1
|
Abstract
Peat, a loose and porous material, contains rich organic matter and can be used as an adsorbent. In this study, it is chemically modified by adding sulfuric acid under different conditions, with the aim of producing a modified peat with optimized Cr(VI) adsorption capability. The modified peat exhibited a higher adsorption efficiency than the natural peat throughout the adsorption experiments. The adsorption of Cr(VI) from aqueous solutions correlates with the pseudo-second order kinetic model. In addition, the Langmuir model indicated a maximum loading capacity approximately of 105.4 mg/g, which is a markedly high value compared to some other reported adsorbents. The present study performed single factor experiments and the results indicated that higher temperature conditions result in better adsorption capability, whilst an increase in the pH played a contrary role. According to the orthogonal tests, the pH had the greatest impact on adsorption. The obtained results indicated that sulfonated peat can be effectively applied in removing Cr (VI).
Collapse
|
2
|
Ihedioha JN, Ogili EO, Ekere NR, Ezeofor CC. Risk assessment of heavy metal contamination of paddy soil and rice (Oryza sativa) from Abakaliki, Nigeria. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:350. [PMID: 31056719 DOI: 10.1007/s10661-019-7491-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
The study assessed the concentration and bioavailability of Pb, Cd, Zn, Cr and Fe metals in soil from rice fields in Abakaliki, Nigeria. The concentrations of these heavy metals in rice grains were also determined, with a view to assessing their human health risk on consumers. Heavy metal concentrations in soil and rice were determined using FAAS after digestion with 5:1 HNO3:HClO4 while Tessier's sequential extraction method was used to obtain the fractionated soil digests. The mean concentrations (μg/g) of the total heavy metal ranged from 1.036 ± 1.86 (Cd) to 6900.537 ± 734.82 (Fe) in soil while that of rice grains ranged from 0.024 ± 0.07 (Cd) to 101.446 ± 75.26 (Fe).The concentrations of Fe and Cd in most of the soil samples and Pb in rice grains exceeded some Nigerian and International standards. The heavy metal sequential extractions of soil samples showed that lead and zinc were less mobile in the soil and are bioavailable for plant uptake. The estimated daily intake of the metals was below the tolerable daily intake. The hazard quotient and the total hazard index were less than one showing that at present, there is no possible adverse health effect on rice consumers.
Collapse
Affiliation(s)
- Janefrances N Ihedioha
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Nsukka, Nigeria.
| | - Emmanuel O Ogili
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Nsukka, Nigeria
| | - Nwachukwu R Ekere
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Nsukka, Nigeria
| | - Chidinma C Ezeofor
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Nsukka, Nigeria
| |
Collapse
|
3
|
Bilgiç A, Çimen A. Removal of chromium(vi) from polluted wastewater by chemical modification of silica gel with 4-acetyl-3-hydroxyaniline. RSC Adv 2019; 9:37403-37414. [PMID: 35542280 PMCID: PMC9075511 DOI: 10.1039/c9ra05810a] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/02/2019] [Indexed: 11/21/2022] Open
Abstract
In the current study, a new adsorbent that is insoluble in water and many acid solutions and has a high adsorption capacity for Cr(vi) metal ions was synthesized. In the synthesis process, 3-chloropropyl-trimethoxysilane (CPTS) was first modified on a silica gel (Si) surface. Secondly, 4-acetyl-3-hydroxyaniline (AHAP) was immobilized on the modified silica gel compound (Si-CPTS). As a result of the immobilization process, a new adsorbent compound named Si-CPTS-AHAP (silica gel-3-chloropropyltrimethoxy silane 4-acetyl-3-hydroxyaniline) was obtained, which was used to separate Cr(vi) ions from aqueous solution (K2Cr2O7) and industrial wastewater. The material was characterized using scanning electron microscopy and Fourier-transform infrared spectroscopy. The amount