1
|
Bravo-Perez C, Guarnera L, Williams ND, Visconte V. Paroxysmal Nocturnal Hemoglobinuria: Biology and Treatment. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1612. [PMID: 37763731 PMCID: PMC10535188 DOI: 10.3390/medicina59091612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023]
Abstract
Paroxysmal nocturnal hemoglobinuria (PNH) is a nonmalignant clonal hematopoietic disorder characterized by the lack of glycosylphosphatidylinositol-anchored proteins (GPI-APs) as a consequence of somatic mutations in the phosphatidylinositol glycan anchor biosynthesis class A (PIGA) gene. Clinical manifestations of PNH are intravascular hemolysis, thrombophilia, and bone marrow failure. Treatment of PNH mainly relies on the use of complement-targeted therapy (C5 inhibitors), with the newest agents being explored against other factors involved in the complement cascade to alleviate unresolved intravascular hemolysis and extravascular hemolysis. This review summarizes the biology and current treatment strategies for PNH with the aim of reaching a general audience with an interest in hematologic disorders.
Collapse
Affiliation(s)
- Carlos Bravo-Perez
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44114, USA; (C.B.-P.); (L.G.); (N.D.W.)
- Department of Hematology and Medical Oncology, Hospital Universitario Morales Meseguer, IMIB-Pascual Parrilla, CIBERER—Instituto de Salud Carlos III, University of Murcia, 30005 Murcia, Spain
| | - Luca Guarnera
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44114, USA; (C.B.-P.); (L.G.); (N.D.W.)
- Hematology, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Nakisha D. Williams
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44114, USA; (C.B.-P.); (L.G.); (N.D.W.)
| | - Valeria Visconte
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44114, USA; (C.B.-P.); (L.G.); (N.D.W.)
| |
Collapse
|
2
|
Colden MA, Kumar S, Munkhbileg B, Babushok DV. Insights Into the Emergence of Paroxysmal Nocturnal Hemoglobinuria. Front Immunol 2022; 12:830172. [PMID: 35154088 PMCID: PMC8831232 DOI: 10.3389/fimmu.2021.830172] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
Paroxysmal Nocturnal Hemoglobinuria (PNH) is a disease as simple as it is complex. PNH patients develop somatic loss-of-function mutations in phosphatidylinositol N-acetylglucosaminyltransferase subunit A gene (PIGA), required for the biosynthesis of glycosylphosphatidylinositol (GPI) anchors. Ubiquitous in eukaryotes, GPI anchors are a group of conserved glycolipid molecules responsible for attaching nearly 150 distinct proteins to the surface of cell membranes. The loss of two GPI-anchored surface proteins, CD55 and CD59, from red blood cells causes unregulated complement activation and hemolysis in classical PNH disease. In PNH patients, PIGA-mutant, GPI (-) hematopoietic cells clonally expand to make up a large portion of patients’ blood production, yet mechanisms leading to clonal expansion of GPI (-) cells remain enigmatic. Historical models of PNH in mice and the more recent PNH model in rhesus macaques showed that GPI (-) cells reconstitute near-normal hematopoiesis but have no intrinsic growth advantage and do not clonally expand over time. Landmark studies identified several potential mechanisms which can promote PNH clonal expansion. However, to what extent these contribute to PNH cell selection in patients continues to be a matter of active debate. Recent advancements in disease models and immunologic technologies, together with the growing understanding of autoimmune marrow failure, offer new opportunities to evaluate the mechanisms of clonal expansion in PNH. Here, we critically review published data on PNH cell biology and clonal expansion and highlight limitations and opportunities to further our understanding of the emergence of PNH clones.
Collapse
Affiliation(s)
- Melissa A. Colden
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Comprehensive Bone Marrow Failure Center, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Sushant Kumar
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Comprehensive Bone Marrow Failure Center, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Bolormaa Munkhbileg
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Comprehensive Bone Marrow Failure Center, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Daria V. Babushok
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Comprehensive Bone Marrow Failure Center, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- *Correspondence: Daria V. Babushok,
| |
Collapse
|
3
|
Bone marrow histology in patients with a paroxysmal nocturnal hemoglobinuria clone correlated with clinical parameters. J Hematop 2013. [DOI: 10.1007/s12308-013-0179-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
4
|
Kunyaboon R, Wanachiwanawin W, U-Pratya Y, Thedsawad A, Taka O. Mechanism of paroxysmal nocturnal hemoglobinuria clonal dominance: possible roles of different apoptosis and CD8+ lymphocytes in the selection of paroxysmal nocturnal hemoglobinuria clones. Hematol Oncol Stem Cell Ther 2013; 5:138-45. [PMID: 23095789 DOI: 10.5144/1658-3876.2012.138] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Paroxysmal nocturnal hemoglobinuria (PNH), a clonal hematopoietic stem cell disorder, manifests when the PNH clone populates in the hematopoietic compartment. We explored the roles of different apoptosis of GPI+ and GPI- (glycosylphosphatidylinositol) cells and CD8+ lymphocytes in a selection of PNH clones. PATIENTS AND METHODS Granulocytes from PNH patients and normal controls were subjected to an apoptosis assay using annexin V. Hematopoietic cell in semisolid media were cultured with or without CD8+ lymphocytes. RESULTS In PNH, CD59+ granulocytes exhibited more apoptosis than their CD59- counterparts, after 0 or 4 hours in liquid growth culture system (mean [standard error of mean]: 2.1 (0.5) vs 1.2 (0.2), P=.01 at 0 hour and 3.4 [0.7] vs 1.8 [0.3], P=.03 at 4 hour, respectively). The presence of mononuclear cells (MNCs) rendered a greater difference in apoptosis. The percentages of apoptotic CD59+ granulocytes measured at 4 hours with or without MNC fraction were correlated with the sizes of PNH clones (r=0.633, P=.011; and r=0.648, P=.009; respectively). The autologous CD8+ lymphocytes inhibited CFU-GM and BFU-E colony formation in PNH patients when compared with normal controls (mean [SEM] of percentages of inhibition: 61.7 (10.4) vs 11.9 (2.0), P=.008 for CFU-GM and 26.1 (6.9) vs 4.9 (1.0), P=.037 for BFU-E). CONCLUSIONS Increased apoptosis of GPI+ blood cells is likely to be responsible in selection and expansion of PNH clones. MNCs or possibly CD8+ lymphocytes may play a role in this phenomenon.
