1
|
Jia W, Yuan J, Zhang J, Li S, Lin W, Cheng B. Bioactive sphingolipids as emerging targets for signal transduction in cancer development. Biochim Biophys Acta Rev Cancer 2024; 1879:189176. [PMID: 39233263 DOI: 10.1016/j.bbcan.2024.189176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
Sphingolipids, crucial components of cellular membranes, play a vital role in maintaining cellular structure and signaling integrity. Disruptions in sphingolipid metabolism are increasingly implicated in cancer development. Key bioactive sphingolipids, such as ceramides, sphingosine-1-phosphate (S1P), ceramide-1-phosphate (C1P), and glycosphingolipids, profoundly impact tumor biology. They influence the behavior of tumor cells, stromal cells, and immune cells, affecting tumor aggressiveness, angiogenesis, immune modulation, and extracellular matrix remodeling. Furthermore, abnormal expression of sphingolipids and their metabolizing enzymes modulates the secretion of tumor-derived extracellular vesicles (TDEs), which are key players in creating an immunosuppressive tumor microenvironment, remodeling the extracellular matrix, and facilitating oncogenic signaling within in situ tumors and distant pre-metastatic niches (PMNs). Understanding the role of sphingolipids in the biogenesis of tumor-derived extracellular vesicles (TDEs) and their bioactive contents can pave the way for new biomarkers in cancer diagnosis and prognosis, ultimately enhancing comprehensive tumor treatment strategies.
Collapse
Affiliation(s)
- Wentao Jia
- Department of General Practice, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China
| | - Jiaying Yuan
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Jinbo Zhang
- Department of Pharmacy, Tianjin Rehabilitation and Recuperation Center, Joint Logistics Support Force, Tianjin 300000, China
| | - Shu Li
- Department of Gastroenterology, Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201900, China
| | - Wanfu Lin
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China.
| | - Binbin Cheng
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China.
| |
Collapse
|
2
|
Creasy KT, Ren H, Jiang J, Peterson ML, Spear BT. Elongation of very long chain fatty acids-3 ( Elovl3) is activated by ZHX2 and is a regulator of cell cycle progression. Am J Physiol Gastrointest Liver Physiol 2023; 325:G582-G592. [PMID: 37847682 PMCID: PMC10894669 DOI: 10.1152/ajpgi.00235.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/19/2023]
Abstract
Zinc fingers and homeoboxes 2 (Zhx2) are transcriptional regulators of liver gene expression with key functions in embryonic development as well as tissue regeneration in response to damage and disease, presumably through its control of target genes. Previous microarray data suggested that elongation of very long chain fatty acids-3 (Elovl3), a member of the ELOVL family of enzymes that synthesize very long chain fatty acids (VLCFAs), is a putative Zhx2 target gene. VLCFAs are core component of ceramides and other bioactive sphingolipids that are often dysregulated in diseases and regulate key cellular processes including proliferation. Since several previously identified Zhx2 targets become dysregulated in liver damage, we investigated the relationship between Zhx2 and Elovl3 in liver development, damage, and regeneration. Here, using mouse and cell models, we demonstrate that Zhx2 positively regulates Elovl3 expression in the liver and that male-biased hepatic Elovl3 expression is established between 4 and 8 wk of age in mice. Elovl3 is dramatically repressed in mouse models of liver regeneration, and the reduced Elovl3 levels in the regenerating liver are associated with changes in hepatic VLCFAs. Human hepatoma cell lines with forced Elovl3 expression have lower rates of cell growth; analysis of synchronized cells indicates that this reduced proliferation correlates with cells stalling in S-phase and lower mRNA levels of cell cyclins. Taken together, these data indicate that Elovl3 expression helps regulate cellular proliferation during liver development and regeneration, possibly through control of VLCFAs.NEW & NOTEWORTHY Numerous targets of the transcription factor Zhx2 are dysregulated in liver disease. We show that the elongase Elovl3 is a novel Zhx2 target. Elovl3 and Zhx2 expression change during liver regeneration, which is associated with changes in very long chain fatty acids. Forced Elovl3 expression reduces cell growth and blocks cell cycle progression. This suggests that Elovl3 may account, at least in part, for the relationship between Zhx2 and proliferation during liver development and disease.