of chromium adsorbed was detected by ultraviolet-visible spectroscopy. The adsorption was evaluated using batch methods. The effects of temperature, pH, concentration, adsorbent amount and interaction time on the adsorption of Si-CPTS-AHAP were also investigated. The adsorption of Cr(vi) ions on Si-CPTS-AHAP was investigated via adsorption kinetics, isotherm and thermodynamic studies. The value of the isotherm parameters and the highest adsorption yields were calculated from the Dubinin–Radushkevich, Freundlich and Langmuir isotherm equations. Thermodynamic features such as entropy (ΔS), enthalpy (ΔH) and free energy (ΔG) were also calculated from the experimental results. The experimental results showed that the best recoveries of Cr(vi) metal ions are under the conditions of 180 min (interaction time), 0.05 g (adsorbent amount) and 323.15 K (temperature) at pH 2. Si-CPTS-AHAP can be used for the removal of poisonous pollutants in wastewater. Use of a newly synthesized Si-CPTS-AHAP adsorbent in the removal of Cr(vi) ions in wastewater treatment systems may potentially lead to low cost and highly efficient heavy metal removal.![]()
Collapse
Affiliation(s)
- Ali Bilgiç
- Faculty of Kamil Özdağ Science
- Department of Chemistry
- Karamanoğlu Mehmetbey University
- Turkey
| | - Aysel Çimen
- Faculty of Kamil Özdağ Science
- Department of Chemistry
- Karamanoğlu Mehmetbey University
- Turkey
| |
Collapse
|
4
|
Ghasemidehkordi B, Malekirad AA, Nazem H, Fazilati M, Salavati H, Shariatifar N, Rezaei M, Fakhri Y, Mousavi Khaneghah A. Concentration of lead and mercury in collected vegetables and herbs from Markazi province, Iran: a non-carcinogenic risk assessment. Food Chem Toxicol 2018; 113:204-210. [DOI: 10.1016/j.fct.2018.01.048] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/11/2018] [Accepted: 01/27/2018] [Indexed: 11/29/2022]
|
5
|
Poto L, Gabrieli J, Crowhurst S, Agostinelli C, Spolaor A, Cairns WRL, Cozzi G, Barbante C. Cross calibration between XRF and ICP-MS for high spatial resolution analysis of ombrotrophic peat cores for palaeoclimatic studies. Anal Bioanal Chem 2014; 407:379-85. [PMID: 25404165 DOI: 10.1007/s00216-014-8289-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/14/2014] [Accepted: 10/21/2014] [Indexed: 11/26/2022]
Abstract
Ombrotrophic peatlands are remarkable repositories of high-quality climatic signals because their only source of nutrients is precipitation. Although several analytical techniques are available for analysing inorganic components in peat samples, they generally provide only low-resolution data sets. Here we present a new analytical approach for producing high-resolution data on main and trace elements from ombrotrophic peat cores. Analyses were carried out on a 7-m-long peat core collected from Danta di Cadore, North-Eastern Italy (46° 34' 16″ N, 12° 29' 58″ E). Ca, Ti, Cr, Fe, Cu, Zn, Ga, Sr, Y, Cd, Ba and Pb were detected at a resolution of 2.5 mm with a non-destructive X-ray fluorescence core scanner (XRF-CS). Calibration and quantification of the XRF-CS intensities was obtained using collision reaction cell inductively coupled plasma quadruple mass spectrometry (CRC-ICP-QMS). CRC-ICP-QMS measurements were carried out on discrete samples at a resolution of 1 cm, after dissolution of 150-mg aliquots with 9 ml HNO3 and 1 ml HF at 220 °C in a microwave system. We compare qualitative XRF-CS and quantitative CRC-ICP-MS data and, however the several sources of variability of the data, develop a robust statistical approach to determine the R (2) and the coefficient of a simple regression model together with confidence intervals. Perfect positive correlations were estimated for Cd, Cr, Pb, Sr, Ti and Zn; high positive correlations for Ba (0.8954), Y (0.7378), Fe (0.7349) and Cu (0.7028); while moderate positive correlations for Ga (0.5951) and Ca (0.5435). With our results, we demonstrate that XRF scanning techniques can be used, together with other well-established geochemical techniques (such as ICP-MS), to produce high-resolution (up to 2.5 mm) quantitative data from ombrotrophic peat bog cores.