Collapse
Affiliation(s)
- Rajita Kunyaboon
- Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | | | | | | |
Collapse
|
5
|
Zaidi SZ. A new hint to clonal dominance in PNH. Hematol Oncol Stem Cell Ther 2012; 5:162-4. [PMID: 23095793 DOI: 10.5144/1658-3876.2012.162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
6
|
Katagiri T, Qi Z, Ohtake S, Nakao S. GPI-anchored protein-deficient T cells in patients with aplastic anemia and low-risk myelodysplastic syndrome: implications for the immunopathophysiology of bone marrow failure. Eur J Haematol 2011; 86:226-36. [PMID: 21166881 DOI: 10.1111/j.1600-0609.2010.01563.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Glycosylphosphatidylinositol-anchored protein-deficient (GPI-AP(-) ) T cells can be detected in some patients with bone marrow failure (BMF), but the link between these cells and BMF pathophysiology remains to be elucidated. To clarify the significance of GPI-AP(-) T cells in BMF, peripheral blood from 562 patients was examined for the presence of CD48(-) CD59(-) CD3(+) cells using high-resolution flow cytometry (FCM), and the GPI-AP(-) T cells were characterized with regard to their phenotype and sensitivity to inhibitory molecules, including herpesvirus entry mediator (HVEM) and a myelosuppressive cytokine, TGF-β. A multi-lineage FCM analysis detected CD48(-) CD59(-) CD3(+) T cells in 72 (12.8%) of the patients, together with GPI-AP(-) myeloid cells. Unexpectedly, 12 patients (10 with aplastic anemia and 2 with myelodysplastic syndrome-refractory anemia, 2.1%), who showed clinical features similar to those of other BMF patients with GPI-AP(-) myeloid cells, such as a good response to immunosuppressive therapy, displayed 0.01-0.3% GPI-AP(-) cells exclusively in T cells. The CD48(-) CD59(-) T cells consisted of predominantly effector memory (EM) and terminal effector cells, while CD48(-) CD59(-) T cells from non-BMF patients who had received anti-CD52 antibody only showed EM and central memory phenotypes. TGF-β and HVEM capable of inhibiting T-cell proliferation via its GPI-AP CD160 ligation suppressed the in vitro proliferation of GPI-AP(+) T cells more potently than that of GPI-AP(-) T cells from the same patients. The presence of GPI-AP(-) T cells, as well as GPI-AP(-) myeloid cells, may therefore reflect the immunopathophysiology of BMF in which cytokine-mediated suppression of hematopoietic stem cells via GPI-AP-type receptors takes place.
Collapse
Affiliation(s)
- Takamasa Katagiri
- Clinical Laboratory Science, Division of Health Sciences, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa, Japan
| | | | | | | |
Collapse
|
7
|
Deletions of Xp22.2 including PIG-A locus lead to paroxysmal nocturnal hemoglobinuria. Leukemia 2010; 25:379-82. [PMID: 21116280 DOI: 10.1038/leu.2010.274] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Visconte V, Raghavachari N, Liu D, Keyvanfar K, Desierto MJ, Chen J, Young NS. Phenotypic and functional characterization of a mouse model of targeted Pig-a deletion in hematopoietic cells. Haematologica 2009; 95:214-23. [PMID: 19679885 DOI: 10.3324/haematol.2009.011650] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Somatic mutation in the X-linked phosphatidylinositol glycan class A gene (PIG-A) causes glycosyl phosphatidylinositol anchor deficiency in human patients with paroxysmal nocturnal hemoglobinuria. DESIGN AND METHODS We produced an animal model of paroxysmal nocturnal hemoglobinuria by conditional Pig-a gene inactivation (Pig-a(-/-)) in hematopoietic cells; mice carrying two lox sites flanking exon 6 of the Pig-a gene were bred with mice carrying the transgene Cre-recombinase under the human c-fes promoter. We characterized the phenotypic and functional properties of glycosyl phosphatidylinositol-deficient and glycosyl phosphatidylinositol-normal hematopoietic cells from these Pig-a(-/-) mice using gene expression microarray, flow cytometry, bone marrow transplantation, spectratyping, and immunoblotting. RESULTS In comparison to glycosyl phosphatidylinositol-normal bone marrow cells, glycosyl phosphatidylinositol-deficient bone marrow cells from the same Pig-a(-/-) animals showed up-regulation of the expression of immune function genes and contained a significantly higher proportion of CD8 T cells. Both characteristics were maintained when glycosyl phosphatidylinositol-deficient cells were transplanted into lethally-irradiated recipients. Glycosyl phosphatidylinositol-deficient T cells were inactive, showed pronounced Vbeta5.1/5.2 skewing, had fewer gamma-interferon-producing cells after lectin stimulation, and contained fewer CD4(+)CD25(+)FoxP3(+) regulatory T cells. However, the levels of T-cell receptor signaling proteins from glycosyl phosphatidylinositol-deficient cells were normal relative to glycosyl phosphatidylinositol-normal cells from wild type animals, and cells were capable of inducing target cell apoptosis in vitro. CONCLUSIONS Deletion of the Pig-a gene in hematopoietic cells does not cause frank marrow failure but leads to the appearance of clonally-restricted, inactive yet functionally competent CD8 T cells.
