1
|
Nohmi T, Masumura K, Toyoda-Hokaiwado N. Transgenic rat models for mutagenesis and carcinogenesis. Genes Environ 2017; 39:11. [PMID: 28174618 PMCID: PMC5289047 DOI: 10.1186/s41021-016-0072-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 12/08/2016] [Indexed: 01/18/2023] Open
Abstract
Rats are a standard experimental animal for cancer bioassay and toxicological research for chemicals. Although the genetic analyses were behind mice, rats have been more frequently used for toxicological research than mice. This is partly because they live longer than mice and induce a wider variety of tumors, which are morphologically similar to those in humans. The body mass is larger than mice, which enables to take samples from organs for studies on pharmacokinetics or toxicokinetics. In addition, there are a number of chemicals that exhibit marked species differences in the carcinogenicity. These compounds are carcinogenic in rats but not in mice. Such examples are aflatoxin B1 and tamoxifen, both are carcinogenic to humans. Therefore, negative mutagenic/carcinogenic responses in mice do not guarantee that the chemical is not mutagenic/carcinogenic to rats or perhaps to humans. To facilitate research on in vivo mutagenesis and carcinogenesis, several transgenic rat models have been established. In general, the transgenic rats for mutagenesis are treated with chemicals longer than transgenic mice for more exact examination of the relationship between mutagenesis and carcinogenesis. Transgenic rat models for carcinogenesis are engineered mostly to understand mechanisms underlying chemical carcinogenesis. Here, we review papers dealing with the transgenic rat models for mutagenesis and carcinogenesis, and discuss the future perspective.
Collapse
Affiliation(s)
- Takehiko Nohmi
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501 Japan
- Present address: Biological Safety Research Center, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501 Japan
| | - Kenichi Masumura
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501 Japan
| | - Naomi Toyoda-Hokaiwado
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, 158-8501 Japan
| |
Collapse
|
2
|
Zuo J, Brewer DS, Arlt VM, Cooper CS, Phillips DH. Benzo pyrene-induced DNA adducts and gene expression profiles in target and non-target organs for carcinogenesis in mice. BMC Genomics 2014; 15:880. [PMID: 25297811 PMCID: PMC4209037 DOI: 10.1186/1471-2164-15-880] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 09/23/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Gene expression changes induced by carcinogens may identify differences in molecular function between target and non-target organs. Target organs for benzo[a]pyrene (BaP) carcinogenicity in mice (lung, spleen and forestomach) and three non-target organs (liver, colon and glandular stomach) were investigated for DNA adducts by 32P-postlabelling, for gene expression changes by cDNA microarray and for miRNA expression changes by miRNA microarray after exposure of animals to BaP. RESULTS BaP-DNA adduct formation occurred in all six organs at levels that did not distinguish between target and non-target. cDNA microarray analysis showed a variety of genes modulated significantly by BaP in the six organs and the overall gene expression patterns were tissue specific. Gene ontology analysis also revealed that BaP-induced bioactivities were tissue specific; eight genes (Tubb5, Fos, Cdh1, Cyp1a1, Apc, Myc, Ctnnb1 and Cav) showed significant expression difference between three target and three non-target organs. Additionally, several gene expression changes, such as in Trp53 activation and Stat3 activity suggested some similarities in molecular mechanisms in two target organs (lung and spleen), which were not found in the other four organs. Changes in miRNA expression were generally tissue specific, involving, in total, 21/54 miRNAs significantly up- or down-regulated. CONCLUSIONS Altogether, these findings showed that DNA adduct levels and early gene expression changes did not fully distinguish target from non-target organs. However, mechanisms related to early changes in p53, Stat3 and Wnt/β-catenin pathways may play roles in defining BaP organotropism.
