1
|
Llorens MC, Rossi FA, García IA, Cooke M, Abba MC, Lopez-Haber C, Barrio-Real L, Vaglienti MV, Rossi M, Bocco JL, Kazanietz MG, Soria G. PKCα Modulates Epithelial-to-Mesenchymal Transition and Invasiveness of Breast Cancer Cells Through ZEB1. Front Oncol 2019; 9:1323. [PMID: 31828042 PMCID: PMC6890807 DOI: 10.3389/fonc.2019.01323] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022] Open
Abstract
ZEB1 is a master regulator of the Epithelial-to-Mesenchymal Transition (EMT) program. While extensive evidence confirmed the importance of ZEB1 as an EMT transcription factor that promotes tumor invasiveness and metastasis, little is known about its regulation. In this work, we screened for potential regulatory links between ZEB1 and multiple cellular kinases. Exploratory in silico analysis aided by phospho-substrate antibodies and ZEB1 deletion mutants led us to identify several potential phospho-sites for the family of PKC kinases in the N-terminus of ZEB1. The analysis of breast cancer cell lines panels with different degrees of aggressiveness, together with the evaluation of a battery of kinase inhibitors, allowed us to expose a robust correlation between ZEB1 and PKCα both at mRNA and protein levels. Subsequent validation experiments using siRNAs against PKCα revealed that its knockdown leads to a concomitant decrease in ZEB1 levels, while ZEB1 knockdown had no impact on PKCα levels. Remarkably, PKCα-mediated downregulation of ZEB1 recapitulates the inhibition of mesenchymal phenotypes, including inhibition in cell migration and invasiveness. These findings were extended to an in vivo model, by demonstrating that the stable knockdown of PKCα using lentiviral shRNAs markedly impaired the metastatic potential of MDA-MB-231 breast cancer cells. Taken together, our findings unveil an unforeseen regulatory pathway comprising PKCα and ZEB1 that promotes the activation of the EMT in breast cancer cells.
Collapse
Affiliation(s)
- María Candelaria Llorens
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Fabiana Alejandra Rossi
- Instituto de Investigación en Biomedicina de Buenos Aires, IBioBA-CONICET, Partner Institute of the Max Planck Society, Buenos Aires, Argentina
- Translational Medicine Research Institute (IIMT), CONICET, Facultad de Ciencias Biomédicas, Universidad Austral, Buenos Aires, Argentina
| | - Iris Alejandra García
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Martin C. Abba
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas, CONICET, Universidad Nacional de La Plata, La Plata, Argentina
| | - Cynthia Lopez-Haber
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Laura Barrio-Real
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - María Victoria Vaglienti
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Mario Rossi
- Instituto de Investigación en Biomedicina de Buenos Aires, IBioBA-CONICET, Partner Institute of the Max Planck Society, Buenos Aires, Argentina
- Translational Medicine Research Institute (IIMT), CONICET, Facultad de Ciencias Biomédicas, Universidad Austral, Buenos Aires, Argentina
| | - José Luis Bocco
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Marcelo G. Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Gastón Soria
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
2
|
Glypican-3 induces a mesenchymal to epithelial transition in human breast cancer cells. Oncotarget 2018; 7:60133-60154. [PMID: 27507057 PMCID: PMC5312374 DOI: 10.18632/oncotarget.11107] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 07/16/2016] [Indexed: 12/30/2022] Open
Abstract
Breast cancer is the disease with the highest impact on global health, being metastasis the main cause of death. To metastasize, carcinoma cells must reactivate a latent program called epithelial-mesenchymal transition (EMT), through which epithelial cancer cells acquire mesenchymal-like traits.Glypican-3 (GPC3), a proteoglycan involved in the regulation of proliferation and survival, has been associated with cancer. In this study we observed that the expression of GPC3 is opposite to the invasive/metastatic ability of Hs578T, MDA-MB231, ZR-75-1 and MCF-7 human breast cancer cell lines. GPC3 silencing activated growth, cell death resistance, migration, and invasive/metastatic capacity of MCF-7 cancer cells, while GPC3 overexpression inhibited these properties in MDA-MB231 tumor cell line. Moreover, silencing of GPC3 deepened the MCF-7 breast cancer cells mesenchymal characteristics, decreasing the expression of the epithelial marker E-Cadherin. On the other side, GPC3 overexpression induced the mesenchymal-epithelial transition (MET) of MDA-MB231 breast cancer cells, which re-expressed E-Cadherin and reduced the expression of vimentin and N-Cadherin. While GPC3 inhibited the canonical Wnt/β-Catenin pathway in the breast cancer cells, this inhibition did not have effect on E-Cadherin expression. We demonstrated that the transcriptional repressor of E-Cadherin - ZEB1 - is upregulated in GPC3 silenced MCF-7 cells, while it is downregulated when GPC3 was overexpressed in MDA-MB231 cells. We presented experimental evidences showing that GPC3 induces the E-Cadherin re-expression in MDA-MB231 cells through the downregulation of ZEB1.Our data indicate that GPC3 is an important regulator of EMT in breast cancer, and a potential target for procedures against breast cancer metastasis.