Collapse
Affiliation(s)
- Kate Townsend Creasy
- Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Hui Ren
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Jieyun Jiang
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Martha L Peterson
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, United States
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| | - Brett T Spear
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, United States
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States
| |
Collapse
|
3
|
Long-term administration of red ginseng non-saponin fraction rescues the loss of skeletal muscle mass and strength associated with aging in mice. J Ginseng Res 2021; 46:657-665. [PMID: 36090680 PMCID: PMC9459129 DOI: 10.1016/j.jgr.2021.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/13/2021] [Accepted: 12/03/2021] [Indexed: 11/20/2022] Open
Abstract
Background Sarcopenia is a new and emerging risk factor aggravating the quality of life of elderly population. Because Korean Red Ginseng (RG) is known to have a great effect on relieving fatigue and enhancing physical performance, it is invaluable to examine its potential as an anti-sarcopenic drug. Methods Anti-sarcopenic effect of non-saponin fraction of Korean Red Ginseng (RGNS) was evaluated in C2C12 myoblasts treated with C2-ceramide to induce senescence phenotypes, and 22-month-old mice fed with chow diet containing 2% RGNS (w/w) for 4 further months. Results The RGNS treatment significantly alleviated cellular senescence indicated by intracellular lipid accumulation, increased amount of lysosomal β-galactosidase, and reduced proliferative capacity in C2C12 myoblasts. This effect was not observed with saponin fraction. In an aged mouse, the 4-month-RGNS diet significantly improved aging-associated loss of muscle mass and strength, assessed by the weights of hindlimb skeletal muscles such as tibialis anterior (TA), extensor digitorum longus (EDL), gastrocnemius (GN) and soleus (SOL), and the cross-sectional area (CSA) of SOL muscle, and the behaviors in grip strength and hanging wire tests, respectively. During the same period, an aging-associated shift of fast-to slow-twitch muscle in SOL muscle was also retarded by the RGNS treatment. Conclusions These findings suggested that the long-term diet of RGNS significantly prevented aging-associated muscle atrophy and reduced physical performance, and thus RGNS has a strong potential to be developed as a drug that prevents or improves sarcopenia.
Collapse
|
4
|
Piazzesi A, Afsar SY, van Echten‐Deckert G. Sphingolipid metabolism in the development and progression of cancer: one cancer's help is another's hindrance. Mol Oncol 2021; 15:3256-3279. [PMID: 34289244 PMCID: PMC8637577 DOI: 10.1002/1878-0261.13063] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/17/2021] [Accepted: 07/19/2021] [Indexed: 11/27/2022] Open
Abstract
Cancer development is a multistep process in which cells must overcome a series of obstacles before they can become fully developed tumors. First, cells must develop the ability to proliferate unchecked. Once this is accomplished, they must be able to invade the neighboring tissue, as well as provide themselves with oxygen and nutrients. Finally, they must acquire the ability to detach from the newly formed mass in order to spread to other tissues, all the while evading an immune system that is primed for their destruction. Furthermore, increased levels of inflammation have been shown to be linked to the development of cancer, with sites of chronic inflammation being a common component of tumorigenic microenvironments. In this Review, we give an overview of the impact of sphingolipid metabolism in cancers, from initiation to metastatic dissemination, as well as discussing immune responses and resistance to treatments. We explore how sphingolipids can either help or hinder the progression of cells from a healthy phenotype to a cancerous one.
Collapse
Affiliation(s)
- Antonia Piazzesi
- LIMES Institute for Membrane Biology and Lipid BiochemistryUniversity of BonnGermany
| | - Sumaiya Yasmeen Afsar
- LIMES Institute for Membrane Biology and Lipid BiochemistryUniversity of BonnGermany
| | | |
Collapse
|
5
|
Abstract
Studies over the past two decades have identified ceramide as a multifunctional central molecule in the sphingolipid biosynthetic pathway. Given its diverse tumor suppressive activities, molecular understanding of ceramide action will produce fundamental insights into processes that limit tumorigenesis and may identify key molecular targets for therapeutic intervention. Ceramide can be activated by a diverse array of stresses such as heat shock, genotoxic damage, oxidative stress and anticancer drugs. Ceramide triggers a variety of tumor suppressive and anti-proliferative cellular programs such as apoptosis, autophagy, senescence, and necroptosis by activating or repressing key effector molecules. Defects in ceramide generation and metabolism in cancer contribute to tumor cell survival and resistance to chemotherapy. The potent and versatile anticancer activity profile of ceramide has motivated drug development efforts to (re-)activate ceramide in established tumors. This review focuses on our current understanding of the tumor suppressive functions of ceramide and highlights the potential downstream targets of ceramide which are involved in its tumor suppressive action.
