1
|
Selection of Autochthonous Yeasts Isolated from the Intestinal Tracts of Cobia Fish ( Rachycentron canadum) with Probiotic Potential. J Fungi (Basel) 2023; 9:jof9020274. [PMID: 36836388 PMCID: PMC9966584 DOI: 10.3390/jof9020274] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/06/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Some yeast strains have been proposed as probiotics to improve the health of cultured fish. Cobia is a tropical benthopelagic fish species with potential for marine aquaculture; however, one of the main limitations to its large-scale production is the high mortality of fish larvae. In this study, we evaluated the probiotic potential of autochthonous yeasts from the intestines of cobia. Thirty-nine yeast isolates were recovered from the intestinal mucosa of 37 adult healthy cobia by culture methods. Yeasts were identified by sequencing of the ITS and D1/D2 regions of the 28S rRNA gene and typed by RAPD-PCR using the M13 primer. Yeast strains with unique RAPD patterns were characterized in terms of their cell biomass production ability; anti-Vibrio, enzymatic, and hemolytic activity; biofilm production; hydrophobicity; autoaggregation; polyamine production; safety; and protection of cobia larvae against saline stress. Candida haemuloni C27 and Debaryomyces hansenii C10 and C28 were selected as potential probiotics. They did not affect the survival of larvae and showed biomass production >1 g L-1, hydrophobicity >41.47%, hemolytic activity γ, and activity in more than 8 hydrolytic enzymes. The results suggest that the selected yeast strains could be considered as potential probiotic candidates and should be evaluated in cobia larvae.
Collapse
|
2
|
Tamba RP, Moenadjat Y. Oral Spermine Supplementation in Gestated Rabbit: A Study on Villi Height of Immature Intestines. Front Surg 2021; 8:721560. [PMID: 34568418 PMCID: PMC8459681 DOI: 10.3389/fsurg.2021.721560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/09/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: Immature intestines are the major problem in prematurity. Postnatal oral spermine has been shown in studies to improve intestinal maturation in rats and piglets. This study aimed to find out the efficacy of spermine in rabbits during gestation. Method: An experimental study was done in an unblinded, randomized manner on those treated with and without spermine administration. A morphological examination of hematoxylin-eosin-stained villi was performed under a light microscope with a focus on villi height. Data were subjected to analysis. Results: The median of the spermine-treated group was found to be higher at 24, 26, and 28 days than the non-spermine group, but was not significantly different. Conclusion: Oral spermine supplementation during gestation might improve intestinal villi height in immature rabbit intestines.
Collapse
Affiliation(s)
- Riana Pauline Tamba
- Faculty of Medicine, Department of Surgery Cipto Mangunkusumo General Hospital, Universitas Indonesia, Jakarta, Indonesia
| | | |
Collapse
|
3
|
Wang J, Tan B, Li J, Kong X, Tan M, Wu G. Regulatory role of l-proline in fetal pig growth and intestinal epithelial cell proliferation. ACTA ACUST UNITED AC 2020; 6:438-446. [PMID: 33364460 PMCID: PMC7750805 DOI: 10.1016/j.aninu.2020.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 06/14/2020] [Accepted: 07/07/2020] [Indexed: 12/27/2022]
Abstract
l-proline (Pro) is a precursor of ornithine, which is converted into polyamines via ornithine decarboxylase (ODC). Polyamines plays a key role in the proliferation of intestinal epithelial cells. The study investigated the effect of Pro on polyamine metabolism and cell proliferation on porcine enterocytes in vivo and in vitro. Twenty-four Huanjiang mini-pigs were randomly assigned into 1 of 3 groups and fed a basal diet that contained 0.77% alanine (Ala, iso-nitrogenous control), 1% Pro or 1% Pro + 0.0167% α-difluoromethylornithine (DFMO) from d 15 to 70 of gestation. The fetal body weight and number of fetuses per litter were determined, and the small and large intestines were obtained on d 70 ± 1.78 of gestation. The in vitro study was performed in intestinal porcine epithelial (IPEC-J2) cells cultured in Dulbecco's modified Eagle medium-high glucose (DMEM-H) containing 0 μmol/L Pro, 400 μmol/L Pro, or 400 μmol/L Pro + 10 mmol/L DFMO for 4 d. The results showed that maternal dietary supplementation with 1% Pro increased fetal weight; the protein and DNA concentrations of the fetal small intestine; and mRNA levels for potassium voltage-gated channel, shaker-related subfamily, member 1 (Kv1.1) in the fetal small and large intestines (P < 0.05). Supplementing Pro to either gilts or IPEC-J2 cells increased ODC protein abundances and polyamine concentrations in the fetal intestines and IPEC-J2 cells (P < 0.05). In comparison with the Pro group, the combined administration of Pro and DFMO reduced the expression of ODC protein and spermine concentration in the fetal intestine, as well as the concentrations of putrescine, spermidine and spermine in IPEC-J2 cells (P < 0.05). Meanwhile, the percentage of cells in the S-phase and the mRNA levels of proto-oncogenes c-fos and c-myc were increased in response to Pro supplementation, whereas depletion of cellular polyamines with DFMO increased tumor protein p53 (p53) mRNA levels (P < 0.05). Taken together, dietary supplementation with Pro improved fetal pig growth and intestinal epithelial cell proliferation via enhancing polyamine synthesis.