Collapse
Affiliation(s)
- Jie Zuo
- />Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford University, Oxford, OX3 9DS UK
| | - Daniel S Brewer
- />School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| | - Volker M Arlt
- />Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment & Health, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH UK
| | - Colin S Cooper
- />The Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| | - David H Phillips
- />Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment & Health, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH UK
| |
Collapse
|
3
|
Kawamura Y, Hayashi H, Kurata Y, Hiratsuka K, Masumura K, Nohmi T. Evaluation of the genotoxicity of tamoxifen in the liver and kidney of F344 gpt delta transgenic rat in 3-week and 13-week repeated dose studies. Toxicology 2013; 312:56-62. [PMID: 23907062 DOI: 10.1016/j.tox.2013.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 07/12/2013] [Accepted: 07/20/2013] [Indexed: 12/18/2022]
Abstract
Transgenic rat gene mutation assays can be used to assess genotoxicity of chemicals in target organs for carcinogenicity. Mutations in transgenes are genetically neutral and accumulate during a treatment period; thus, the assays are suitable for assessment of the genotoxicity risk of chemicals using a repeated-dose treatment paradigm. However, few such studies have been conducted. To examine the utility of the transgenic rat assays in repeated-dose studies, we treated female F344 gpt delta rats with tamoxifen (TAM) at 20 and 40mg/kg, or toremifene (TOR) at 40mg/kg by gavage daily for 3 weeks. We also fed gpt delta rats with TAM at either 250ppm (15.4-17.6mg/kg) or 500ppm (30.0-32.9mg/kg) for 13 weeks. TAM is carcinogenic in the rat liver and TOR is not carcinogenic. TAM administration significantly increased gpt (point mutations) and Spi(-) (deletions) mutant frequencies (MFs) in the liver, the target organ of carcinogenesis; MFs were higher after treatment for 13 weeks than after treatment for 3 weeks. The MFs in the kidney did not increase in any of the TAM treatment groups. TOR had no effect on MFs (gpt and Spi(-)) in either the liver or the kidney. We conclude that the gpt delta rat assay in the repeated-dose treatment paradigm is sensitive enough to detect gene mutations induced by TAM in the target organ for carcinogenesis. Furthermore, the assay can be integrated into a 13-week dose-finding study for a 2-year cancer bioassay.
Collapse
Affiliation(s)
- Yuji Kawamura
- Toxicology Laboratory, Pharmaceutical Research Center, Meiji Seika Pharma Co., Ltd., 760 Morooka-cho, Kohoku-ku, Yokohama 222-8567, Japan.
| | | | | | | | | | | |
Collapse
|
4
|
Gaikwad NW, Bodell WJ. Peroxidase-mediated dealkylation of tamoxifen, detected by electrospray ionization-mass spectrometry, and activation to form DNA adducts. Free Radic Biol Med 2012; 52:340-7. [PMID: 22064363 PMCID: PMC3253372 DOI: 10.1016/j.freeradbiomed.2011.10.433] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 10/09/2011] [Accepted: 10/11/2011] [Indexed: 11/23/2022]
Abstract
Tamoxifen (TAM) is extensively used for the treatment and prevention of breast cancer. Associated with TAM treatment is a two- to eightfold increase in risk of endometrial cancer. To understand the mechanisms associated with this increased risk several pathways for TAM metabolism and DNA adduct formation have been studied. The purpose of this study was to investigate the role of peroxidase enzymes in the metabolism of TAM and its activation to form DNA adducts. Using advanced tandem mass spectrometry we have investigated the peroxidase-mediated metabolism of TAM. Incubation of TAM with horseradish peroxidase (HRP) and H(2)O(2) produced multiple metabolites. Electrospray ionization-MS/MS analysis of the metabolites demonstrated a peak at 301.3m/z with daughter ions at 183.0, 166.9, 128.9, and 120.9m/z, which identified the metabolite as metabolite E (ME). The levels of ME were significantly inhibited by the addition of ascorbic acid to the incubation mixture. Co-incubation of either TAM or ME and DNA with HRP and H(2)O(2) produced three DNA adducts with a RAL of 1.97±0.01×10(-7) and 8.45±2.7×10(-7). Oxidation of ME with MnO(2) produced metabolite E quinone methide (MEQM). Furthermore, incubation of either TAM or ME with HRP and H(2)O(2) resulted in formation of MEQM. Reaction of calf thymus DNA with MEQM produced three DNA adducts with a RAL of 9.8±1.0×10(-7). Rechromatography analyses indicated that DNA adducts 1, 2, and 3 formed in the HRP activation of either TAM or ME were the same as those formed by the chemical reaction of DNA with MEQM. The results of these studies demonstrate that peroxidase enzymes can both metabolize TAM to form the primary metabolite ME and activate ME to a quinone methide intermediate, which reacts with DNA to form adducts. It is possible that peroxidase enzymes or peroxidase-like activity in endometrium could contribute to the formation of DNA damage and genotoxic effects in endometrium after TAM administration.