Collapse
|
3
|
Opazo MC, Haensgen H, Bohmwald K, Venegas LF, Boudin H, Elorza AA, Simon F, Fardella C, Bueno SM, Kalergis AM, Riedel CA. Imprinting of maternal thyroid hormones in the offspring. Int Rev Immunol 2017; 36:240-255. [DOI: 10.1080/08830185.2016.1277216] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- María Cecilia Opazo
- Departamento de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | - Henny Haensgen
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Karen Bohmwald
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luis F. Venegas
- Departamento de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | | | - Alvaro A. Elorza
- Centro de Investigaciones Biomedicas, Millenium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas y Faculta de Medicina, Universidad Andres Bello
| | - Felipe Simon
- Departamento de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | - Carlos Fardella
- Millenium Institute on Immunology and immunotherapy, Departamento de Endocrinología, Faculta de Medicina, Pontificia Universidad Católica de Chile; Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas Pontificia Universidad Católica de Chile, Santiago, Chile
- INSERM UMR1064, Nantes, France
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas Pontificia Universidad Católica de Chile, Santiago, Chile
- INSERM UMR1064, Nantes, France
| | - Claudia A. Riedel
- Departamento de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
4
|
Llorens MC, Lorenzatti G, Cavallo NL, Vaglienti MV, Perrone AP, Carenbauer AL, Darling DS, Cabanillas AM. Phosphorylation Regulates Functions of ZEB1 Transcription Factor. J Cell Physiol 2016; 231:2205-17. [PMID: 26868487 DOI: 10.1002/jcp.25338] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 02/09/2016] [Indexed: 01/02/2023]
Abstract
ZEB1 transcription factor is important in both development and disease, including many TGFβ-induced responses, and the epithelial-to-mesenchymal transition (EMT) by which many tumors undergo metastasis. ZEB1 is differentially phosphorylated in different cell types; however the role of phosphorylation in ZEB1 activity is unknown. Luciferase reporter studies and electrophoresis mobility shift assays (EMSA) show that a decrease in phosphorylation of ZEB1 increases both DNA-binding and transcriptional repression of ZEB1 target genes. Functional analysis of ZEB1 phosphorylation site mutants near the second zinc finger domain (termed ZD2) show that increased phosphorylation (due to either PMA plus ionomycin, or IGF-1) can inhibit transcriptional repression by either a ZEB1-ZD2 domain clone, or full-length ZEB1. This approach identifies phosphosites that have a substantial effect regulating the transcriptional and DNA-binding activity of ZEB1. Immunoprecipitation with anti-ZEB1 antibodies followed by western analysis with a phospho-Threonine-Proline-specific antibody indicates that the ERK consensus site at Thr-867 is phosphorylated in ZEB1. In addition to disrupting in vitro DNA-binding measured by EMSA, IGF-1-induced MEK/ERK phosphorylation is sufficient to disrupt nuclear localization of GFP-ZEB1 fusion clones. These data suggest that phosphorylation of ZEB1 integrates TGFβ signaling with other signaling pathways such as IGF-1. J. Cell. Physiol. 231: 2205-2217, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- M Candelaria Llorens
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina
| | - Guadalupe Lorenzatti
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina
| | - Natalia L Cavallo
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina
| | - Maria V Vaglienti
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina
| | - Ana P Perrone
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina
| | - Anne L Carenbauer
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Kentucky
- Center for Genetics and Molecular Medicine, University of Louisville, Kentucky
| | - Douglas S Darling
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Kentucky
- Center for Genetics and Molecular Medicine, University of Louisville, Kentucky
| | - Ana M Cabanillas
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina
| |
Collapse
|
5
|
Lorenzatti G, Huang W, Pal A, Cabanillas AM, Kleer CG. CCN6 (WISP3) decreases ZEB1-mediated EMT and invasion by attenuation of IGF-1 receptor signaling in breast cancer. J Cell Sci 2011; 124:1752-8. [PMID: 21525039 DOI: 10.1242/jcs.084194] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
During progression of breast cancer, CCN6 protein exerts tumor inhibitory functions. CCN6 is a secreted protein that modulates the insulin-like growth factor-1 (IGF-1) signaling pathway. Knockdown of CCN6 in benign mammary epithelial cells triggers an epithelial to mesenchymal transition (EMT), with upregulation of the transcription factor ZEB1/δEF1. How CCN6 regulates ZEB1 expression is unknown. We hypothesized that CCN6 might regulate ZEB1, EMT and breast cancer invasion by modulating IGF-1 signaling. Exogenously added human recombinant CCN6 protein was sufficient to downregulate ZEB1 mRNA and protein levels in CCN6-deficient (CCN6 KD) HME cells and MDA-MB-231 breast cancer cells. Recombinant CCN6 protein decreased invasion of CCN6 KD cells compared with controls. We discovered that knockdown of CCN6 induced IGF-1 secretion in HME cells cultivated in serum-free medium to higher concentrations than found in MDA-MB-231 cells. Treatment with recombinant CCN6 protein was sufficient to decrease IGF-1 protein and mRNA to control levels, rescuing the effect of CCN6 knockdown. Specific inhibition of IGF-1 receptors using the pharmacological inhibitor NVP-AE541 or short hairpin shRNAs revealed that ZEB1 upregulation due to knockdown of CCN6 requires activation of IGF-1 receptor signaling. Recombinant CCN6 blunted IGF-1-induced ZEB1 upregulation in MDA-MB-231 cells. Our data define a pathway in which CCN6 attenuates IGF-1 signaling to decrease ZEB1 expression and invasion in breast cancer. These results suggest that CCN6 could be a target to prevent or halt breast cancer invasion.
Collapse
Affiliation(s)
- Guadalupe Lorenzatti
- CIBICI-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000 Córdoba, Argentina
| | | | | | | | | |
Collapse
|
6
|
Gauger KJ, Giera S, Sharlin DS, Bansal R, Iannacone E, Zoeller RT. Polychlorinated biphenyls 105 and 118 form thyroid hormone receptor agonists after cytochrome P4501A1 activation in rat pituitary GH3 cells. ENVIRONMENTAL HEALTH PERSPECTIVES 2007; 115:1623-30. [PMID: 18007995 PMCID: PMC2072832 DOI: 10.1289/ehp.10328] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Accepted: 08/15/2007] [Indexed: 05/17/2023]
Abstract
BACKGROUND Polychlorinated biphenyls (PCBs) may interfere with thyroid hormone (TH) signaling by reducing TH levels in blood, by exerting direct effects on TH receptors (TRs), or both. OBJECTIVE Our objective was to identify individual PCBs that directly affect TH signaling by acting on the TR. METHODS We administered a mixture of six PCB congeners based on their ortho substitution pattern, including PCBs 77 and 126 (non-ortho), PCBs 105 and 118 (mono-ortho), and PCBs 138 and 153 (di-ortho), to pregnant Sprague-Dawley rats from gestational days (G) 6 to 16. This mixture, or various combinations of the components, was also evaluated in a transient transfection system using GH3 cells. RESULTS The mixture reduced serum TH levels in pregnant rats on G16 but simultaneously up-regulated the expression of malic enzyme in liver. It also functioned as a TR agonist in vitro; however, none of the individual PCB congeners comprising this mixture were active in this system. Using the aryl hydrocarbon receptor (AhR) antagonist alpha-naphthoflavone, and the cytochrome P450 (CYP)1A1 antagonist ellipticine, we show that the effect of the mixture on the thyroid hormone response element required AhR and CYP1A1. CONCLUSIONS We propose that PCB 126 induces CYP1A1 through the AhR in GH3 cells, and that CYP1A1 activates PCB 105 and/or 118 to a form a compound that acts as a TR agonist. These data suggest that some tissues may be especially vulnerable to PCBs interfering directly with TH signaling due to their capacity to express CYP1A1 in response to coplanar PCBs (or other dioxin-like molecules) if sufficient mono-ortho PCBs are present.