Collapse
Affiliation(s)
- Jing Wang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China.,Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Bi'e Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.,Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Jianjun Li
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Xiangfeng Kong
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Minjie Tan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
4
|
Effects of spermine supplementation on the morphology, digestive enzyme activities, and antioxidant capacity of intestine in weaning rats. ACTA ACUST UNITED AC 2016; 2:370-375. [PMID: 29767070 PMCID: PMC5941048 DOI: 10.1016/j.aninu.2016.09.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 08/31/2016] [Accepted: 09/18/2016] [Indexed: 12/27/2022]
Abstract
The main objective of this study was to investigate the effects of different doses of spermine and its extended supplementation on the morphology, digestive enzyme activities, and intestinal antioxidant capacity in weaning rats. Nineteen-day-old male rats received intragastric spermine at doses of 0.2 and 0.4 μmol/g BW for 3 or 7 d, whereas control rats received similar doses of saline. The results are as follows: 1) In the jejunum, the seven-day supplementation with both doses of spermine significantly increased crypt depth (P < 0.05) compared with the control group; the supplementation extension of the high spermine dose increased villus height and crypt depth (P < 0.05); in the ileum, the low spermine dose significantly increased villus height and crypt depth compared with the control group for 7 days (P < 0.05). 2) The 3-day supplementation with high spermine dose increased alkaline phosphatase activity in the jejunum (P < 0.05). 3) In the jejunum, the anti-hydroxyl radical (AHR), total superoxide dismutase (T-SOD), catalase (CAT), and total antioxidant capacity (T-AOC) activities were increased (P < 0.05); however, the malondialdehyde (MDA) content was reduced (P < 0.05) in groups supplemented with the high spermine dose relative to those in the control groups after 3 and 7 d; moreover, the anti-superoxide anion (ASA) and glutathione (GSH) contents increased with the high spermine dose that lasted for 3 days (P < 0.05). Furthermore, the T-SOD and CAT activities (after 3 and 7 d), ASA (after 3 d), and AHR (after 7 d) increased with the high spermine dose compared with those of the low spermine dose (P < 0.05). Extending the supplementation duration (7 d) of the high spermine dose decreased the MDA content and ASA and T-AOC activities (P < 0.05). These results suggested that spermine supplementation can modulate gut development and enhance the antioxidant status of the jejunum in weaning rats, and a dosage of 0.4 μmol spermine/g BW had better effects than the dosage of 0.2 μmol spermine/g BW on accelerating gut development and increasing antioxidant capacity.
Collapse
|
5
|
Effect of oral polyamine supplementation pre-weaning on piglet growth and intestinal characteristics. Animal 2016; 10:1655-9. [PMID: 26997172 DOI: 10.1017/s1751731116000446] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A high proportion of piglets fail to adapt to the changing composition of their diet at weaning, resulting in weight loss and increased susceptibility to pathogens. Polyamines are present in sow milk and promote neonatal maturation of the gut. We hypothesised that oral spermine and spermidine supplementation before weaning would increase piglet growth and promote gastrointestinal development at weaning. In Experiment One, one pair of liveweight (LW)-matched piglets per litter from first and third lactation sows received 2 ml of a 0 (Control) or 463 nmol/ml spermine solution at 14, 16, 18, 20 and 22 days of age (n=6 piglets/treatment per parity). Villus height and crypt depth in the duodenum and jejunum were measured at weaning (day 23 postpartum). In Experiment Two, piglets suckling 18 first and 18 third lactation sows were used. Within each litter, piglets received 2 ml of either water (Control), 463 nmol/ml spermine solution or 2013 nmol/ml spermidine solution at 14, 16, 18, 22 and 24 days of age (n=54 piglets/treatment per sow parity). Piglets were weighed individually at 14, 18, 24 (weaning) and 61 days of age. In Experiment One, oral spermine supplementation resulted in a 41% increase in villus height, a 21% decrease in crypt depth and 79% decrease in the villus height : crypt depth ratio compared with control piglets (P<0.01). In Experiment Two, spermine and spermidine-supplemented piglets suckling first lactation sows grew faster (P<0.05) between days 14 and 18 postpartum than control piglets: 0.230±0.011 and 0.227±0.012 v. 0.183±0.012 kg/day, respectively. Spermine supplementation tended (P<0.1) to increase piglet LW gain from weaning to day 37 post-weaning compared with control piglets (0.373±0.009 v. 0.341±0.010 kg/day). In conclusion, spermine supplementation increased villus height at weaning, and appears to have the potential to improve the pre- and post-weaning growth of conventionally weaned piglets.