Collapse
Affiliation(s)
- Valeria Visconte
- Hematology Branch, NHLBI, National Institutes of Health, Bethesda, MD 20892-1202 USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Brodsky RA. How do PIG-A mutant paroxysmal nocturnal hemoglobinuria stem cells achieve clonal dominance? Expert Rev Hematol 2009; 2:353-6. [PMID: 21082939 DOI: 10.1586/ehm.09.35] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Hanaoka N, Nakakuma H, Horikawa K, Nagakura S, Tsuzuki Y, Shimanuki M, Kojima K, Yonemura Y, Kawaguchi T. NKG2D-mediated immunity underlying paroxysmal nocturnal haemoglobinuria and related bone marrow failure syndromes. Br J Haematol 2009; 146:538-45. [PMID: 19594748 DOI: 10.1111/j.1365-2141.2009.07795.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It is considered that a similar immune mechanism acts in the pathogenesis of bone marrow (BM) failure in paroxysmal nocturnal haemoglobinuria (PNH) and its related disorders, such as aplastic anaemia (AA) and myelodysplastic syndromes (MDS). However, the molecular events in immune-mediated marrow injury have not been elucidated. We recently reported an abnormal expression of stress-inducible NKG2D (natural-killer group 2, member D) ligands, such as ULBP (UL16-binding protein) and MICA/B (major histocompatibility complex class I chain-related molecules A/B), on granulocytes in some PNH patients and the granulocyte killing by autologous lymphocytes in vitro. The present study found that the expression of NKG2D ligands was common to both granulocytes and BM cells of patients with PNH, AA, and MDS, indicating their exposure to some incitement to induce the ligands. The haematopoietic colony formation in vitro by the patients' marrow cells significantly improved when their BM cells were pretreated with antibodies against NKG2D receptor, suggesting that the antibodies rescued haematopoietic cells expressing NKG2D ligands from damage by autologous lymphocytes with NKG2D. Clinical courses of patients with PNH and AA showed a close association of the expression of NKG2D ligands with BM failure and a favourable response to immunosuppressive therapy. We therefore propose that NKG2D-mediated immunity may underlie the BM failure in PNH and its-related marrow diseases.
Collapse
Affiliation(s)
- Nobuyoshi Hanaoka
- Department of Haematology/Oncology, Wakayama Medical University, Wakayama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
|
12
|
Savage WJ, Barber JP, Mukhina GL, Hu R, Chen G, Matsui W, Thoburn C, Hess AD, Cheng L, Jones RJ, Brodsky RA. Glycosylphosphatidylinositol-anchored protein deficiency confers resistance to apoptosis in PNH. Exp Hematol 2009; 37:42-51. [PMID: 19013003 PMCID: PMC2628761 DOI: 10.1016/j.exphem.2008.09.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 08/28/2008] [Accepted: 09/02/2008] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Investigate the contribution of PIG-A mutations to clonal expansion in paroxysmal nocturnal hemoglobinuria (PNH). MATERIALS AND METHODS Primary CD34+ hematopoietic progenitors from PNH patients were assayed for annexin-V positivity by flow cytometry in a cell-mediated killing assay using autologous effectors from PNH patients or allogeneic effectors from healthy controls. To specifically assess the role of the PIG-A mutation in the development of clonal dominance and address confounders of secondary mutation and differential immune attack that can confound experiments using primary cells, we established an inducible PIG-A CD34+ myeloid cell line, TF-1. Apoptosis resistance was assessed after exposure to allogeneic effectors, NK92 cells (an interleukin-2-dependent cell line with the phenotype and function of activated natural killer [NK] cells), tumor necrosis factor (TNF)-alpha, and gamma-irradiation. Apoptosis was measured by annexin-V staining and caspase 3/7 activity. RESULTS In PNH patients, CD34+ hematopoietic progenitors lacking glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-AP(-)) were less susceptible than GPI-AP+ CD34+ precursors to autologous (8% vs 49%; p < 0.05) and allogeneic (28% vs 58%; p < 0.05) cell-mediated killing from the same patients. In the inducible PIG-A model, GPI-AP(-) TF-1 cells exhibited less apoptosis than induced, GPI-AP+ TF-1 cells in response to allogeneic cell-mediated killing, NK92-mediated killing, TNF-alpha, and gamma-irradiation. GPI-AP(-) TF-1 cells maintained resistance to apoptosis when effectors were raised against GPI-AP(-) cells, arguing against a GPI-AP being the target of immune attack in PNH. NK92-mediated killing was partially inhibited with blockade by specific antibodies to the stress-inducible GPI-AP ULBP1 and ULBP2 that activate immune effectors. Clonal competition experiments demonstrate that the mutant clone expands over time under proapoptotic conditions with TNF-alpha. CONCLUSION PIG-A mutations contribute to clonal expansion in PNH by conferring a survival advantage to hematopoietic progenitors under proapoptotic stresses.
Collapse
Affiliation(s)
- William J Savage
- Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2196, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Young NS, Meyers G, Schrezenmeier H, Hillmen P, Hill A. The management of paroxysmal nocturnal hemoglobinuria: recent advances in diagnosis and treatment and new hope for patients. Semin Hematol 2009; 46:S1-S16. [PMID: 19171207 PMCID: PMC3402209 DOI: 10.1053/j.seminhematol.2008.11.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PNH is a rare clonal hematopoietic stem disorder clinically characterized by the triad of chronic complement-mediated hemolysis, thrombosis, and bone marrow failure. While median survival has improved when historical data are compared to more recent data, thrombosis, the major cause of death in PNH, is still observed in approximately 40% of patients. The symptoms associated with this disorder–including fatigue, pain, esophageal spasm, and erectile dysfunction–are often severe and disabling. While PNH may be a curiosity to the physician, it forces the majority of patients to significantly modify their lives. Transplantation represents a curative option; however, the risks associated with this option are not insignificant. Eculizumab has been shown to significantly reduce hemolysis, improve anemia, reduce transfusion requirements, and significantly improve fatigue and other QoL scores. Clearly, targeted complement inhibition by eculizumab has the promise to significantly improve the lives of patients with PNH.
