinetic and toxicity data obtained in vivo suggests that DIPA is distinct from DEA and lacks significant choline and PL metabolism related toxicity in animals.
Collapse
Affiliation(s)
- W T Stott
- Toxicology and Environmental Research and Consulting, Building 1803, The Dow Chemical Company, Midland, MI 48674, United States.
| | | |
Collapse
|
7
|
Saghir SA, Frantz SW, Spence MW, Nolan RJ, Lowe ER, Rick DL, Bartels MJ. Pharmacokinetics and bioavailability of diisopropanolamine (DIPA) in rats following intravenous or dermal application. Food Chem Toxicol 2007; 45:2047-56. [PMID: 17583405 DOI: 10.1016/j.fct.2007.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 04/18/2007] [Accepted: 05/09/2007] [Indexed: 10/23/2022]
Abstract
This study was conducted to determine the relative dermal bioavailability (absorption), distribution, metabolism, and excretion (ADME) of diisopropanolamine (DIPA), an alcohol amine used in a number of industrial and personal care products. Groups of 4 female Fischer 344 rats received either a single bolus i.v. dose of 19.0mg/kg (14)C-DIPA in water or a dermal application of 19.5mg/kg (14)C-DIPA in acetone to an area of 1cm(2) on the back and covered with a bandage. Time-course blood and excreta were collected and radioactivity determined. Urine was analyzed for DIPA and monoisopropanolamine (MIPA). Following i.v. administration, DIPA was rapidly cleared from the plasma and excreted into urine in a biexponential manner (t(1/2alpha), 0.4h; t(1/2beta), 2.9h). The levels of radioactivity in plasma dropped below the limit of detection 12h post-dosing. A total of 97+/-4% of the dose was actively excreted in urine by kidney, most ( approximately 71%) within 6h of dosing, virtually all as parent compound; renal clearance exceeded the glomerular filtration rate. Following dermal application, approximately 20% of the dose was absorbed in 48 h with the steady-state penetration rate of approximately 0.2%/h. Most (14.4%) of the applied radioactivity was excreted in urine at a relatively constant rate due to the presence of large amount of the (14)C-DIPA at the application site. Fecal elimination was <0.2% of the dose. The absorbed DIPA did not accumulate in tissues; only approximately 0.1% of the administered dose was found in liver and kidney. The absolute systemic dermal bioavailability (dose corrected AUC(dermal)/AUC(i.v.)) of (14)C-DIPA was 12%. The ADME of DIPA contrasts that of its diethanol analogue, diethanolamine, which displays a broad spectrum of toxicity in rats and mice. Toxicologically significant concentrations of DIPA are unlikely to be achieved in the systemic circulation and/or tissues as a result of repeated dermal application of products containing DIPA due to slow absorption from the skin, rapid unchanged elimination in urine, and majority of the products contain <or= 1% DIPA.
Collapse
Affiliation(s)
- S A Saghir
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Bldg 1803, Midland, MI 48674, United States.
| | | | | | | | | | | | | |
Collapse
|
8
|
Johnson KA, Dryzga MD, Brooks KJ, Carney EW, Tornesi B, Stott WT. Repeated dose toxicity and developmental toxicity of diisopropanolamine to rats. Food Chem Toxicol 2007; 45:1838-45. [PMID: 17507134 DOI: 10.1016/j.fct.2007.03.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 03/22/2007] [Accepted: 03/27/2007] [Indexed: 10/23/2022]
Abstract
The repeated dose oral and dermal toxicity of diisopropanolamine (DIPA) was evaluated in rats and compared to the reported toxicity of the related secondary alcohol amine, diethanolamine (DEA). Fischer 344/DuCrl rats were given up to 750 mg/kg/day by dermal application, 5 days/week, for 4 weeks; or up to 1,000 mg DIPA/kg/day by drinking water for 13 weeks to evaluate potential toxic effects. Time-mated female CRL:CD(SD) rats were given up to 1,000 mg/kg/day by gavage on gestation days (GD) 6-20 for evaluation of maternal and fetal effects. In the dermal toxicity study, no adverse treatment-related in-life effects other than mild irritation at the site of dermal application at >or= 500 mg/kg/day were observed. There were no systemic effects in rats given up to 750 mg/kg/day. In the subchronic oral toxicity study, the most significant effects were an increase in absolute and relative kidney weights, unaccompanied by histopathologic changes, at >or= 500 mg/kg/day DIPA. The latter effect was ameliorated following a 4-week recovery period. In the developmental toxicity study, there were no maternal or developmental effects at any dose level evaluated. The toxicity of DIPA contrasts with that of DEA which has been shown to affect a number of organ systems when repeatedly administered orally or dermally at similar or lower dosages.