Collapse
|
6
|
Fang T, Liu G, Cao W, Wu X, Jia G, Zhao H, Chen X, Wu C, Wang J. Spermine: new insights into the intestinal development and serum antioxidant status of suckling piglets. RSC Adv 2016. [DOI: 10.1039/c6ra05361k] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The present work aimed at investigating the effects of spermine supplementation and extended spermine administration on the intestinal morphology, enzyme activity, and serum antioxidant capacity of suckling piglets.
Collapse
Affiliation(s)
- Tingting Fang
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education
| | - Guangmang Liu
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education
| | - Wei Cao
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education
| | - Xianjian Wu
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education
| | - Gang Jia
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education
| | - Hua Zhao
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education
| | - Xiaoling Chen
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education
| | - Caimei Wu
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education
| | - Jing Wang
- Maize Research Institute
- Sichuan Agricultural University
- Chengdu 611130
- China
| |
Collapse
|
7
|
Pancreatic and pancreatic-like microbial proteases accelerate gut maturation in neonatal rats. PLoS One 2015; 10:e0116947. [PMID: 25658606 PMCID: PMC4319746 DOI: 10.1371/journal.pone.0116947] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 12/17/2014] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES Postnatal gut maturation in neonatal mammals, either at natural weaning or after precocious inducement, is coinciding with enhanced enzymes production by exocrine pancreas. Since the involvement of enzymes in gut functional maturation was overlooked, the present study aimed to investigate the role of enzymes in gut functional maturation using neonatal rats. METHODS Suckling rats (Rattus norvegicus) were instagastrically gavaged with porcine pancreatic enzymes (Creon), microbial-derived amylase, protease, lipase and mixture thereof, while controls received α-lactalbumin or water once per day during 14-16 d of age. At 17 d of age the animals were euthanized and visceral organs were dissected, weighed and analyzed for structural and functional properties. For some of the rats, gavage with the macromolecular markers such as bovine serum albumin and bovine IgG was performed 3 hours prior to blood collection to assess the intestinal permeability. RESULTS Gavage with the pancreatic or pancreatic-like enzymes resulted in stimulated gut growth, increased gastric acid secretion and switched intestinal disaccharidases, with decreased lactase and increased maltase and sucrase activities. The fetal-type vacuolated enterocytes were replaced by the adult-type in the distal intestine, and macromolecular transfer to the blood was declined. Enzyme exposure also promoted pancreas growth with increased amylase and trypsin production. These effects were confined to the proteases in a dose-dependent manner. CONCLUSION Feeding exogenous enzymes, containing proteases, induced precocious gut maturation in suckling rats. This suggests that luminal exposure to proteases by oral loading or, possibly, via enhanced pancreatic secretion involves in the gut maturation of young mammals.
Collapse
|
8
|
Cao W, Liu G, Fang T, Wu X, Jia G, Zhao H, Chen X, Wu C, Wang J, Cai J. Effects of spermine on the morphology, digestive enzyme activities, and antioxidant status of jejunum in suckling rats. RSC Adv 2015. [DOI: 10.1039/c5ra15793e] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Spermine is a ubiquitous cellular component that plays vital roles in the maintenance of nucleic acids, regulation of kinase activities, protein synthesis, control of ion channel activities and renewal of the gut epithelium.
Collapse
|
9
|
Mohapatra S, Chakraborty T, Kumar V, DeBoeck G, Mohanta KN. Aquaculture and stress management: a review of probiotic intervention. J Anim Physiol Anim Nutr (Berl) 2012; 97:405-30. [PMID: 22512693 DOI: 10.1111/j.1439-0396.2012.01301.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
To meet the ever-increasing demand for animal protein, aquaculture continuously requires new techniques to increase the production yield. However, with every step towards intensification of aquaculture practices, there is an increase in stress level on the animal as well as on the environment. Feeding practices in aqua farming usually plays an important role, and the addition of various additives to a balanced feed formula to achieve better growth is a common practice among the fish and shrimp culturists. Probiotics, also known as 'bio-friendly agents', such as LAB (Lactobacillus), yeasts and Bacillus sp., can be introduced into the culture environment to control and compete with pathogenic bacteria as well as to promote the growth of the cultured organisms. In addition, probiotics are non-pathogenic and non-toxic micro-organisms, having no undesirable side effects when administered to aquatic organisms. Probiotics are also known to play an important role in developing innate immunity among the fishes, and hence help them to fight against any pathogenic bacterias as well as against environmental stressors. The present review is a brief but informative compilation of the different essential and desirable traits of probiotics, their mode of action and their useful effects on fishes. The review also highlights the role of probiotics in helping the fishes to combat against the different physical, chemical and biological stress.