Collapse
|
14
|
Szpurka H, Schade AE, Jankowska AM, Maciejewski JP. Altered lipid raft composition and defective cell death signal transduction in glycosylphosphatidylinositol anchor-deficient PIG-A mutant cells. Br J Haematol 2008; 142:413-22. [PMID: 18544084 DOI: 10.1111/j.1365-2141.2008.07203.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Paroxysmal nocturnal haemoglobinuria (PNH) is a clonal disorder of haematopoietic stem cells caused by somatic PIGA mutations, resulting in a deficiency in glycosylphosphatidylinositol-anchored proteins (GPI-AP). Because GPI-AP associate with lipid rafts (LR), lack of GPI-AP on PNH cells may result in alterations in LR-dependent signalling. Conversely, PNH cells are a suitable model for investigating LR biology. LR from paired, wild-type GPI(+), and mutant GPI(-) cell lines (K562 and TF1) were isolated and analysed; GPI(-) LR contained important anti-apoptotic proteins, not found in LR from GPI(+) cells. When methyl-beta-cyclodextrin (MbetaCD) was utilized to probe for functional differences between normal and GPI(-) LR, increased levels of phospho-p38 mitogen-activated protein kinase (MAPK), and phospho-p65 nuclear factor NF-kappaB were found in control and GPI(-) cells respectively. Subsequent experiments addressing the inhibition of phosphoinositide-3-kinase (PI3K) suggest that the PI3K/AKT pathway may be responsible for the resistance of K562 GPI(-)cells to negative effects of MbetaCD. In addition, transduction of tumour necrosis factor-alpha (TNF-alpha) signals in a LR-dependent fashion increased induction of p38 MAPK in GPI(+) and increased pro-survival NF-kappaB levels in K562 GPI(-) cells. Therefore, we suggest that the altered LR-dependent signalling in PNH-like cells may induce different responses to pro-inflammatory cytokines from those observed in cells with intact GPI-AP.
Collapse
Affiliation(s)
- Hadrian Szpurka
- Experimental Haematology and Haematopoiesis Section, Taussig Cancer Centre, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | | | |
Collapse
|
15
|
Brodsky RA. Paroxysmal nocturnal hemoglobinuria: stem cells and clonality. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2008; 2008:111-115. [PMID: 19074067 DOI: 10.1182/asheducation-2008.1.111] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Paroxysmal nocturnal hemoglobinuria is a clonal hematopoietic stem cell disease that manifests with intravascular hemolysis, bone marrow failure, thrombosis, and smooth muscle dystonias. The disease can arise de novo or in the setting of acquired aplastic anemia. All PNH patients to date have been shown to harbor PIG-A mutations; the product of this gene is required for the synthesis of glycosylphosphatidylinositol (GPI) anchored proteins. In PNH patients, PIG-A mutations arise from a multipotent hematopoietic stem cell. Interestingly, PIG-A mutations can also be found in the peripheral blood of most healthy controls; however, these mutations arise from progenitor cells rather than multipotent hematopoietic stem cells and do not propagate the disease. The mechanism of whereby PNH stem cells achieve clonal dominance remains unclear. The leading hypotheses to explain clonal outgrowth in PNH are: 1) PNH cells evade immune attack possibly, because of an absent cell surface GPI-AP that is the target of the immune attack; 2) The PIG-A mutation confers an intrinsic resistance to apoptosis that becomes more conspicuous when the marrow is under immune attack; and 3) A second mutation occurs in the PNH clone to give it an intrinsic survival advantage. These hypotheses may not be mutually exclusive, since data in support of all three models have been generated.
Collapse
Affiliation(s)
- Robert A Brodsky
- Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, MD 21205-0185, USA.
| |
Collapse
|
16
|
Baerlocher GM, Sloand EM, Young NS, Lansdorp PM. Telomere length in paroxysmal nocturnal hemoglobinuria correlates with clone size. Exp Hematol 2007; 35:1777-81. [PMID: 17697745 DOI: 10.1016/j.exphem.2007.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Revised: 06/05/2007] [Accepted: 06/06/2007] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To study if telomere length can be used as a surrogate marker for the mitotic history in normal and affected hematopoietic cells from patients with paroxysmal nocturnal hemoglobinuria (PNH). METHODS The telomere length was measured by automated multicolor flow fluorescence in situ hybridization in glycosyl-phosphatidyl-inositol anchored protein (GPI)-negative and GPI-positive peripheral blood leukocytes. Eleven patients were studied, two with predominantly hemolytic PNH and nine with PNH associated with marrow failure. RESULTS Telomere length in GPI-negative cells was significantly shorter than in GPI-positive cells of the same patient (p < 0.01, n = 11). The difference in telomere length (telomere length in GPI-positive minus telomere length in GPI-negative cells) correlated with the percentage of GPI-negative white blood cells. CONCLUSION Our results support the hypothesis that telomere length is correlated to the replicative history of GPI-positive and GPI-negative cells and warrant further studies of telomere length in relation to disease progression in PNH.
Collapse
|
17
|
Stern M, Buser AS, Lohri A, Tichelli A, Nissen-Druey C. Autoimmunity and malignancy in hematology—More than an association. Crit Rev Oncol Hematol 2007; 63:100-10. [PMID: 17391977 DOI: 10.1016/j.critrevonc.2007.02.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 01/02/2007] [Accepted: 02/06/2007] [Indexed: 02/01/2023] Open
Abstract
Several associations between hematological malignancies and autoimmunity directed against hematopoietic cells exist. Antibody mediated elimination of mature blood cells such as autoimmune hemolytic anemia (AIHA) and immune thrombocytopenia (ITP) are frequent complications of non-Hodgkin lymphomas, most prominently chronic lymphocytic leukemia. Autoimmunity directed against hematopoietic precursor cells is the hallmark of aplastic anemia, but many features of this disease are shared by two related disorders, paroxysmal nocturnal hemoglobinuria (PNH) and myelodysplastic syndrome (MDS). While the clinical associations between hematological malignancy and autoimmunity have been described many decades ago, only in the last several years have the common pathogenetic mechanisms been elucidated. We summarize the recent progress made in understanding how hematological malignancy gives rise to autoimmunity directed against blood cells and vice versa, and illustrate parallels in the etiology of malignant and autoimmune hematological disorders. Specifically, recent progress in the recognition of the association of lymphoproliferative disorders and autoimmunity against mature blood cells, and common pathogenetic background of aplastic anemia, paroxysmal nocturnal hemoglobinuria, and myelodysplastic syndrome are discussed.