Collapse
Affiliation(s)
- Nilesh W Gaikwad
- Department of Nutrition, University of California at Davis, Davis, CA 95616, USA.
| | | |
Collapse
|
5
|
Abstract
The anti-oestrogen tamoxifen, which is widely used in the treatment of breast cancer and is also approved for the prevention of this disease, causes an increased incidence of endometrial cancer in women. The ability of tamoxifen to induce endometrial tumours and the underlying carcinogenic mechanisms have been a subject of intense interest over the last approximately 20 years. They are central to the assessment of risks versus benefits for the drug, especially in a chemopreventive context. This review outlines the clinical justification for using tamoxifen as a chemopreventive agent and describes the genotoxic mechanisms considered responsible for tamoxifen-induced tumours in rat liver and how these might relate to women. In rat hepatic tissue, tamoxifen is metabolically activated via alpha-hydroxylation and sulphate conjugation to give a reactive species that binds to DNA predominantly at the N(2)-position of guanine, producing pro-mutagenic lesions. Whether tamoxifen-DNA adducts contribute similarly to the development of cancers in women depends on whether they can be formed in human tissues and the type of specific molecular and cellular responses they induce, if present. This review discusses the current data relating to these issues and highlights areas where further research is needed.
Collapse
Affiliation(s)
- Karen Brown
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester LE2 7LX, UK.
| |
Collapse
|
6
|
Lambert IB, Singer TM, Boucher SE, Douglas GR. Detailed review of transgenic rodent mutation assays. Mutat Res 2005; 590:1-280. [PMID: 16081315 DOI: 10.1016/j.mrrev.2005.04.002] [Citation(s) in RCA: 265] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Revised: 04/04/2005] [Accepted: 04/12/2005] [Indexed: 11/17/2022]
Abstract
Induced chromosomal and gene mutations play a role in carcinogenesis and may be involved in the production of birth defects and other disease conditions. While it is widely accepted that in vivo mutation assays are more relevant to the human condition than are in vitro assays, our ability to evaluate mutagenesis in vivo in a broad range of tissues has historically been quite limited. The development of transgenic rodent (TGR) mutation models has given us the ability to detect, quantify, and sequence mutations in a range of somatic and germ cells. This document provides a comprehensive review of the TGR mutation assay literature and assesses the potential use of these assays in a regulatory context. The information is arranged as follows. (1) TGR mutagenicity models and their use for the analysis of gene and chromosomal mutation are fully described. (2) The principles underlying current OECD tests for the assessment of genotoxicity in vitro and in vivo, and also nontransgenic assays available for assessment of gene mutation, are described. (3) All available information pertaining to the conduct of TGR assays and important parameters of assay performance have been tabulated and analyzed. (4) The performance of TGR assays, both in isolation and as part of a battery of in vitro and in vivo short-term genotoxicity tests, in predicting carcinogenicity is described. (5) Recommendations are made regarding the experimental parameters for TGR assays, and the use of TGR assays in a regulatory context.
Collapse
Affiliation(s)
- Iain B Lambert
- Mutagenesis Section, Environmental Health Sciences Bureau, Healthy Environments and Consumer Safety Branch, 0803A, Health Canada, Ottawa, Ont., Canada K1A 0L2.