Collapse
|
6
|
Prasad SB, Yadav SS, Das M, Modi A, Kumari S, Pandey LK, Singh S, Pradhan S, Narayan G. PI3K/AKT pathway-mediated regulation of p27(Kip1) is associated with cell cycle arrest and apoptosis in cervical cancer. Cell Oncol (Dordr) 2015; 38:215-25. [PMID: 25821107 DOI: 10.1007/s13402-015-0224-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2015] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The cyclin-dependent kinase inhibitor p27(Kip1) is known to act as a putative tumor suppressor in several human cancers, including cervical cancer. Down-regulation of p27(Kip1) may occur either through transcription inhibition or through phosphorylation-dependent proteolytic degradation. As yet, the mechanism underlying p27(Kip1) down-regulation and its putative downstream effects on cervical cancer development are poorly understood. Here we assessed the expression and sub-cellular localization of p27(Kip1) and its effects on proliferation, cell cycle progression and (inhibition of) apoptosis in cervical cancer cells. METHODS Primary cervical cancer samples (n = 70), normal cervical tissue samples (n = 30) and cervical cancer-derived cell lines (n = 8) were used to assess the expression of p27(Kip1) and AKT1 by RT-PCR, Western blotting and immunohistochemistry, respectively. The effects of the PI3K inhibitor LY294004 and the proteasome inhibitor MG132 on cervical cancer cell proliferation were investigated using a MTT assay. Apoptosis and cell cycle analyses were carried out using flow cytometry, and sub-cellular p27(Kip1) localization analyses were carried out using immunofluorescence assays. RESULTS We observed p27(Kip1) down-regulation (p = 0.045) and AKT1 up-regulation (p = 0.046) in both the primary cervical cancer samples and the cervical cancer-derived cell lines, compared to the normal cervical tissue samples tested. Treatment of cervical cancer-derived cell lines with the PI3K inhibitor LY294002 resulted in a reduced AKT1 activity. We also observed a dose-dependent inhibition of cell viability after treatment of these cell lines with the proteasome inhibitor MG132. Treatment of the cells with LY294002 resulted in a G1 cell cycle arrest, a nuclear expression of p27(Kip1), and a cytoplasmic p27(Kip1) accumulation after subsequent treatment with MG132. Additionally, we found that the synergistic effect of MG132 and LY294002 resulted in a sub-G1 cell cycle arrest and apoptosis induction through poly (ADP-ribose) polymerase (PARP) cleavage. CONCLUSION Our data suggest that p27(Kip1) down-regulation in cervical cancer cells is primarily regulated through PI3K/AKT-mediated proteasomal degradation. The observed synergistic effect of the MG132 and LY294002 inhibitors may form a basis for the design of novel cervical cancer therapies.
Collapse
Affiliation(s)
- Shyam Babu Prasad
- Cancer Genetics Laboratory, Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi, 221005, India
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Pritzl CJ, Seo YJ, Xia C, Vijayan M, Stokes ZD, Hahm B. A ceramide analogue stimulates dendritic cells to promote T cell responses upon virus infections. THE JOURNAL OF IMMUNOLOGY 2015; 194:4339-49. [PMID: 25810392 DOI: 10.4049/jimmunol.1402672] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 02/24/2015] [Indexed: 12/20/2022]
Abstract
The ceramide family of lipids plays important roles in both cell structure and signaling in a diverse array of cell types, including immune cells. However, very little is known regarding how ceramide affects the activation of dendritic cells (DCs) in response to viral infection. In this study, we demonstrate that a synthetic ceramide analog (C8) stimulates DCs to increase the expansion of virus-specific T cells upon virus infection. Exogenously supplied C8 ceramide elevated the expression of DC maturation markers such as MHC class I and costimulatory molecules following infection with the clone 13 strain of lymphocytic choriomeningitis virus (LCMV) or influenza virus. Importantly, ceramide-conditioned, LCMV-infected DCs displayed an increased ability to promote expansion of virus-specific CD8(+) T cells when compared with virus-infected DCs. Furthermore, a locally instilled ceramide analog significantly increased virus-reactive T cell responses in vivo to both LCMV and influenza virus infections. Collectively, these findings provide new insights into ceramide-mediated regulation of DC responses against virus infection and help us establish a foundation for novel immune-stimulatory therapeutics.
Collapse
Affiliation(s)
- Curtis J Pritzl
- Department of Surgery, University of Missouri, Columbia, MO 65212; andDepartment of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212
| | - Young-Jin Seo
- Department of Surgery, University of Missouri, Columbia, MO 65212; andDepartment of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212
| | - Chuan Xia
- Department of Surgery, University of Missouri, Columbia, MO 65212; andDepartment of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212
| | - Madhuvanthi Vijayan
- Department of Surgery, University of Missouri, Columbia, MO 65212; andDepartment of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212
| | - Zachary D Stokes
- Department of Surgery, University of Missouri, Columbia, MO 65212; andDepartment of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212
| | - Bumsuk Hahm
- Department of Surgery, University of Missouri, Columbia, MO 65212; andDepartment of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212
| |
Collapse
|
8
|
Dany M, Ogretmen B. Ceramide induced mitophagy and tumor suppression. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2834-45. [PMID: 25634657 DOI: 10.1016/j.bbamcr.2014.12.039] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/09/2014] [Accepted: 12/25/2014] [Indexed: 12/11/2022]
Abstract
Sphingolipids are bioactive lipid effectors, which are involved in the regulation of various cellular signaling pathways. Sphingolipids play essential roles in controlling cell inflammation, proliferation, death, migration, senescence, metastasis and autophagy. Alterations in sphingolipid metabolism have been also implicated in many human cancers. Macroautophagy (referred to here as autophagy) is a form of nonselective sequestering of cytosolic materials by double membrane structures, autophagosomes, which can be either protective or lethal for cells. Ceramide, a central molecule of sphingolipid metabolism is involved in the regulation of autophagy at various levels, including the induction of lethal mitophagy, a selective autophagy process to target and eliminate damaged mitochondria. In this review, we focused on recent studies with regard to the regulation of autophagy, in particular lethal mitophagy, by ceramide, and aimed at providing discussion points for various context-dependent roles and mechanisms of action of ceramide in controlling mitophagy.