Collapse
Affiliation(s)
- Martin Stern
- Division of Experimental Hematology and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Perugia, Policlinico Monteluce, Perugia, Italy
| | | | | | | | | |
Collapse
|
18
|
Tiu R, Gondek L, O'Keefe C, Maciejewski JP. Clonality of the stem cell compartment during evolution of myelodysplastic syndromes and other bone marrow failure syndromes. Leukemia 2007; 21:1648-57. [PMID: 17554386 DOI: 10.1038/sj.leu.2404757] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Clonal hematopoiesis, observed in certain forms of marrow failure including aplastic anemia (AA), may be due to stem cell depletion. Alternatively, oligoclonality may be a result of recruitment of a preexisting defective clone, such as in paroxysmal nocturnal hemoglobinuria (PNH) or myelodysplastic syndromes (MDS). In PNH, exogenous permissive factors may be required for dominance of the abnormal clone, while in MDS, stem cells undergo transformation steps leading to a growth advantage. Stem or multipotent progenitor cell involvement in PNH is evidenced by long-term persistence of a clonal defect and its presence in all blood cells. In MDS, some clonal aberrations may have a 'founder-effect' and additional defects are secondary. Metaphase cytogenetics measures the proportion of clonal cells within dividing progenitor but not mature cells. Owing to low resolution, lesions can be found in only approximately 50% of MDS patients. This shortcoming may be overcome by application of newer technologies such as comparative genomic hybridization and SNP array-based karyotyping (SNP-A). SNP-A facilitates identification of cryptic lesions in bone marrow failure patients with normal or abnormal cytogenetics and allows for detection of loss of heterozygosity as a result of uniparental disomy, a lesion frequently found in MDS.
Collapse
Affiliation(s)
- R Tiu
- Experimental Hematology and Hematopoiesis Section, Taussig Cancer Center, Cleveland Clinic Foundation, Cleveland, OH, USA
| | | | | | | |
Collapse
|
19
|
Young NS, Calado RT, Scheinberg P. Current concepts in the pathophysiology and treatment of aplastic anemia. Blood 2006; 108:2509-19. [PMID: 16778145 PMCID: PMC1895575 DOI: 10.1182/blood-2006-03-010777] [Citation(s) in RCA: 638] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aplastic anemia, an unusual hematologic disease, is the paradigm of the human bone marrow failure syndromes. Almost universally fatal just a few decades ago, aplastic anemia can now be cured or ameliorated by stem-cell transplantation or immunosuppressive drug therapy. The pathophysiology is immune mediated in most cases, with activated type 1 cytotoxic T cells implicated. The molecular basis of the aberrant immune response and deficiencies in hematopoietic cells is now being defined genetically; examples are telomere repair gene mutations in the target cells and dysregulated T-cell activation pathways. Immunosuppression with antithymocyte globulins and cyclosporine is effective at restoring blood-cell production in the majority of patients, but relapse and especially evolution of clonal hematologic diseases remain problematic. Allogeneic stem-cell transplant from histocompatible sibling donors is curative in the great majority of young patients with severe aplastic anemia; the major challenges are extending the benefits of transplantation to patients who are older or who lack family donors. Recent results with alternative sources of stem cells and a variety of conditioning regimens to achieve their engraftment have been promising, with survival in small pediatric case series rivaling conventional transplantation results.
Collapse
Affiliation(s)
- Neal S Young
- Hematology Branch, National Heart, Lung, and Blood Institute/NIH, 10 Center Drive, Bldg 10/CRC, Rm 3E-5140, Bethesda, MD 20892-1202, USA.
| | | | | |
Collapse
|
20
|
Abstract
Functional failure in hematopoietic stem cells (HSCs) may bring fatal consequences because HSCs are the ultimate source of mature blood cells, which need continuous replenishment. One potential cause of HSC dysfunction is senescence, in which HSCs and progenitor cells enter a state of proliferative arrest. HSC senescence is genetically regulated and one particular regulator is the telomerase gene. Mutations in the telomerase gene complex have been found in patients with bone marrow failure syndromes. During a normal lifetime, HSC clones function over the long term and may not show any functional loss under normal circumstances. However, pathologic environments may limit HSC proliferation, accelerate HSC turnover, and shorten the functional life of HSCs, leading to HSC clonal exhaustion and senescence.
Collapse
Affiliation(s)
- Jichun Chen
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1202, USA.
| |
Collapse
|
21
|
Young NS. Pathophysiologic mechanisms in acquired aplastic anemia. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2006:72-7. [PMID: 17124043 DOI: 10.1182/asheducation-2006.1.72] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Aplastic anemia, an unusual hematologic disease, is the paradigm of the human bone marrow failure syndromes. Absence of hematopoietic cells has been recognized from the characteristic morphology for a century; an immune pathophysiology has been inferred from improvement in blood counts with immunosuppressive therapy in the majority of patients. Molecular mechanisms underlying both T cell effector cells and the target marrow stem and progenitor cells are now being identified. Activated type 1 cytotoxic T cells and type 1 cytokines have been implicated in cell culture experiments; clues to the molecular basis of the aberrant immune response include cytokine gene polymorphisms and abnormalities in the regulatory pathways for gamma-interferon. For stem cell depletion, mutations in genes of the telomere repair complex are present in some patients with apparently acquired aplastic anemia. Telomerase deficiency is associated with short telomeres and a quantitative reduction in marrow progenitors and likely also a qualitative deficiency in the repair capacity of hematopoietic tissue.
Collapse
Affiliation(s)
- Neal S Young
- Hematology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20891, USA.
| |
Collapse
|
22
|
Chen G, Zeng W, Maciejewski JP, Kcyvanfar K, Billings EM, Young NS. Differential gene expression in hematopoietic progenitors from paroxysmal nocturnal hemoglobinuria patients reveals an apoptosis/immune response in 'normal' phenotype cells. Leukemia 2005; 19:862-8. [PMID: 15759038 DOI: 10.1038/sj.leu.2403678] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired stem cell disorder characterized clinically by intravascular hemolysis, venous thrombosis, and bone marrow failure. Despite elucidation of the biochemical and molecular defects in PNH, the pathophysiology of clonal expansion of glycosylphosphatidylinositol-anchored protein (GPI-AP)-deficient cells remains unexplained. In pursuit of evidence of differences between GPI-AP-normal and -deficient CD34 cells, we determined gene expression profiles of isolated marrow CD34 cells of each phenotype from PNH patients and healthy donors, using DNA microarrays. Pooled and individual patient samples revealed consistent gene expression patterns relative to normal controls. GPI-AP-normal cells from PNH patients showed upregulation of genes involved in apoptosis and the immune response. Conversely, genes associated with antiapoptotic function and hematopoietic cell proliferation and differentiation were downregulated in these cells. In contrast, the PNH clone of GPI-AP-deficient cells appeared more similar to CD34 cells of healthy individuals. Gene chip data were confirmed by other methods. Similar gene expression patterns were present in PNH that was predominantly hemolytic as in PNH associated with aplastic anemia. Our results implicate an environmental influence on hematopoietic cell proliferation, in which the PNH clone evades immune attack and destruction, while normal cells suffer a stress response followed by programmed cell death.