| | | | | | | |
Collapse
|
7
|
Phillips DH, Hewer A, Osborne MR, Cole KJ, Churchill C, Arlt VM. Organ specificity of DNA adduct formation by tamoxifen and α-hydroxytamoxifen in the rat: implications for understanding the mechanism(s) of tamoxifen carcinogenicity and for human risk assessment. Mutagenesis 2005; 20:297-303. [PMID: 15928012 DOI: 10.1093/mutage/gei038] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Tamoxifen is an anti-oestrogen widely used in the adjuvant therapy of breast cancer and is also used as a prophylactic to prevent the disease in high-risk women. An increased risk of endometrial cancer has been observed in both settings. In rats, tamoxifen potently induces liver carcinomas and also induces uterine tumours when given neonatally. It forms DNA adducts in rat liver via the formation of alpha-hydroxytamoxifen, the ultimately reactive form being generated by sulfotransferase. In order to investigate the formation of tamoxifen-derived DNA adducts in other rat tissues, female Fischer F344 or Sprague-Dawley rats were treated with tamoxifen or alpha-hydroxytamoxifen by gavage or by intraperitoneal injection, daily for 1, 4 or 7 days, and DNA adducts were detected by (32)P-postlabelling analysis. Tamoxifen formed DNA adducts in the liver but not in other tissues (uterus, stomach, kidney, spleen and colon). alpha-Hydroxytamoxifen also formed adducts at high levels in liver, but with the exception of single animals (1/8) in which a low level of adducts was detected in the stomach in one case, and in the kidney in the other; it also did not give rise to adducts in other tissues. The results suggest that tamoxifen is a genotoxic carcinogen in rat liver, but a non-genotoxic carcinogen in rat uterus, making it, uniquely, a carcinogen with more than one mechanism of action. Mutagenicity experiments conducted in Salmonella typhimurium strains expressing bacterial or human N,O-acetyltransferase did not provide evidence that either alpha-hydroxytamoxifen or alpha-hydroxy-N-desmethyltamoxifen undergoes metabolic activation by acetylation. The confinement of ST2A2, the isozyme of hydroxysteroid sulfotransferase that can activate the compounds, mainly to rat liver is the possible reason for the formation of ducts in the liver but not in other organs of the rat.
Collapse
Affiliation(s)
- David H Phillips
- Institute of Cancer Research, Brookes Lawley Building, Cotswold Road, Sutton SM2 5NG, UK.
| | | | | | | | | | | |
Collapse
|
8
|
Liu SX, Cao J, An H, Shun HM, Yang LJ, Liu Y. Analysis of spontaneous, gamma ray- and ethylnitrosourea-induced hprt mutants in HL-60 cells with multiplex PCR. World J Gastroenterol 2003; 9:578-83. [PMID: 12632522 PMCID: PMC4621586 DOI: 10.3748/wjg.v9.i3.578] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the molecular spectra and mechanism of human hypoxanthine guanine phosphoribosyl transferase (hprt) gene mutation induced by ethyluitrosourea (ENU) and 60Co γ-rays.
METHODS: Independent human promyelocytic leukemia cells (HL-60) mutants at the hprt locus were isolated from untreated, ethyluitrosourea (ENU) and 60Co γ-ray-exposed cells, respectively, and verified by two-way screening. The genetic changes underlying the mutation were determined by multiplex polymerase chain reaction (PCR) amplification and electrophoresis technique.
RESULTS: With dosage increased, survival rate of plated cell reduced (in the group with dosage of ENU with 100-200 μg/mL, P < 0.01; in the group with dosage of 60Co γ-ray with 2-4 Gy, P < 0.05) and mutational frequency increased (in the group of ENU 12.5-200.0 μg/mL, P < 0.05; in the group of 60Co γ-ray with 1-4 Gy, P < 0.05) significantly. In the 13 spontaneous mutants analyzed, 92.3% of mutant clones did not show any change in number or size of exon, a single exon was lost in 7.7%, and no evidence indicated total gene deletion occurred in nine hprt exons. However, deletions were found in 79.7% of ENU-induced mutations (62.5%-89.4%, P < 0.01) and in 61.7% of gamma-ray-induced mutations (28.6%-76.5%, P < 0.01). There were deletion mutations in all 9 exons of hprt gene and the most of induced mutations were chain deletion with multiplex exons (97.9% in gamma-ray-induced mutants, 88.1% in ENU-induced mutants).
CONCLUSION: The spectra of spontaneous mutations differs completely from that induced by EUN or 60Co γ-ray. Although both ENU and γ-ray can cause destruction of genetic structure, mechanism of mutagenesis between them may be different.