Collapse
Affiliation(s)
- Mohammed Dany
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Besim Ogretmen
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA.
| |
Collapse
|
9
|
Abstract
One crucial barrier to progress in the treatment of cancer has been the inability to control the balance between cell proliferation and apoptosis: enter ceramide. Discoveries over the past 15 years have elevated this sphingolipid to the lofty position of a regulator of cell fate. Ceramide, it turns out, is a powerful tumour suppressor, potentiating signalling events that drive apoptosis, autophagic responses and cell cycle arrest. However, defects in ceramide generation and metabolism in cancer cells contribute to tumour cell survival and resistance to chemotherapy. This Review focuses on ceramide signalling and the targeting of specific metabolic junctures to amplify the tumour suppressive activities of ceramide. The potential of ceramide-based therapeutics in the treatment of cancer is also discussed.
Collapse
Affiliation(s)
- Samy A F Morad
- Department of Experimental Therapeutics, John Wayne Cancer Institute at Saint John's Health Center, 2200 Santa Monica Boulevard, Santa Monica, California 90404, USA.
| | | |
Collapse
|
10
|
Yan F, Wang M, Chen H, Su J, Wang X, Wang F, Xia L, Li Q. Gambogenic acid mediated apoptosis through the mitochondrial oxidative stress and inactivation of Akt signaling pathway in human nasopharyngeal carcinoma CNE-1 cells. Eur J Pharmacol 2011; 652:23-32. [DOI: 10.1016/j.ejphar.2010.11.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2010] [Revised: 10/29/2010] [Accepted: 11/04/2010] [Indexed: 01/30/2023]
|
11
|
Thayyullathil F, Chathoth S, Hago A, Patel M, Szulc ZM, Hannun Y, Galadari S. Purification and characterization of a second type of neutral ceramidase from rat brain: a second more hydrophobic form of rat brain ceramidase. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:242-52. [PMID: 21224012 DOI: 10.1016/j.bbalip.2010.12.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2010] [Revised: 11/29/2010] [Accepted: 12/26/2010] [Indexed: 12/01/2022]
Abstract
Ceramidases (CDase) are enzymes that catalyze the hydrolysis of N-acyl linkage of ceramide (Cer) to generate sphingosine and free fatty acids. In this study we report the purification and characterization of a novel second type of neutral ceramidase from rat brain (RBCDase II). Triton X-100 protein extract from rat brain membrane was purified sequentially using Q-Sepharose, HiLoad16/60 Superdex 200pg, heparin-Sepharose, phenyl-Sepharose HP, and Mono Q columns. After Mono Q, the specific activity of the enzyme increased by ~15,000-fold over that of the rat brain homogenate. This enzyme has pH optima of 7.5, and it has a larger apparent molecular weight (110kDa) than the previously purified (90kDa) and characterized neutral rat brain CDase (RBCDase I). De-glycosylation experiments show that the differences in molecular mass of RBCDase I and II on SDS-PAGE are not due to the heterogeneity with N-glycan. RBCDase II is partially stimulated by Ca(2+) and is inhibited by pyrimidine mono nucleotides such as TMP and UMP. This finding is significant as it demonstrates for the first time an effect by nucleotides on a CDase activity. The enzyme was also inhibited by both oxidized and reduced GSH. The effects of metal ions were examined, and we found that the enzyme is very sensitive to Hg(2+) and Fe(3+), while it is not affected by Mn(2+). EDTA was somewhat inhibitory at a 20mM concentration.
Collapse
Affiliation(s)
- Faisal Thayyullathil
- Cell Signaling Laboratory, Department of Biochemistry, Faculty of Medicine and Health Science, UEA University, PO Box 17666, Al- Ain, UAE
| | | | | | | | | | | | | |
Collapse
|
12
|
Salli U, Fox TE, Carkaci-Salli N, Sharma A, Robertson GP, Kester M, Vrana KE. Propagation of undifferentiated human embryonic stem cells with nano-liposomal ceramide. Stem Cells Dev 2010; 18:55-65. [PMID: 18393629 DOI: 10.1089/scd.2007.0271] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human embryonic stem (hES) cells, located on the periphery of the colonies, express the neuroectodermal markers nestin and Tuj1, suggesting a prematurely differentiated subgroup of cells. Here, we report that ceramide, a bioactive sphingolipid, selectively eliminates hES cells differentially expressing nestin and Tuj1. In contrast, undifferentiated cells are resistant to the apoptotic effects of ceramide. Ceramide-resistant hES cells express higher levels of the messenger RNA for ceramide-metabolizing enzymes that convert ceramide into pro-mitogenic metabolites. Based on these findings, we conducted long-term studies to determine whether liposomal ceramide can be used to maintain undifferentiated hES cells free of feeder cells. We continuously cultured hES cells on matrigel for 4 months with liposomal ceramide in a feeder cell-free system. Human ES cells treated with liposomal ceramide maintained their pluripotent state as determined by in vivo and in vitro differentiation studies and contained no chromosomal abnormalities. In conclusion, our findings suggest that exposure to ceramide provides a viable strategy to prevent premature hES cell differentiation and to maintain pluripotent stem cell populations in the absence of feeder cells.