Collapse
Affiliation(s)
- G Chen
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
23
|
Chen J. Senescence and functional failure in hematopoietic stem cells. Exp Hematol 2005; 32:1025-32. [PMID: 15539079 DOI: 10.1016/j.exphem.2004.08.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2004] [Indexed: 11/27/2022]
Abstract
Maintaining normal function of hematopoietic stem cells (HSCs) is critical to blood coagulation, oxygen transportation, and host defense against infection. A potential cause of HSC dysfunction is senescence, in which HSCs and progenitor cells suffer from proliferative arrest. Studies on humans and various animal models have indicated that HSCs can become senescent, showing a significant decline in functional ability with increasing age. There are genetic elements mapped to specific chromosomal sites that regulate HSC senescence. These elements may differ among species, strains, and even individuals. HSC senescence and related pathological effects may not be obvious during normal lifetime under most circumstances since individual primitive HSC clones can function long-term to produce progeny that sustain life-long mature blood cell production. Shortening of telomeres at the chromosomal ends could contribute to HSC senescence, especially when HSCs are stressed under certain pathological conditions. Future studies should define the molecular elements that are important in the regulation of HSC senescence.
Collapse
Affiliation(s)
- Jichun Chen
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1652, USA.
| |
Collapse
|
24
|
Hevessy Z, Nagy B, Kiss F, Kiss A, Kappelmayer J. Mean fluorescence intensity rate is a useful marker in the detection of paroxysmal nocturnal hemoglobinuria clones. Clin Chem Lab Med 2005; 43:919-23. [PMID: 16176170 DOI: 10.1515/cclm.2005.157] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractParoxysmal nocturnal hemoglobinuria (PNH) is an acquired disorder of the pluripotent stem cell resulting from the somatic mutation of the X-linked
Collapse
Affiliation(s)
- Zsuzsa Hevessy
- Department of Clinical Biochemistry and Molecular Pathology, Medical and Health Science Center, University of Debrecen, Nagyerdei krt 98, Debrecen, Hungary
| | | | | | | | | |
Collapse
|
25
|
Marsh JCW, Elebute MO. Stem cells in paroxysmal nocturnal haemoglobinuria and aplastic anaemia: increasing evidence for overlap of haemopoietic defect. Transfus Med 2004; 13:377-86. [PMID: 14651743 DOI: 10.1111/j.1365-3148.2003.00465.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The clinical association between paroxysmal nocturnal haemoglobinuria (PNH) and aplastic anaemia (AA) has long been recognized. Haemolytic PNH, as confirmed by a positive Ham's test, can occur in the setting of AA, and conversely AA can be a late complication of PNH. With the development of sensitive flow cytometry to quantify the expression of phosphatidylinositolglycan (PIG)-anchored proteins on blood cells, a small PNH clone can now be detected in a large number of patients with AA at diagnosis. PIG-A gene mutations can also be demonstrated in some AA patients. In haemolytic PNH, there is always marrow suppression despite a morphologically cellular marrow. In vitro cultures show markedly diminished proliferative capacity in both short-term and long-term marrow cultures, similar to that seen in AA. A similar autoimmune process, through the T-cell cytotoxic repertoire, is probably responsible for the pathogenesis of both AA and PNH. PIG-deficient cells may be resistant to immunological attack by autoreactive cytotoxic T cells, because they lack PIG. They are also more resistant to apoptosis than the PIG-normal cell population. This results in the selection of the PIG-deficient clone, in contrast to the PIG-normal stem cells which possess the PIG anchor and hence are targeted and depleted by the autoreactive T cells.
Collapse
Affiliation(s)
- J C W Marsh
- Department of Haematology, St George's Hospital Medical School, London, UK.
| | | |
Collapse
|
26
|
Chen G, Zeng W, Green S, Young NS. Frequent HPRT mutations in paroxysmal nocturnal haemoglobinuria reflect T cell clonal expansion, not genomic instability. Br J Haematol 2004; 125:383-91. [PMID: 15086421 DOI: 10.1111/j.1365-2141.2004.04912.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Paroxysmal nocturnal haemoglobinuria (PNH) results from acquired mutations in the PIG-A gene of an haematopoietic stem cell, leading to defective biosynthesis of glycosylphosphatidylinositol (GPI) anchors and deficient expression of GPI-anchored proteins on the surface of the cell's progeny. Some laboratory and clinical findings have suggested genomic instability to be intrinsic in PNH; this possibility has been supported by mutation analysis of hypoxanthine-guanine phosphoribosyltransferase (HPRT) gene abnormalities. However, the HPRT assay examines lymphocytes in peripheral blood (PB), and T cells may be related to the pathophysiology of PNH. We analysed the molecular and functional features of HPRT mutants in PB mononuclear cells from eleven PNH patients. CD8 T cells predominated in these samples; approximately half of the CD8 cells lacked GPI-anchored protein expression, while only a small proportion of CD4 cells appeared to derive from the PNH clone. The HPRT mutant frequency (Mf) in T lymphocytes from PNH patients was significantly higher than in healthy controls. The majority of the mutant T lymphocyte clones were of CD4 phenotype, and they had phenotypically normal GPI-anchored protein expression. In PNH patients, the majority of HPRT mutant clones were contained within the Vbeta2 T cell receptor (TCR) subfamily, which was oligoclonal by complementarity-determining region three (CDR3) size analysis. Our results are more consistent with detection of uniform populations of expanded T cell clones, which presumably acquired HPRT mutations during antigen-driven cell proliferation, and not due to an increased Mf in PNH. HPRT mutant analysis does not support underlying genomic instability in PNH.