Collapse
Affiliation(s)
- K A Johnson
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, 1803 Building, Midland, MI 48674, United States
| | | | | | | | | | | |
Collapse
|
9
|
Price CJ, Marr MC, Myers CB, Jahnke GD. Postnatal development of rat pups after maternal exposure to diethanolamine. ACTA ACUST UNITED AC 2005; 74:243-54. [PMID: 15954084 DOI: 10.1002/bdrb.20044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Diethanolamine (DEA), a widely used surfactant, was administered to pregnant mice at the oral LD10 resulting in failure of pups to grow and thrive through postnatal day (PND) 3 [National Toxicology Program, 1987; York et al., Teratology 37:503-504, 1988]. The toxicity profile for DEA differs among rodent species. This study investigated DEA-induced postnatal toxicity in a second species. METHODS Timed-mated Sprague-Dawley rats were dosed (0, 50, 125, 200, 250, or 300 mg DEA/kg/day, p.o.) on gestational days (GD) 6-19. Dams and pups were monitored for body weight, feed/water intake, clinical signs, litter size, and sex ratio. At necropsy (PND 21), maternal liver and kidney weights and number of uterine implantation sites were recorded. RESULTS The high-dose group was terminated early due to excessive toxicity. The estimated maternal LD10 was 218 mg/kg/day. Maternal effects included decreased body weight and relative feed intake (>or=200 mg/kg/day), transiently reduced relative water intake (125 and 250 mg/kg/day), and increased absolute kidney weight (>or=125 mg/kg/day). Postimplantation loss (PND 0) and pup mortality (PND 0-4) were increased (>or=200 and >or=125 mg/kg/day, respectively). Pup body weight was reduced (>or=200 mg/kg/day) as late as PND 21. CONCLUSIONS This study demonstrates reduced postnatal growth and survival in a second species after gestational exposure to DEA, persistence of toxic effects through the end of lactation, possibly due to long elimination half-life, and maternal and developmental toxicity no-observed-adverse-effect level (NOAELs) (50 mg/kg/day) and lowest-observed-adverse-effect level (LOAELs) (125 mg/kg/day) for oral DEA exposure during embryo/fetal development in the rat.
Collapse
Affiliation(s)
- Catherine J Price
- Life Sciences and Toxicology, RTI International, Research Triangle Park, North Carolina 27709-2194, USA.