Collapse
Affiliation(s)
- Ugur Salli
- Department of Pharmacology, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania 17033-0850, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Adibhatla RM, Hatcher JF. Protection by D609 through cell-cycle regulation after stroke. Mol Neurobiol 2010; 41:206-17. [PMID: 20148315 DOI: 10.1007/s12035-010-8100-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 01/08/2010] [Indexed: 12/13/2022]
Abstract
Expressions of cell-cycle regulating proteins are altered after stroke. Cell-cycle inhibition has shown dramatic reduction in infarction after stroke. Ceramide can induce cell-cycle arrest by up-regulation of cyclin-dependent kinase (Cdk) inhibitors p21 and p27 through activation of protein phosphatase 2A (PP2A). Tricyclodecan-9-yl-xanthogenate (D609)-increased ceramide levels after transient middle cerebral artery occlusion (tMCAO) in spontaneously hypertensive rat (SHR) probably by inhibiting sphingomyelin synthase (SMS). D609 significantly reduced cerebral infarction and up-regulated Cdk inhibitor p21 and down-regulated phospho-retinoblastoma (pRb) expression after tMCAO in rat. Others have suggested bFGF-induced astrocyte proliferation is attenuated by D609 due to an increase in ceramide by SMS inhibition. D609 also reduced the formation of oxidized phosphatidylcholine (OxPC) protein adducts. D609 may attenuate generation of reactive oxygen species and formation of OxPC by inhibiting microglia/macrophage proliferation after tMCAO (please also see note added in proof: D609 may prevent mature neurons from entering the cell cycle at the early reperfusion, however may not interfere with later proliferation of microglia/ macrophages that are the source of brain derived neurotrophic factor (BDNF) and insulin-like growth factor (IGF-1) in offering protection). It has been proposed that D609 provides benefit after tMCAO by attenuating hypoxia-inducible factor-1alpha and Bcl2/adenovirus E1B 19 kDa interacting protein 3 expressions. Our data suggest that D609 provides benefit after stoke through inhibition of SMS, increased ceramide levels, and induction of cell-cycle arrest by up-regulating p21 and causing hypophosphorylation of Rb (through increased protein phosphatase activity and/or Cdk inhibition).
Collapse
Affiliation(s)
- Rao Muralikrishna Adibhatla
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792-3232, USA.
| | | |
Collapse
|
14
|
Lu CY, Li CC, Liu KL, Tsai CW, Lii CK, Chen HW. Docosahexaenoic acid down-regulates phenobarbital-induced cytochrome P450 2B1 gene expression in rat primary hepatocytes via the sphingomyelinase/ceramide pathway. J Nutr Biochem 2009; 21:338-44. [PMID: 19427778 DOI: 10.1016/j.jnutbio.2009.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 01/08/2009] [Accepted: 01/09/2009] [Indexed: 11/29/2022]
Abstract
Docosahexaenoic acid (DHA) regulates the expression of cytochrome P450 2B1 (CYP 2B1) in rat primary hepatocytes in response to xenobiotics. Ceramide, a lipid signaling molecule, is involved in various physiological processes and can be generated by the hydrolysis of sphingomyelin via sphingomyelinase (SMase). DHA activates SMase and increases ceramide formation in vitro. Ceramides differentially enhance adenylyl cyclase activity in vitro depending on the chain length of their fatty acids. In addition, the cAMP-dependent PKA pathway down-regulates CYP 2B1 expression induced by phenobarbital (PB). In the present study, we determined the effect of DHA on SMase transactivation and the downstream pathway in CYP 2B1 expression induced by PB. SMase was activated by DHA 2 h after treatment, and D609 (an SMase inhibitor) attenuated the inhibition of PB-induced CYP 2B1 expression by DHA. Ceramide formation reached a maximum 3 h after DHA administration. C2-ceramide dose-dependently inhibited PB-induced CYP 2B1 expression and increased intracellular cAMP concentrations. SQ22536 (an adenylyl cyclase inhibitor) and H89 (a PKA-specific inhibitor) partially reversed the inhibition of PB-induced CYP 2B1 expression by C2-ceramide. These results suggest that stimulation of SMase, generation of ceramide and activation of the cAMP-dependent PKA pathway are involved in the inhibition exerted by DHA.