Collapse
Affiliation(s)
- Luisa Poto
- Institute for the Dynamics of Environmental Processes, IDPA/CNR, Dorsoduro 2137, 30123, Venezia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Zhang Z, Kong F, Vardhanabhuti B, Mustapha A, Lin M. Detection of engineered silver nanoparticle contamination in pears. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:10762-10767. [PMID: 23082953 DOI: 10.1021/jf303423q] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Engineered nanomaterials such as silver nanoparticles (Ag NPs) have been increasingly used in agriculture owning to their antimicrobial and insecticidal properties. However, the contamination of Ag NPs in foods and water may pose a great risk to public health and the environment. In this study, the contamination of Ag NPs in pears was detected, characterized, and quantified by a combination of techniques, including transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), and inductively coupled plasma optical emission spectrometry (ICP-OES). Pear samples were treated with two different sizes (20 and 70 nm in diameter) of Ag NPs and stored for different times. Quantification results of Ag NPs in pear samples by ICP-OES demonstrate that there is a good linear relationship (R(2) = 0.983) between the spiked values and recovered values. Residual Ag NPs of both 20 and 70 nm were still detected in samples after 4-day treatment followed by rinsing with water. The penetration study reveals that 20 nm Ag NPs might penetrate the pear skin and pulp after 4-day treatment, while this phenomenon was not observed for 70 nm Ag NPs. These results demonstrate that a combination of techniques could provide accurate results for detection, characterization, and quantification of engineered nanoparticles in agricultural products.
Collapse
Affiliation(s)
- Zhong Zhang
- Food Science Program, Division of Food Systems & Bioengineering, University of Missouri, Columbia, MO 65211-5160, USA
| | | | | | | | | |
Collapse
|
7
|
Vaz DDO, Fernandes AN, Szpoganicz B, Sierra MMD. Potentiometric quantification and speciation of oxygenated groups in humic substances using BEST7 software. ECLÉTICA QUÍMICA 2010. [DOI: 10.1590/s0100-46702010000400019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
8
|
Roling JA, Bain LJ, Gardea-Torresdey J, Key PB, Baldwin WS. Using mummichog (Fundulus heteroclitus) arrays to monitor the effectiveness of remediation at a superfund site in Charleston, South Carolina, U.S.A. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2007; 26:1205-13. [PMID: 17571687 DOI: 10.1897/06-421r.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Accepted: 12/18/2006] [Indexed: 05/06/2023]
Abstract
We previously developed a cDNA array for mummichogs (Fundulus heteroclitus), an estuarine minnow, that is targeted for identifying differentially expressed genes from exposure to polycyclic aromatic hydrocarbons and several metals, including chromium. A chromium-contaminated Superfund site at Shipyard Creek in Charleston, South Carolina, USA, is undergoing remediation, providing us a unique opportunity to study the utility of arrays for monitoring the effectiveness of site remediation. Mummichogs were captured in Shipyard Creek in Charleston prior to remediation (2000) and after remediation began (2003 and 2005). Simultaneously, mummichogs were collected from a reference site at the Winyah Bay National Estuarine Research Reserve (NERR) in Georgetown, South Carolina, USA. The hepatic gene expression pattern of fish captured at Shipyard Creek in 2000 showed wide differences from the fish captured at NERR in 2000. Interestingly, as remediation progressed the gene expression pattern of mummichogs captured at Shipyard Creek became increasingly similar to those captured at NERR. The arrays acted as multidimensional biomarkers as the number of differentially expressed genes dropped from 22 in 2000 to four in 2003, and the magnitude of differential expression dropped from 3.2-fold in 2000 to no gene demonstrating a difference over 1.5-fold in 2003. Furthermore, the arrays indicated changes in the bioavailability of chromium caused by hydraulic dredging in the summer of 2005. This research is, to our knowledge, the first report using arrays as biomarkers for a weight-of-evidence hazard assessment and demonstrates that arrays can be used as multidimensional biomarkers to monitor site mitigation because the gene expression profile is associated with chromium bioavailability and body burden.
Collapse
Affiliation(s)
- Jonathan A Roling
- University of Texas at El Paso, Biological Sciences Department, Texas 79968, USA
| | | | | | | | | |
Collapse
|
9
|
Moreno LI, Mills DK, Entry J, Sautter RT, Mathee K. Microbial Metagenome Profiling Using Amplicon Length Heterogeneity-Polymerase Chain Reaction Proves More Effective Than Elemental Analysis in Discriminating Soil Specimens. J Forensic Sci 2006; 51:1315-22. [PMID: 17199616 DOI: 10.1111/j.1556-4029.2006.00264.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The combination of soil's ubiquity and its intrinsic abiotic and biotic information can contribute greatly to the forensic field. Although there are physical and chemical characterization methods of soil comparison for forensic purposes, these require a level of expertise not always encountered in crime laboratories. We hypothesized that soil microbial community profiling could be used to discriminate between soil types by providing biological fingerprints that confer uniqueness. Three of the six Miami-Dade soil types were randomly selected and sampled. We compared the microbial metagenome profiles generated using amplicon length heterogeneity-polymerase chain reaction analysis of the 16S rRNA genes with inductively coupled plasma optical emission spectroscopy analysis of 13 elements (Al, B, Ca, Cu, Fe, K, Mg, Mn, Na, P, S, Si, and Zn) that are commonly encountered in soils. Bray-Curtis similarity index and analysis of similarity were performed on all data to establish differences within sites, among sites, and across two seasons. These data matrices were used to group samples that shared similar community patterns using nonmetric multidimensional scaling analysis. We concluded that while chemical characterization could provide some differentiation between soils, microbial metagenome profiling was better able to discriminate between the soil types and had a high degree of reproducibility, therefore proving to be a potential tool for forensic soil comparisons.