| | | | | | | |
Collapse
|
10
|
Saghir SA, Brzak KA, Markham DA, Bartels MJ, Stott WT. Investigation of the formation of N-nitrosodiethanolamine in B6C3F1 mice following topical administration of triethanolamine. Regul Toxicol Pharmacol 2005; 43:10-8. [PMID: 15905009 DOI: 10.1016/j.yrtph.2005.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Indexed: 11/25/2022]
Abstract
To determine potential nitrosation of triethanolamine (TEA) to N-nitrosodiethanolamine (NDELA) at different physiological conditions of the GI tract, in vitro NDELA formation was examined in aqueous reaction mixtures at several pHs (2-10) adjusted with acetic, sulphuric or hydrochloric acids or in cultures of mouse cecal microflora incubated. In vivo NDELA formation was also determined in blood, ingesta, and urine of female B6C3F1 mice after repeated dermal, most relevant human route, or single oral exposure to 1000 mg/kg TEA in the presence of high oral dosages of NaNO(2). Appropriate diethanolamine (DEA) controls were included to account for this impurity in the TEA used. Samples were analyzed for NDELA using GC/MS. The highest degree of nitrosation of TEA to NDELA ( approximately 3%) was observed in the in vitro cultures at pH 4 and acetic acid with lower amounts obtained using sulphuric acid ( approximately 1.3%) and hydrochloric acid ( approximately 1.2%). At pH 7, <1% of the TEA was nitrosated to NDELA and at pH 2 (HCl) or pH 10 (NaOH) no NDELA was found above the limit of detection. In incubated cultures containing cecal microflora and nutrient broth, only 0.68% of TEA was nitrosated to NDELA. No NDELA was formed in rats repeatedly dermally dosed with TEA at the limits of detection in blood (0.001 microg/ml, ppm), ingesta (0.006 microg/ml, ppm), and urine (0.47 microg/ml, ppm). Levels of NDELA measured in blood and ingesta after a single oral dose of TEA and NaNO(2) were less than those in DEA controls. These findings in toto confirm the lack of any significant formation of NDELA from TEA in vivo.
Collapse
Affiliation(s)
- Shakil A Saghir
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI 48642, USA.
| | | | | | | | | |
Collapse
|
11
|
Leung HW, Kamendulis LM, Stott WT. Review of the carcinogenic activity of diethanolamine and evidence of choline deficiency as a plausible mode of action. Regul Toxicol Pharmacol 2005; 43:260-71. [PMID: 16188361 DOI: 10.1016/j.yrtph.2005.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Indexed: 11/22/2022]
Abstract
Diethanolamine (DEA) is a chemical used widely in a number of industries and is present in many consumer products. Studies by the National Toxicology Program (NTP) have indicated that lifetime dermal exposure to DEA increased the incidence and multiplicity of liver tumors in mice, but not in rats. In addition, DEA was not carcinogenic when tested in the Tg.Ac transgenic mouse model. Short-term genotoxicity tests have yielded negative results. In view of these apparent inconsistencies, we have critically evaluated the NTP studies and other data relevant to assessing the carcinogenic potential of DEA. The available data indicate that DEA induces mouse liver tumors by a non-genotoxic mode of action that involves its ability to cause choline deficiency. The following experimental evidence supports this hypothesis. DEA decreased the hepatic choline metabolites and S-adenosylmethionine levels in mice, similar to those observed in choline-deficient mice. In contrast, DEA had no effect in the rat, a species in which it was not carcinogenic at a maximum tolerated dose level. In addition, a consistent dose-effect relationship had been established between choline deficiency and carcinogenic activity since all DEA dosages that induced tumors in the NTP studies were also shown to cause choline deficiency. DEA decreased phosphatidylcholine synthesis by blocking the cellular uptake of choline in vitro, but these events did not occur in the presence of excess choline. Finally, DEA induced transformation in the Syrian hamster embryo cells, increased S-phase DNA synthesis in mouse hepatocytes, and decreased gap junctional intracellular communication in primary cultured mouse and rat hepatocytes, but all these events were prevented with choline supplementation. Since choline is an essential nutrient in mammals, this mode of action is qualitatively applicable to humans. However, there are marked species differences in susceptibility to choline deficiency, with rats and mice being far more susceptible than other mammalian species including humans. These differences are attributed to quantitative differences in the enzyme kinetics controlling choline metabolism. The fact that DEA was carcinogenic in mice but not in rats also has important implications for human risk assessment. DEA has been shown to be less readily absorbed across rat and human skin than mouse skin. Since a no observed effect level for DEA-induced choline deficiency in mice has been established to be 10 mg/kg/d, this indicates that there is a critical level of DEA that must be attained in order to affect choline homeostasis. The lack of a carcinogenic response in rats suggests that exposure to DEA did not reach this critical level. Since rodents are far more sensitive to choline deficiency than humans, it can be concluded that the hepatocarcinogenic effect of DEA in mice is not predictive of similar susceptibility in humans.