Collapse
Affiliation(s)
- Chia-Yang Lu
- Department of Nutrition, Chung Shan Medical University, Taichung 40201, Taiwan
| | | | | | | | | | | |
Collapse
|
15
|
Nieto FL, Pescio LG, Favale NO, Adamo AM, Sterin-Speziale NB. Sphingolipid Metabolism Is a Crucial Determinant of Cellular Fate in Nonstimulated Proliferating Madin-Darby Canine Kidney (MDCK) Cells. J Biol Chem 2008; 283:25682-25691. [DOI: 10.1074/jbc.m804437200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
16
|
Phillips DC, Hunt JT, Moneypenny CG, Maclean KH, McKenzie PP, Harris LC, Houghton JA. Ceramide-induced G2 arrest in rhabdomyosarcoma (RMS) cells requires p21Cip1/Waf1 induction and is prevented by MDM2 overexpression. Cell Death Differ 2007; 14:1780-91. [PMID: 17627285 DOI: 10.1038/sj.cdd.4402198] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The sphingoplipid ceramide is responsible for a diverse range of biochemical and cellular responses including a putative role in modulating cell cycle progression. Herein, we describe that an accumulation of ceramide, achieved through the exogenous application of C(6)-ceramide or exposure to sphingomyelinase, induces a G(2) arrest in Rhabdomyosarcoma (RMS) cell lines. Utilizing the RMS cell line RD, we show that this G(2) arrest required the rapid induction of p21(Cip1/Waf1) independent of DNA damage. This was followed at later time points (48 h) by the commitment to apoptosis. Apoptosis was prevented by Bcl-2 overexpression, but permitted the maintenance of elevated p21(Cip1/Waf1) protein expression and the stabilization of the G(2) arrest response. Inhibition of p21(Cip1/Waf1) protein synthesis with cyclohexamide (CHX) or silencing of p21(Cip1/Waf1) with siRNA, prevented ceramide-mediated G(2) arrest and the late induction of apoptosis. Further, adopting the recent discovery that murine double minute 2 (MDM2) controls p21(Cip1/Waf1) expression by presenting this CDK inhibitor to the proteasome for degradation, RD cells overexpressing MDM2 abrogated ceramide-mediated p21(Cip1/Waf1) induction, G(2) arrest and the late ensuing apoptosis. Collectively, these data further support the notion that ceramide accumulation can modulate cell cycle progression. Additionally, these observations highlight MDM2 expression and proteasomal activity as key determinants of the cellular response to ceramide accumulation.
Collapse
Affiliation(s)
- D C Phillips
- Division of Molecular Therapeutics, Department of Oncology, St. Jude Children's Research Hospital, 332 North Lauderdale, Memphis, TN 38105, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Taha TA, Mullen TD, Obeid LM. A house divided: ceramide, sphingosine, and sphingosine-1-phosphate in programmed cell death. BIOCHIMICA ET BIOPHYSICA ACTA 2006; 1758:2027-36. [PMID: 17161984 PMCID: PMC1766198 DOI: 10.1016/j.bbamem.2006.10.018] [Citation(s) in RCA: 248] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 10/25/2006] [Accepted: 10/28/2006] [Indexed: 12/20/2022]
Abstract
Programmed cell death is an important physiological response to many forms of cellular stress. The signaling cascades that result in programmed cell death are as elaborate as those that promote cell survival, and it is clear that coordination of both protein- and lipid-mediated signals is crucial for proper cell execution. Sphingolipids are a large class of lipids whose diverse members share the common feature of a long-chain sphingoid base, e.g., sphingosine. Many sphingolipids have been shown to play essential roles in both death signaling and survival. Ceramide, an N-acylsphingosine, has been implicated in cell death following a myriad of cellular stresses. Sphingosine itself can induce cell death but via pathways both similar and dissimilar to those of ceramide. Sphingosine-1-phosphate, on the other hand, is an anti-apoptotic molecule that mediates a host of cellular effects antagonistic to those of its pro-apoptotic sphingolipid siblings. Extraordinarily, these lipid mediators are metabolically juxtaposed, suggesting that the regulation of their metabolism is of the utmost importance in determining cell fate. In this review, we briefly examine the role of ceramide, sphingosine, and sphingosine-1-phosphate in programmed cell death and highlight the potential roles that these lipids play in the pathway to apoptosis.