Collapse
Affiliation(s)
- Sheng-Xue Liu
- Department of Healath Toxicology, Preventive Medical College, Third Military Medical University, Chongqing 400038, China
| | | | | | | | | | | |
Collapse
|
9
|
Gamboa da Costa G, Marques MM, Beland FA, Freeman JP, Churchwell MI, Doerge DR. Quantification of tamoxifen DNA adducts using on-line sample preparation and HPLC-electrospray ionization tandem mass spectrometry. Chem Res Toxicol 2003; 16:357-66. [PMID: 12641436 DOI: 10.1021/tx020090g] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The nonsteroidal antiestrogen tamoxifen is used as an adjuvant chemotherapeutic agent for the treatment of all stages of hormone-dependent breast cancer and more recently as a chemopreventive agent in women with elevated risk of developing the disease. While clearly beneficial for the treatment of breast cancer, tamoxifen has been reported to increase the risk of endometrial cancer in women. Furthermore, it has been shown to be hepatocarcinogenic in rats. Tamoxifen is clearly genotoxic in rat liver, as indicated by the formation of DNA adducts; the occurrence of tamoxifen DNA adducts in human endometrial tissue is more controversial. The detection and quantitation of tamoxifen DNA adducts have relied primarily upon (32)P-postlabeling, with other techniques, such as immunoassays and accelerator mass spectrometry, being used to a much lesser extent. To expand the range of available analytical methodologies for quantifying tamoxifen DNA adducts, we have developed an assay using on-line sample preparation, coupled with HPLC and electrospray ionization tandem mass spectrometry (ES-MS/MS). alpha-Acetoxytamoxifen was reacted with salmon testis DNA at ratios between 0.1 ng and 1 mg alpha-acetoxytamoxifen per mg DNA. After enzymatic hydrolysis to nucleosides, the most highly modified DNA samples were analyzed by HPLC-UV, which indicated the presence of two adduct peaks in approximately a 1:4 ratio. The major adduct was isolated, rigorously characterized as (E)-alpha-(deoxyguanosin-N(2)-yl)tamoxifen, and quantified on the basis of its molar extinction coefficient. A similar reaction was conducted with [N(CD(3))(2)]-alpha-acetoxytamoxifen to prepare a deuterated adduct that could serve as an internal standard for ES-MS/MS. The limit of detection for the HPLC-ES-MS/MS method was approximately 5 adducts/10(9) nucleotides, with an intra- and interassay precision of 3% relative standard deviation. The method was validated over the range of 8-1 520,000 adducts/10(8) nucleotides using 100 microg samples of DNA modified in vitro. Analysis of liver DNA from female Sprague-Dawley rats treated by gavage with seven daily doses of 20 mg tamoxifen/kg body weight gave a value of 496 +/- 16 adducts/10(8) nucleotides for (E)-alpha-(deoxyguanosin-N(2)-yl)tamoxifen and 626 +/- 18 adducts/10(8) nucleotides for (E)-alpha-(deoxyguanosin-N(2)-yl)-N-desmethyltamoxifen. These data indicate that the HPLC-ES-MS/MS methodology has sufficient sensitivity and precision to be useful in the analysis of tamoxifen DNA adducts formed in vivo in experimental models and may be able to detect tamoxifen DNA adduct formation in human tissue samples.
Collapse
Affiliation(s)
- Gonçalo Gamboa da Costa
- Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, Av Rovisco Pais, 1049-001 Lisboa, Portugal
| | | | | | | | | | | |
Collapse
|
10
|
Brown K. Breast cancer chemoprevention: risk-benefit effects of the antioestrogen tamoxifen. Expert Opin Drug Saf 2002; 1:253-67. [PMID: 12904141 DOI: 10.1517/14740338.1.3.253] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The anti-oestrogen tamoxifen, which is widely used as adjuvant therapy for breast cancer, is undergoing evaluation as a chemopreventive agent in women at increased risk of developing this disease. Recent results from the National Surgical Adjuvant Breast and Bowel Project (NSABP) P-1 prevention trial show a 49% reduction in breast cancer incidence in healthy, high-risk women. However, tamoxifen treatment has the serious side effect of increasing the incidence of endometrial cancer in women and long-term administration of tamoxifen causes hepatic tumours in rats. These liver tumours are induced via a genotoxic mechanism, but the mechanisms responsible for endometrial cancer in women are not yet known and are a focus of much debate. This review describes the findings from the chemoprevention trials and problems associated with the use of tamoxifen in this setting. The mechanism of carcinogenesis in rat liver is explained in detail and compared to the situation in humans, with a view to assessing the risks associated with tamoxifen therapy and predicting whether other anti-oestrogens might be safer alternatives.
Collapse
Affiliation(s)
- Karen Brown
- Cancer Biomarkers and Prevention Group, The Biocentre, University of Leicester, University Road, Leicester, LE1 7RH, UK.
| |
Collapse
|