Collapse
Affiliation(s)
- Guibin Chen
- Haematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1652, USA
| | | | | | | |
Collapse
|
27
|
Coluzzi S, Biffoni M, Pasqualetti D, Perrone MP, Vaglio S, Rahimi H, Arista MC, Laurenti L, Cerretti R, Girelli G. Production of interferon-γ by lymphocytes from paroxysmal nocturnal haemoglobinuria patients: relationship with clinical status. Br J Haematol 2004; 124:685-90. [PMID: 14871257 DOI: 10.1111/j.1365-2141.2003.04825.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Paroxysmal nocturnal haemoglobinuria (PNH) is characterized by the expansion of phosphatidylinositol glycan class A (PIG-A) defective haematopoietic cells, probably due to the immune-mediated alterations of the bone marrow environment selecting PIG-A- stem cells. The present study investigated the presence of alterations of the immune system in a population of 11 PNH patients. The production of interferon-gamma (IFN-gamma) and interleukin-2 (IL-2), evaluated by intracellular cytokine analysis, and the frequencies of class I and II human leucocyte antigen (HLA) alleles were studied in comparison with healthy human subjects. Similar percentages of lymphocytes produced cytokines in PNH patients and controls after costimulation-independent activation; however, a negative correlation was found between the percentage of IFN-gamma producing cells and white cell or platelets counts. PNH patients showed an higher percentage, compared with controls, of IFN-gamma producing cells after costimulation-dependent activation. The frequency of HLA-A31 was higher in patients than in controls (27.2% vs. 4%), similarly to that of HLA-B7 (27.2% vs. 6%). With regard to class II alleles, 18% of PNH patients expressed DQB1*04 compared with none of 50 control cases. This study supports the hypothesis that immune alteration are present in PNH and that the immunogenetic background could influence the development of the disease.
Collapse
Affiliation(s)
- Serelina Coluzzi
- Blood Bank, Department of Biotecnologie Cellulari ed Ematologia, University La Sapienza, via Chieti 7, 00161 Rome, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Sloand EM, Fuhrer M, Keyvanfar K, Mainwaring L, Maciejewski J, Wang Y, Johnson S, Barrett AJ, Young NS. Cytogenetic abnormalities in paroxysmal nocturnal haemoglobinuria usually occur in haematopoietic cells that are glycosylphosphatidylinositol-anchored protein (GPI-AP) positive. Br J Haematol 2003; 123:173-6. [PMID: 14510962 DOI: 10.1046/j.1365-2141.2003.04562.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Some patients with paroxysmal nocturnal haemoglobinuria (PNH) have bone marrow findings characteristic of myelodysplastic syndrome. We studied nine PNH patients to determine whether these karyotypic abnormalities were more likely to occur in glycosylphosphatidylinositol-anchored protein (GPI-AP)-negative cells. Abnormal chromosome patterns were evident only in the GPI-AP-positive populations of the PNH clone in 8 of 9 cases studied. Purified GPI-AP-negative CD34 cells gave rise only to cells of normal karyotype, whereas the progeny of the GPI-AP-positive CD34 cells showed the karyotypic abnormality. These findings suggest that environmental factors, but not genetic instability of the GPI-AP-deficient clone, foster development or survival of haematopoietic cells with chromosomal abnormalities.
Collapse
Affiliation(s)
- Elaine M Sloand
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1652, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Profound cytopenia involving all blood lineages, a hallmark of aplastic anemia (AA), can result in devastating morbidity and high mortality. Although various etiologies and distinct pathophysiologic mechanisms may be involved, a profound defect in the stem cell compartment is a unifying feature in most patients with AA. As a stem cell disease, AA is very instructive and provides insights into the function and quantity of normal hematopoietic stem cells and their ability to regenerate. Pathophysiologically, understanding of AA may reveal mechanisms as to the evolution of other related bone marrow failure syndromes such as paroxysmal nocturnal hemoglobinuria and myelodysplasia-clonal diseases of hematopoiesis associated with defective stem cells. Conversely, constitutional forms of AA occurring in association with Fanconi anemia and dyskeratosis congenita demonstrate the role of specific genes and pathways in the dysfunction of the stem cells leading to the failure of the stem cell compartment. The acquired mechanisms resulting in depletion of stem cells in AA may involve fundamental pathways such as apoptosis and senescence as well as exhaustion of proliferative capacity or excessive differentiation. Inherent in the paucity of the bone marrow in AA, the study of the stem cells in AA has been very difficult due to their natural rarity and disease-specific contraction of the stem cell pool. Despite these scientific challenges, laboratory studies and systematic clinical observation provide valuable information of significance beyond its specific application to AA.
Collapse
Affiliation(s)
- Jaroslaw P Maciejewski
- Experimental Hematology and Hematopoiesis Section, Cleveland Clinic Foundation, Cleveland, OH 44195, USA.