Collapse
Affiliation(s)
- Tarek A. Taha
- Division of General Internal Medicine, Ralph H. Johnson Veterans Administration Hospital, Charleston, South Carolina 29401; and Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Thomas D. Mullen
- Division of General Internal Medicine, Ralph H. Johnson Veterans Administration Hospital, Charleston, South Carolina 29401; and Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Lina M. Obeid
- Division of General Internal Medicine, Ralph H. Johnson Veterans Administration Hospital, Charleston, South Carolina 29401; and Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| |
Collapse
|
18
|
Taha TA, Kitatani K, El-Alwani M, Bielawski J, Hannun YA, Obeid LM. Loss of sphingosine kinase‐1 activates the intrinsic pathway of programmed cell death: modulation of sphingolipid levels and the induction of apoptosis. FASEB J 2005; 20:482-4. [PMID: 16507765 DOI: 10.1096/fj.05-4412fje] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Activation of sphingosine kinase-1 (SK1) by overexpression or agonist stimulation promotes cell proliferation, survival, and anti-apoptosis. Studies on the function of endogenous SK1 are lacking. Endogenous SK1 has been shown to be down-regulated under stress, and knockdown of the enzyme reduces the percentage of viable MCF-7 breast cancer cells (Taha, T. A. et al. 2004. J. Biol. Chem. 279, 20546-20554). In this study, we examined the mechanisms by which SK1 loss affects the growth of cells. Knockdown of the enzyme by small interfering RNA caused cell cycle arrest and induced apoptosis. Cell death involved effector caspase activation, cytochrome c release and Bax oligomerization in the mitochondrial membrane, thus placing SK1 knockdown upstream of the mitochondrial pathway of apoptosis. SK1 knockdown also induced significant increases in ceramide levels in whole cells and in mitochondria enriched fractions of cells. Inhibition of de novo sphingolipid biosynthesis with myriocin significantly attenuated Bax oligomerization and downstream caspase activation after SK1 loss. These studies for the first time implicate endogenous SK1 as an important survival enzyme in MCF-7 cells and link the biological consequences of knocking down the enzyme to its biochemical role as a regulator of sphingolipid metabolism.
Collapse
Affiliation(s)
- Tarek A Taha
- Division of General Internal Medicine, Ralph H. Johnson Veterans Administration Hospital, Charleston, South Carolina, USA
| | | | | | | | | | | |
Collapse
|
19
|
Konger RL, Brouxhon S, Partillo S, VanBuskirk J, Pentland AP. The EP3 receptor stimulates ceramide and diacylglycerol release and inhibits growth of primary keratinocytes. Exp Dermatol 2005; 14:914-22. [PMID: 16274459 DOI: 10.1111/j.1600-0625.2005.00381.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Primary human keratinocytes (PHKs) are known to express the EP3 subtype of prostaglandin E2 receptor. To better understand the role of EP3 receptors in regulating epidermal function, we characterized their expression, localization, and signaling effects in human skin. Three different splice variants of the EP3 receptor (EP3A1, EP3C, and EP3D) were found to be expressed. Immunohistochemical analysis of human skin demonstrated that EP3 receptors were most prominently expressed in the basal and lower spinous layers of the epidermis. The EP3 receptor agonist sulprostone was then used to examine EP3 receptor-dependent keratinocyte signaling pathways and functional effects. We observed that sulprostone inhibits keratinocyte growth at doses between 0.02 and 2 nM and induces sn-1,2-diacylglycerol (DAG) and ceramide production. Concurrent expression of the cell-cycle inhibitory protein p21WAF1 also occurred. These data suggest that EP3 receptors produce epidermal growth inhibition through the action of DAG and ceramide second messengers.
Collapse
Affiliation(s)
- Raymond L Konger
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN 46122, USA.
| | | | | | | | | |
Collapse
|
20
|
Bieberich E. Integration of glycosphingolipid metabolism and cell-fate decisions in cancer and stem cells: review and hypothesis. Glycoconj J 2005; 21:315-27. [PMID: 15514480 DOI: 10.1023/b:glyc.0000046274.35732.47] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The metabolism of glycosphingolipids is strictly regulated during the mitotic cell cycle. Before the G1-to-S transition, the ceramide and glucosylceramide concentration is elevated. Ceramide induces apoptosis synergistically with the pro-apoptotic protein prostate apoptosis response 4 (PAR-4) that may be asymmetrically inherited during cell division. Only one daughter cell dies shortly after mitosis, a mechanism we suggested to regulate the number of neural stem cells during embryonic development. The progeny cells, however, may protect themselves by converting ceramide to glucosylceramide and other glycosphingolipids. In particular, complex gangliosides have been found to sustain cell survival and differentiation. The cell cycle may thus be a turning point for (glyco)sphingolipid metabolism and explain rapid changes of the sphingolipid composition in cells that undergo mitotic cell-fate decisions. In the proposed model termed "Shiva cycle", progression through the cell cycle, differentiation, or apoptosis may rely on a delicate balance of (glyco)sphingolipid second messengers that modulate the retinoblastoma-dependent G1-to-S transition or caspase-dependent G1-to-apoptosis program. Ceramide-induced cell cycle delay at G0/G1 is either followed by ceramide-induced apoptosis or by conversion of ceramide to glucosylceramide, a proposed key regulatory rheostat that rescues cells from re-entry into a life/death decision at G1-to-S. We propose a mechanistic model for sphingolpid-induced protein scaffolds ("slip") that regulate cell-fate decisions and will discuss the biological consequences and pharmacological potential of manipulating the (glyco)sphingolipid-dependent cell fate program in cancer and stem cells.