Collapse
Affiliation(s)
- Kelly J. Gauger
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Massachusetts, USA
- Pioneer Valley Life Science Institute, Baystate Medical Center, Spingfield, Massachusetts, USA
| | - Stefanie Giera
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Massachusetts, USA
- Institute of Pharmacology and Toxicology, Department of Toxicology, University of Tübingen, Tübingen, Germany
| | - David S. Sharlin
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Massachusetts, USA
| | - Ruby Bansal
- Department of Biology, Morrill Science Center, University of Massachusetts, Amherst, Massachusetts, USA
| | - Eric Iannacone
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Massachusetts, USA
- Fairleigh Dickinson University, Madison, New Jersey, USA
| | - R. Thomas Zoeller
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Massachusetts, USA
- Department of Biology, Morrill Science Center, University of Massachusetts, Amherst, Massachusetts, USA
- Address correspondence to R.T. Zoeller, Biology Department, University of Massachusetts, 611 North Pleasant St., Amherst, MA 01003 USA. Telephone: (413) 545-2088. Fax: (413) 545-3243. E-mail:
| |
Collapse
|
7
|
Zhu X, Gleiberman AS, Rosenfeld MG. Molecular physiology of pituitary development: signaling and transcriptional networks. Physiol Rev 2007; 87:933-63. [PMID: 17615393 DOI: 10.1152/physrev.00006.2006] [Citation(s) in RCA: 240] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The pituitary gland is a central endocrine organ regulating basic physiological functions, including growth, the stress response, reproduction, metabolic homeostasis, and lactation. Distinct hormone-producing cell types in the anterior pituitary arise from a common ectodermal primordium during development by extrinsic and intrinsic mechanisms, providing a powerful model system for elucidating general principles in mammalian organogenesis. The central purpose of this review is to inspect the integrated signaling and transcriptional events that affect precursor proliferation, cell lineage commitment, terminal differentiation, and physiological regulation by hypothalamic tropic factors.
Collapse
Affiliation(s)
- Xiaoyan Zhu
- Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, La Jolla, California 92093, USA.
| | | | | |
Collapse
|
8
|
Manavella PA, Roqueiro G, Darling DS, Cabanillas AM. The ZFHX1A gene is differentially autoregulated by its isoforms. Biochem Biophys Res Commun 2007; 360:621-6. [PMID: 17610840 PMCID: PMC2770808 DOI: 10.1016/j.bbrc.2007.06.088] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Accepted: 06/19/2007] [Indexed: 11/20/2022]
Abstract
The Zfhx1a gene expresses two different isoforms; the full length Zfhx1a-1 and a truncated isoform termed Zfhx1a-2 lacking the first exon. Deletion analysis of the Zfhx1a-1 promoter localized cell-specific repressors, and a proximal G-string that is critically required for transactivation. Transfection of Zfhx1a-1 cDNA, but not Zfhx1a-2, downregulates Zfhx1a-1 promoter activity. Mutation of an E2-box disrupted the binding of both Zfhx1a isoforms. Consistent with this, transfected Zfhx1a-1 does not regulate the transcriptional activity of the E-box mutated Zfhx1a-1 promoter. Competitive EMSAs and transfection assays show that Zfhx1a-2 can function as a dominant negative isoform since it is able to compete and displace Zfhx1a-1 from its binding site and overcome Zfhx1a-1 induced repression of the Zfhx1a-1 promoter in cells. Hence, the Zfhx1a-1 gene is autoregulated in part by negative feedback on its own promoter which is, in turn, modified by the availability of the negative dominant isoform Zfhx1a-2.