Collapse
Affiliation(s)
- Hon-Wing Leung
- Independent Consultant, 15 Deer Park Road, Danbury, CT 06811, USA.
| | | | | |
Collapse
|
12
|
Kamendulis LM, Klaunig JE. Species differences in the induction of hepatocellular DNA synthesis by diethanolamine. Toxicol Sci 2005; 87:328-36. [PMID: 16014740 DOI: 10.1093/toxsci/kfi252] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Diethanolamine increased the incidence and multiplicity of liver tumors in the mouse following chronic exposure. Diethanolamine is known to inhibit cellular choline uptake. Since choline deficiency produces tumors in rodents, diethanolamine, through choline depletion, may result in tumor development in rodents. The potential for diethanolamine to function through this mode of action in humans is not known. The present studies examined the effect of diethanolamine (0-500 mug/ml) and choline depletion on DNA synthesis and changes in expression of genes involved in cell growth pathways in primary cultures of mouse, rat, and human hepatocytes. In mouse and rat hepatocytes DNA synthesis was increased following treatment with 10 mug/ml diethanolamine and higher (3- to 4-fold over control). In contrast, diethanolamine failed to increase DNA synthesis in human hepatocytes. Incubation of hepatocytes in medium containing reduced choline (1/10 to 1/100 of normal medium; 0.898 to 0.0898 mg/l vs. 8.98 mg/l) increased DNA synthesis (1.6- and 1.8-fold of control in mouse and rat hepatocytes, respectively); however, choline depletion did not induce DNA synthesis in human hepatocytes. Mouse and rat hepatocytes incubated in medium supplemented with 2- to 50-fold excess choline reduced diethanolamine-induced DNA synthesis to control levels or below. Gene expression analysis of mouse and rat hepatocytes following diethanolamine treatment showed increases in genes associated with cell growth and decreases in expression of genes involved in apoptotic pathways. These results support the hypothesis that choline depletion is central to the mode of action for the induction of rodent hepatic neoplasia by diethanolamine. Furthermore, since diethanolamine treatment or choline depletion failed to induce DNA synthesis in human hepatocytes, these results suggest that humans may not be at risk from the carcinogenic effects of diethanolamine.
Collapse
Affiliation(s)
- Lisa M Kamendulis
- Division of Toxicology, Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, 46202, USA.
| | | |
Collapse
|
13
|
Mellert W, Kaufmann W, Rossbacher R, van Ravenzwaay B. Investigations on cell proliferation in B6C3F(1) mouse liver by diethanolamine. Food Chem Toxicol 2004; 42:127-34. [PMID: 14630136 DOI: 10.1016/j.fct.2003.08.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Diethanolamine (DEA) has been shown to induce liver tumours in B6C3F(1) mice in a previous 2-year dermal study. To elucidate the mode of action groups of eight male and eight female B6C3F1 mice were dermally exposed to daily DEA doses of 0 or 160 mg/kg body weight/day for 1 week. Reversibility was assessed after a 3-week treatment-free recovery period. Subsequently groups of 10 male B6C3F(1) mice were dermally exposed to daily DEA doses of 0 or 160 mg/kg body weight for 1, 4 or 13 weeks. Finally, groups of 8 male B6C3F(1) mice were dermally exposed to daily DEA doses of 0, 10, 20, 40, 80, and 160 mg/kg body weight for 1 and 13 weeks. Following a 1-week treatment, DEA caused increased cell proliferation (5-bromo-2'-deoxyuridine (BrdU) method) in zone 3 (central vein region) of the liver lobules at 160 mg/kg body weight. Reversibility of liver cell proliferation was demonstrated in the recovery phase. In the subsequent studies increased cell proliferation was observed at 10 mg/kg body weight or higher after 13 weeks of treatment. These results support the hypothesis that sustained liver cell proliferation is a potential non genotoxic mode of action by which DEA promotes liver tumours in B6C3F(1) mice.
Collapse
Affiliation(s)
- W Mellert
- BASF Aktiengesellschaft, Product Safety, Z 470, D-67056 Ludwigshafen, Germany
| | | | | | | |
Collapse
|