| | | |
Collapse
|
30
|
Ismail MM, Tooze JA, Flynn JA, Gordon-Smith EC, Gibson FM, Rutherford TR, Elebute MO. Differential apoptosis and Fas expression on GPI-negative and GPI-positive stem cells: a mechanism for the evolution of paroxysmal nocturnal haemoglobinuria*. Br J Haematol 2003; 123:545-51. [PMID: 14617023 DOI: 10.1046/j.1365-2141.2003.04643.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Paroxysmal nocturnal haemoglobinuria (PNH) has a dual pathogenesis. PIG-A mutations generate clones of haemopoietic stem cells (HSC) lacking glycosylphosphatidylinositol (GPI)-anchored proteins and, secondly, these clones expand because of a selective advantage related to bone marrow failure. The first aspect has been elucidated in detail, but the mechanisms leading to clonal expansion are not well understood. We have previously shown that apoptosis and Fas expression in HSC play a role in bone marrow failure during aplastic anaemia. We have now investigated apoptosis in PNH. Ten patients were studied. Apoptosis, measured by flow cytometry, was significantly higher among CD34+ cells from patients compared with healthy controls. Fas expression was also increased. Cells that were stained for CD34, CD59 and apoptosis showed a significantly lower apoptosis in CD34+/CD59- compared with CD34+/CD59+ cells from the same patient. In three patients, staining for CD34, CD59 and Fas revealed lower Fas expression on CD34+/CD59- cells. Differential apoptosis of CD34+/CD59- HSC may be sufficient in itself to explain the expansion of PNH clones in the context of aplastic anaemia. In addition to demonstrating a basic mechanism underlying PNH clonal expansion, these results suggest further hypotheses for the evolution of PNH, based on the direct or indirect resistance of GPI-negative HSC to pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Medhat M Ismail
- Department of Cellular and Molecular Medicine, St George's Hospital Medical School, London, UK
| | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
OBJECTIVE Blood cells from patients with paroxysmal nocturnal hemoglobinuria lack glycosyl phosphatidylinositol (GPI)-linked proteins, due to a somatic mutation in the X-linked PIGA gene. It is believed that clonal expansion of PIGA- blood cells is due to a survival advantage in the hostile marrow environment of aplastic anemia. Here we investigated the effects of inhibitory cytokines in mice genetically engineered to have blood cells deficient in GPI-linked proteins. MATERIALS AND METHODS The effect of inhibitory cytokines (tumor necrosis factor-alpha [TNF-alpha], interferon-gamma [IFN-gamma], macrophage inflammatory protein-1 alpha [MIP-1alpha], and transforming growth factor-beta1 [TGF-beta1]) was investigated, using clonogenic assays, competitive repopulation, and in vivo induction of proinflammatory cytokines by double-stranded RNA. The expression of Fas on progenitor cells and its up-regulation by inhibitory cytokines were analyzed by flow cytometry. RESULTS TNF-alpha, IFN-gamma, MIP-1alpha, and TGF-beta1 suppressed colony formation in a dose-dependent fashion that was similar for PIGA+ and PIGA- blood bone marrow cells. Competitive repopulation of bone marrow cells cultured in IFN-gamma and TNF-alpha resulted in a comparable ability of PIGA+ and PIGA- hematopoietic stem cells to reconstitute hematopoiesis. Fas expression was minimal on PIGA+ and PIGA- progenitor cells and was up-regulated to the same extent in response to IFN-gamma and TNF-alpha as assessed by Fas antibody-mediated apoptosis. Similarly, in vivo induction of proinflammatory cytokines by double-stranded RNA had no effect on the proportion of circulating PIGA- blood cells. CONCLUSIONS These results indicate that PIGA+ and PIGA- hematopoietic progenitor cells respond similarly to inhibitory cytokines, suggesting that other factors are responsible for the clonal expansion of paroxysmal nocturnal hemoglobinuria cells.
Collapse
Affiliation(s)
- Shashikant Kulkarni
- Department of Internal Medicine, Division of Hematology, Washington University School of Medicine, St. Louis, Mo. 63110, USA
| | | |
Collapse
|
32
|
Heeney MM, Ormsbee SM, Moody MA, Howard TA, DeCastro CM, Ware RE. Increased expression of anti-apoptosis genes in peripheral blood cells from patients with paroxysmal nocturnal hemoglobinuria. Mol Genet Metab 2003; 78:291-4. [PMID: 12706380 DOI: 10.1016/s1096-7192(03)00047-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Resistance to apoptosis has been described in neutrophils from patients with PNH and related hematologic disorders (aplastic anemia, myelodysplastic syndrome), but its molecular basis is not understood. Using gene expression analysis, PNH granulocytes had relative overexpression of four anti-apoptosis genes (human A1, hHR23B, Mcl-1, and RhoA) compared to normal controls. These findings were confirmed by RT-PCR analysis and observed in both peripheral blood granulocytes and mononuclear cells of patients with PNH. Anti-apoptosis gene upregulation may confer resistance to apoptosis in PNH and related disorders, and provide a common compensatory mechanism after bone marrow injury that allows survival and growth of remaining hematopoietic stem cells.
Collapse
Affiliation(s)
- Matthew M Heeney
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Young NS, Maciejewski JP, Sloand E, Chen G, Zeng W, Risitano A, Miyazato A. The relationship of aplastic anemia and PNH. Int J Hematol 2002; 76 Suppl 2:168-72. [PMID: 12430920 DOI: 10.1007/bf03165111] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Bone marrow failure has been regarded as one of the triad of clinical manifestations of paroxysmal noctumal hemoglobinuria (PNH), and PNH in turn has been described as a late clonal disease evolving in patients recovering from aplastic anemia. Better understanding of the pathophysiology of both diseases and improved tests for cell surface glycosylphosphatidylinositol (GPI)-linked proteins has radically altered this view. Flow cytometry of granulocytes shows evidence of an expanded PNH clone in a large proportion of marrow failure patients at the time of presentation: in our large NIH series, about 1/3 of over 200 aplastic anemia cases and almost 20% of more than 100 myelodysplasia cases. Clonal PNH expansion (rather than bone marrow failure) is strongly linked to the histocompatability antigen HLA.-DR2 in all clinical varieties of the disease, suggesting an immune component to its pathophysiology. An extrinsic mechanism of clonal expansion is also more consistent with knock-out mouse models and culture experiments with primary cells and cell lines, which have failed to demonstrate an intrinsic proliferative advantage for PNH cells. DNA chip analysis of multiple paired normal and PIG-A mutant cell lines and lymphoblastoid cells do not show any consistent differences in levels of gene expression. In aplastic anemia/PNH there is surprisingly limited utilization of the V-beta chain of the T cell receptor, and patients' dominant T cell clones, which are functionally inhibitory of autologous hematopoiesis, use identical CDR3 regions for antigen binding. Phenotypically normal cells from PNH patients proliferate more poorly in culture than do the same patient's PNH cells, and the normal cells are damaged as a result of apoptosis and overexpress Fas. Differences in protein degradation might play a dual role in pathophysiology, as GPI-linked proteins lacking an anchor would be predicted to be processed by the proteasome machinery and displayed in a class I H.A. context, in contrast to the normal pathway of cell surface membrane recycling, lysosomal degradation, and presentation by class II HLA. The strong relationship between a chronic, organ-specific immune destructive process and the expansion of a single mutant stem cell clone remains frustratingly enigmatic but likely to be the result of interesting biologic processes, with mechanisms that potentially can be extended to the role of inflammation in producing premalignant syndromes.
Collapse
Affiliation(s)
- Neal S Young
- Hematology Branch, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | | | | | | | | | | | | |
Collapse
|