Collapse
Affiliation(s)
- Lilliana I Moreno
- International Forensic Research Institute, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | | | | | | | | |
Collapse
|
10
|
Clemente R, Almela C, Bernal MP. A remediation strategy based on active phytoremediation followed by natural attenuation in a soil contaminated by pyrite waste. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2006; 143:397-406. [PMID: 16472894 DOI: 10.1016/j.envpol.2005.12.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Revised: 12/13/2005] [Accepted: 12/14/2005] [Indexed: 05/06/2023]
Abstract
Phytoremediation of metal-polluted soils can be promoted by the proper use of soil amendments and agricultural practices. A 4-year phytoremediation programme was applied to a site affected by the toxic spill of pyrite residue at Aznalcóllar (Spain) in 1998, contaminated with heavy metals (Zn, Cu, Pb, Cd) and arsenic. This consisted of active phytoremediation, using organic amendments (cow manure and compost) and lime and growing two successive crops of Brassica juncea (L.) Czern., followed by natural attenuation without further intervention. Changes in soil pH, extractable metal and As concentrations, organic carbon content and microbial biomass was evaluated. The initial oxidation of metal sulphides from pyrite residues released soluble metals and reduced soil pH to extremely acidic values (mean 4.1, range 2.0-7.0). The addition of lime (up to 64 t ha(-1)) increased soil pH to adequate values for plant growth, resulting in a significant decrease in DTPA-extractable metal concentrations in all plots. The natural attenuation phase showed also a decrease in extractable metals. Organic treatments increased the soil total organic carbon, which led to higher values of microbial biomass (11.6, 15.2 and 14.9 g kg(-1) TOC and 123, 170 and 275 microg g(-1) biomass-C in control, compost and manure plots, respectively). Active phytoremediation followed by natural attenuation, was effective for remediation of this pyrite-polluted soil.
Collapse
Affiliation(s)
- Rafael Clemente
- Department of Soil and Water Conservation and Organic Waste Management, Centro de Edafología y Biología Aplicada del Segura, CSIC, Campus Universitario de Espinardo, Apartado 164, 30100 Espinardo, Murcia, Spain.
| | | | | |
Collapse
|
11
|
Roling JA, Bain LJ, Gardea-Torresdey J, Bader J, Baldwin WS. Hexavalent chromium reduces larval growth and alters gene expression in mummichog (Fundulus heteroclitus). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2006; 25:2725-33. [PMID: 17022414 DOI: 10.1897/05-659r.1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Accepted: 03/30/2006] [Indexed: 05/06/2023]
Abstract
Hexavalent chromium [Cr(VI)] is a common bioavailable metal ion that causes oxidative stress, DNA adducts, and perturbs gene expression. Changes in gene expression are useful biomarkers of toxicant exposure that provide information about an organism's health, adaptability, and toxicant-specific effects. Therefore, we developed a cDNA array for the estuarine sentinel species mummichog (Fundulus heteroclitus). Mummichog larvae were exposed to concentrations ranging from 0 to 24 mg/L (462 microM) of Cr(VI) for 30 d, and growth was measured to determine the no-observable-effect concentration (1.5 mg/L) and the lowest-observable-effect concentration (3 mg/L). Body burdens from Cr(VI)-exposed fish showed a dose-dependent increase and were inversely correlated to body weight. Mummichog larvae exposed to Cr(VI) differentially expressed 16 genes in a dose-dependent manner, including GLUT-2, L-FABP, ATPase synthase 8, type II keratin, TBT-binding protein, and complement component C3-2. Many of these genes are involved in energy metabolism or growth, which is consistent with the reduced growth observed. In subsequent experiments, adults were exposed to Cr(VI) for 7 d at 0, 1.5, or 3 mg/L, because adult mummichog are used in monitoring Superfund sites. Hexavalent chromium altered the expression of 10 genes in adult liver, including HGFA, H-FABP, and complement component C3-2. Many of these genes also are involved in energy metabolism. The mummichog arrays provide a potential mechanism for the effects of Cr(VI) on growth. We anticipate using these arrays and the data they provide to monitor effects at polluted sites, to assess the bioavailability of chromium at these sites, and to investigate the efficacy of remediation in chromium-polluted estuaries.