Collapse
Affiliation(s)
- Pablo A Manavella
- CIBICI-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, 5000 Córdoba, Argentina
| | | | | | | |
Collapse
|
9
|
You SH, Gauger KJ, Bansal R, Zoeller RT. 4-Hydroxy-PCB106 acts as a direct thyroid hormone receptor agonist in rat GH3 cells. Mol Cell Endocrinol 2006; 257-258:26-34. [PMID: 16930818 DOI: 10.1016/j.mce.2006.06.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Revised: 06/09/2006] [Accepted: 06/23/2006] [Indexed: 10/24/2022]
Abstract
Polychlorinated biphenyls (PCBs) may interfere with thyroid hormone (TH) action by interacting directly with the TH receptor (TR). We found that the hydroxylated PCB metabolite, 4-OH-CB106, bound to the human TRbeta1 and significantly elevated endogenous growth hormone (GH) expression in GH3 cells in a manner similar to that of T(3) itself. This effect was also observed using a consensus TH response element (TRE) in a luciferase expression system, and was blocked by a single base-pair substitution in this TRE. In addition, we found that 4-OH-CB106 did not alter the ability of TRbeta1 to physically interact with the TRE in the GH promoter, or with SRC1 or NCoR. These effects were directly parallel to effects of T(3), indicating that 4-OH-CB106 exerts a direct agonistic effect on the TRbeta1.
Collapse
Affiliation(s)
- Seo-Hee You
- Program in Molecular & Cellular Biology, University of Massachusetts-Amherst, Amherst, MA 01003, USA
| | | | | | | |
Collapse
|
10
|
Spoelstra NS, Manning NG, Higashi Y, Darling D, Singh M, Shroyer KR, Broaddus RR, Horwitz KB, Richer JK. The transcription factor ZEB1 is aberrantly expressed in aggressive uterine cancers. Cancer Res 2006; 66:3893-902. [PMID: 16585218 DOI: 10.1158/0008-5472.can-05-2881] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The transcription factor ZEB1 (deltaEF1 in mice) has been implicated in cellular processes during development and tumor progression including epithelial to mesenchymal transition. deltaEF1 null mice die at birth, but heterozygotes expressing a LacZ reporter inserted into the deltaEF1 gene live and reproduce. Using these mice, we observed ZEB1 promoter activity in the virgin myometrium, and stroma and myometrium of the pregnant uterus. ZEB1 protein is up-regulated in the myometrium and endometrial stroma after progesterone or estrogen treatment of ovariectomized mice. In the normal human uterus, ZEB1 protein is increased in the myometrium and stroma during the secretory stage of the menstrual cycle. ZEB1 is not expressed in the normal endometrial epithelium. In malignancies of the uterus, we find that ZEB1 (a) is overexpressed in malignant tumors derived from the myometrium (leiomyosarcomas), (b) is overexpressed in tumor-associated stroma of low-grade endometrioid adenocarcinomas, and (c) is aberrantly expressed in the tumor epithelial cells of aggressive endometrial cancers. Specifically, in grade 3 endometrioid adenocarcinomas and uterine papillary serous carcinomas, ZEB1 could be expressed in the epithelial-derived carcinoma cells as well as in the stroma. In malignant mixed Müllerian tumors, the sarcomatous component always expresses ZEB1, and the carcinomatous component can also be positive. In summary, ZEB1 is normally regulated by both estrogen and progesterone receptors, but in uterine cancers, it is likely no longer under control of steroid hormone receptors and becomes aberrantly expressed in epithelial-derived tumor cells, supporting a role for ZEB1 in epithelial to mesenchymal transitions associated with aggressive tumors.
Collapse
Affiliation(s)
- Nicole S Spoelstra
- Department of Medicine, Division of Endocrinology, University of Colorado Health Sciences Center at Fitzsimons, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Darling DS, Stearman RP, Qi Y, Qiu MS, Feller JP. Expression of Zfhep/deltaEF1 protein in palate, neural progenitors, and differentiated neurons. Gene Expr Patterns 2004; 3:709-17. [PMID: 14643678 PMCID: PMC3682426 DOI: 10.1016/s1567-133x(03)00147-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Zfhep/deltaEF1 is essential for embryonic development. We have investigated the expression pattern of Zfhep protein during mouse embryogenesis. We show expression of Zfhep in the mesenchyme of the palatal shelves, establishing concordance of expression with the reported cleft palate of the deltaEF1-null mice. Zfhep protein is strongly expressed in proliferating progenitors of the nervous system. In most regions of the brain, post-mitotic cells stop expressing Zfhep when they migrate out of the ventricular zone (VZ) and differentiate. However, in the hindbrain, Zfhep protein is also highly expressed in post-mitotic migratory neuronal cells of the precerebellar extramural stream that arise from the neuroepithelium adjacent to the lower rhombic lip. Also, Zfhep is expressed as cells migrate from a narrow region of the pons VZ towards the trigeminal nucleus. Co-expression with Islet1 shows that Zfhep is expressed in motor neurons of the trigeminal nucleus of the pons, but not in the inferior olive motor neurons at E12.5. Therefore, Zfhep is strongly expressed in a tightly regulated pattern in proliferating neural stem cells and a subset of neurons. Zfhep protein is also strongly expressed in trigeminal ganglia, and is moderately expressed in other cranial ganglia. In vitro studies have implicated Zfhep as a repressor of myogenesis, however, we find that Zfhep protein expression increases during muscle differentiation.