Collapse
Affiliation(s)
- Erhard Bieberich
- Institute of Molecular Medicine and Genetics, School of Medicine, Medical College of Georgia, 1120 15th Street Room CB-2803, Augusta, GA 30912, USA.
| |
Collapse
|
21
|
Zhu XF, Xie BF, Zhou JM, Feng GK, Liu ZC, Wei XY, Zhang FX, Liu MF, Zeng YX. Blockade of vascular endothelial growth factor receptor signal pathway and antitumor activity of ON-III (2',4'-dihydroxy-6'-methoxy-3',5'-dimethylchalcone), a component from Chinese herbal medicine. Mol Pharmacol 2005; 67:1444-50. [PMID: 15703376 DOI: 10.1124/mol.104.009894] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Antiangiogenesis is a promising strategy of cancer treatment. Vascular endothelial growth factor receptor [fetal liver kinase/kinase-inserting domain-containing receptor (KDR)] is a tyrosine kinase receptor and has been strongly implicated in tumor angiogenesis. In this study, we report that 2',4'-dihydroxy-6'-methoxy-3',5'-dimethylchalcone (ON-III), extracted from the dried flower Cleistocalyx operculatus, used in traditional Chinese medicine, reversibly inhibited KDR tyrosine kinase phosphorylation, but epidermal growth factor receptor tyrosine kinase phosphorylation was unaffected under the same concentrations of ON-III. ON-III also inhibited mitogen-activated protein kinase (MAPK) and AKT activation of KDR signal transduction in downstream molecules without reduced total MAPK and AKT. The results in vitro showed that ON-III inhibited growth of human vascular endothelial HDMEC cells in the presence of VEGF preferentially, compared with epidermal growth factor. Systemic administration of ON-III at nontoxic doses in nude mice resulted in inhibition of subcutaneous tumor growth of human hepatocarcinoma Bel7402 and lung cancer GLC-82 xenografts. The tumor vessel density decreased, as determined by immunohistochemical staining, for CD31 after ON-III treatment. These results indicated that ON-III inhibited KDR tyrosine kinase, shut down KDR-mediated signal transduction, and inhibited tumor growth of human xenografts in vivo.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Phytogenic/chemistry
- Antineoplastic Agents, Phytogenic/isolation & purification
- Antineoplastic Agents, Phytogenic/pharmacology
- Cell Line, Tumor
- Chalcone/analogs & derivatives
- Chalcone/pharmacology
- Chalcones
- Dose-Response Relationship, Drug
- Drugs, Chinese Herbal/chemistry
- Drugs, Chinese Herbal/isolation & purification
- Drugs, Chinese Herbal/pharmacology
- Female
- Humans
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Receptors, Vascular Endothelial Growth Factor/antagonists & inhibitors
- Receptors, Vascular Endothelial Growth Factor/metabolism
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Xenograft Model Antitumor Assays/methods
Collapse
Affiliation(s)
- Xiao-Feng Zhu
- Department of Experimental Research, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
De Luca T, Morré DM, Zhao H, Morré DJ. NAD+/NADH and/or CoQ/CoQH2 ratios from plasma membrane electron transport may determine ceramide and sphingosine-1-phosphate levels accompanying G1 arrest and apoptosis. Biofactors 2005; 25:43-60. [PMID: 16873929 DOI: 10.1002/biof.5520250106] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
To elucidate possible biochemical links between growth arrest from antiproliferative chemotherapeutic agents and apoptosis, our work has focused on agents (EGCg, capsaicin, cis platinum, adriamycin, anti-tumor sulfonylureas, phenoxodiol) that target tNOX. tNOX is a cancer-specific cell surface NADH oxidase (ECTO-NOX protein), that functions in cancer cells as the terminal oxidase for plasma membrane electron transport. When tNOX is active, coenzyme Q(10) (ubiquinone) of the plasma membrane is oxidized and NADH is oxidized at the cytosolic surface of the plasma membrane. However, when tNOX is inhibited and plasma membrane electron transport is diminished, both reduced coenzyme Q(10) (ubiquinol) and NADH would be expected to accumulate. To relate inhibition of plasma membrane redox to increased ceramide levels and arrest of cell proliferation in G(1) and apoptosis, we show that neutral sphingomyelinase, a major contributor to plasma membrane ceramide, is inhibited by reduced glutathione and ubiquinone. Ubiquinol is without effect or stimulates. In contrast, sphingosine kinase, which generates anti-apoptotic sphingosine-1-phosphate, is stimulated by ubiquinone but inhibited by ubiquinol and NADH. Thus, the quinone and pyridine nucleotide products of plasma membrane redox, ubiquinone and ubiquinol, as well as NAD(+) and NADH, may directly modulate in a reciprocal manner two key plasma membrane enzymes, sphingomyelinase and sphingosine kinase, potentially leading to G(1) arrest (increase in ceramide) and apoptosis (loss of sphingosine-1-phosphate). As such, the findings provide potential links between coenzyme Q(10)-mediated plasma membrane electron transport and the anticancer action of several clinically-relevant anticancer agents.
Collapse
Affiliation(s)
- Thomas De Luca
- Department of Foods and Nutrition, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|
23
|
Affiliation(s)
- Besim Ogretmen
- Department of Biochemistry and Molecular Biology, and Hollings Cancer Center, 173 Ashley Avenue, Charleston, South Carolina 29425, USA
| | | |
Collapse
|