Collapse
Affiliation(s)
- S Mohapatra
- Laboratory of Freshwater Fish Reproduction and Development, School of Life Science, Southwest University, Chongqing, China.
| | | | | | | | | |
Collapse
|
10
|
Tinh NTN, Dierckens K, Sorgeloos P, Bossier P. A review of the functionality of probiotics in the larviculture food chain. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2008; 10:1-12. [PMID: 18040740 DOI: 10.1007/s10126-007-9054-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Revised: 08/20/2007] [Accepted: 09/19/2007] [Indexed: 05/25/2023]
Abstract
During the past two decades, the use of probiotics as an alternative to the use of antibiotics has shown to be promising in aquaculture, particularly in fish and shellfish larviculture. This article reviews the studies on probiotics in larviculture, focusing on the current knowledge of their in vivo mechanisms of action. The article highlights that the in vivo mechanisms of action largely remain to be unravelled. Several methodologies are suggested for further in vivo research, including studies on gut microbiota composition, the use of gnotobiotic animals as test models, and the application of molecular techniques to study host-microbe and microbe-microbe interactions.
Collapse
Affiliation(s)
- Nguyen Thi Ngoc Tinh
- Laboratory of Aquaculture and Artemia Reference Center, Ghent University, Rozier 44, Gent, Belgium
| | | | | | | |
Collapse
|
11
|
Cheng ZB, Li DF, Xing JJ, Guo XY, Li ZJ. Oral administration of spermine advances intestinal maturation in sucking piglets. ACTA ACUST UNITED AC 2007. [DOI: 10.1079/asc200690] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
AbstractThe objective of this study was to investigate the effect of orally administered spermine at various doses on intestinal maturation in sucking piglets. Thirty-six 11-day-old sucking piglets were assigned randomly to one of six treatments to receive via a stomach tube 0, 0·1, 0·2, 0·3, 0·4, or 0·5 mmol spermine per kg live weight (LW) per day for 3 days. At day 14 of age, duodenum, jejunum and ileum were obtained for biochemical and morphological analysis. Increasing the dose of orally administered spermine increased intestinal weight (linear effect, P<0·01), mucosal weight (linear effect, P<0·05), and mucosal protein, DNA and RNA contents of the duodenum (linear effect, P≤0·01) and jejunum (linear effect, P<0·01). Elevating spermine doses also enhanced (linear effect, P≤0·02) the specific activities of maltase and sucrase but decreased (linear effect, P<0·01) lactase specific activity in the jejunum and duodenum. Furthermore, augmenting oral doses of spermine increased crypt depth and villus width but reduced villus height in the jejunum (linear effect, P<0·05) and duodenum (linear effect, P<0·01). For most measurements, the effects were observed at the oral spermine doses of 0·3 to 0·5 mmol/kg LW per day. Collectively, the results show that oral administration of optimal doses of spermine to 11-day-old sucking piglets induces precocious intestinal maturation and promotes intestinal growth.
Collapse
|
12
|
Fusi E, Rossi L, Rebucci R, Cheli F, Di Giancamillo A, Domeneghini C, Pinotti L, Dell’Orto V, Baldi A. Administration of biogenic amines to Saanen kids: effects on growth performance, meat quality and gut histology. Small Rumin Res 2004. [DOI: 10.1016/j.smallrumres.2003.07.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Abstract
This review presents the data that are now available concerning the effects of dietary polyamines at either postnatal or adult stages in non-neoplastic growth and disease. Polyamines provided by food have a potential role in growth and development of the digestive system in neonatal mammals (and fishes). In humans, this property could be of importance in preventing the appearance of food allergies. Dietary polyamines also seem necessary for the maintenance of normal growth and general properties of adult digestive tract. Their possible therapeutic effects have been investigated in gastric, intestinal, and, more recently, whole-body healing.
Collapse
Affiliation(s)
- P Deloyer
- Biochemistry and General Physiology Department, Chemistry Institute, Sart Tilman, B-4000 Liege, Belgium
| | | | | |
Collapse
|