Collapse
Affiliation(s)
- Douglas S Darling
- Periodontics, Endodontics and Dental Hygiene, University of Louisville School of Dentistry, Health Sciences Center, 501 South Preston Street, Louisville, KY 40292, USA.
| | | | | | | | | |
Collapse
|
12
|
Savage JJ, Yaden BC, Kiratipranon P, Rhodes SJ. Transcriptional control during mammalian anterior pituitary development. Gene 2004; 319:1-19. [PMID: 14597167 DOI: 10.1016/s0378-1119(03)00804-7] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The mammalian anterior pituitary gland is a compound endocrine organ that regulates reproductive development and fitness, growth, metabolic homeostasis, the response to stress, and lactation, by actions on target organs such as the gonads, the liver, the thyroid, the adrenals, and the mammary gland. The protein and peptide hormones that control these physiological parameters are secreted by specialized pituitary cell types that derive from a common origin in the early ectoderm. Collectively, the broad physiological importance of the pituitary gland, its intriguing organogenesis, and the clinical and agricultural significance of its actions, have established pituitary development as an excellent model system for the study of the gene-regulatory cascades that guide vertebrate cell determination and differentiation. We review the transcriptional pathways that regulate the commitment of the individual pituitary cell lineages and that subsequently modulate trophic hormone gene activity in the differentiated cells of the mature gland.
Collapse
Affiliation(s)
- Jesse J Savage
- Department of Biology, Indiana University Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, 723 West Michigan Street, Indianapolis, IN 46202-5132, USA
| | | | | | | |
Collapse
|
13
|
Costantino ME, Stearman RP, Smith GE, Darling DS. Cell-specific phosphorylation of Zfhep transcription factor. Biochem Biophys Res Commun 2002; 296:368-73. [PMID: 12163027 PMCID: PMC3682420 DOI: 10.1016/s0006-291x(02)00880-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Zinc finger homeodomain enhancer-binding protein (Zfhep/Zfhx1a) is a transcription factor essential for immune system development, skeletal patterning, and life. Regulation of the interleukin-2 gene in T cells has been suggested to depend on post-translational processing of Zfhep, however, no modifications of Zfhep are known. Here we demonstrate that Zfhep is present in both hyperphosphorylated and hypophosphorylated forms. Western blot analysis demonstrates two forms of Zfhep with different mobilities. Differences in phosphorylation are sufficient to explain the difference in mobilities. Zfhep is primarily phosphorylated on Ser and Thr residues since PP2A dephosphorylates the slower mobility band. Treatment of nuclear extract with O-GlcNAcase did not detect O-linked sugar. Importantly, post-translational processing is cell-specific. Doublets of Zfhep were detected in five cell lines, whereas 6 cell lines contain only, or predominantly, non-phosphorylated Zfhep, and Saos-2 cells contain predominantly the phosphorylated form. These data provide the first demonstration that Zfhep is post-translationally modified.
Collapse
Affiliation(s)
- Mary E. Costantino
- Biochemistry and Molecular Biology, University of Louisville Health Sciences Center, Louisville, KY 40292
| | - Randi P. Stearman
- Periodontics, Endodontics and Dental Hygiene, University of Louisville Health Sciences Center, Louisville, KY 40292
| | - Gregory E. Smith
- Biochemistry and Molecular Biology, University of Louisville Health Sciences Center, Louisville, KY 40292
| | - Douglas S. Darling
- Biochemistry and Molecular Biology, University of Louisville Health Sciences Center, Louisville, KY 40292
- Periodontics, Endodontics and Dental Hygiene, University of Louisville Health Sciences Center, Louisville, KY 40292
- To whom correspondence should be addressed at University of Louisville School of Dentistry 501 South Preston St., Room 315 Louisville, KY 40292, Tel: (502) 852-5508, FAX: (502) 852-1317,
| |
Collapse
|