Collapse
Affiliation(s)
- Jonathan A Roling
- Biological Sciences Department, University of Texas at El Paso, El Paso, Texas 79912, USA
| | | | | | | | | |
Collapse
|
12
|
Sawalha MF, Peralta-Videa JR, Romero-González J, Gardea-Torresdey JL. Biosorption of Cd(II), Cr(III), and Cr(VI) by saltbush (Atriplex canescens) biomass: Thermodynamic and isotherm studies. J Colloid Interface Sci 2006; 300:100-4. [PMID: 16600278 DOI: 10.1016/j.jcis.2006.03.029] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Revised: 03/07/2006] [Accepted: 03/11/2006] [Indexed: 11/21/2022]
Abstract
The biosorption data of Cd(II), Cr(III), and Cr(VI) by saltbush leaves biomass were fit on the Freundlich and Langmuir adsorption isotherms at 297 K. The Cd(II) and Cr(III) solutions were adjusted to pH 5.0 and the Cr(VI) solution was adjusted to pH 2.0. The correlation coefficient values indicated that the data fit better the Freundlich model. The maximal capacities (K(F)) were found to be 5.79 x 10(-2), 3.25 x 10(-2), and 1.14 x 10(-2) mol/g for Cr(III), Cd(II), and Cr(VI), respectively. Similar results were obtained using the Langmuir and the Dubinin-Radushkevick equations. Thermodynamic parameters calculated from the Khan and Singh equation and from the q(e) vs C(e) plot show that the equilibrium constants for the biosorption of the metals follow the same order of the maximal capacities. The negative Gibbs free energy values obtained for Cd(II) and Cr(III) indicated that these ions were biosorbed spontaneously. The mean free energy values calculated from the Dubinin-Radushkevick equation (10.78, 9.45, and 9.05 for Cr(III), Cr(VI), and Cd(II), respectively) suggest that the binding of Cd(II), Cr(III), and Cr(VI) by saltbush leaves biomass occurs through an ionic exchange mechanism.
Collapse
Affiliation(s)
- Maather F Sawalha
- Environmental Science and Engineering Ph.D. Program, University of Texas at El Paso, El Paso, TX 79968, USA
| | | | | | | |
Collapse
|
13
|
Zhuang JM, Walsh T, Lam T, Boulter D. Application of ferric sludge to immobilize leachable mercury in soils and concrete. ENVIRONMENTAL TECHNOLOGY 2003; 24:1445-1453. [PMID: 14733397 DOI: 10.1080/09593330309385688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A Hg-contaminated site in B.C. Province, Canada was caused by the previous operation of Hg-cell in chlor-alkali process for over 25 years. The soils and groundwater at the site are highly contaminated with mercury. An analysis of groundwater at the site has shown that most of the mercury is bonded with humic and fulvic acids (HFA) in colloidal form. The Hg-HFA colloids can be completely removed from the groundwater with ferric chloride treatment under optimized process conditions to form ferric sludge (FS), which is rendered non-leachable by standard TCLP (Toxicity Characteristic Leaching Procedure) test. The effluent discharged from a clarifier has achieved mercury levels of < 0.5 microkg l(-1). The studies of mercury adsorption characteristics of FS show it has low mercury leachability by TCLP, and great mercury adsorption capability. This feature is the basis for the application of FS to immobilization of leachable Hg-contaminants in solid wastes. Full-scale stabilization tests of Hg-contaminated soil have been carried out, and the time-based stability of the treated soil has been monitored by TCLP over a period of 60 days. All the results have shown a small variation in TCLP mercury levels within a range of 10-40 microg l(-1). Based on these results and with the approval of the B.C. Ministry of the Environment, 1850 tons of Hg-contaminated soils and 260 tons of Hg-contaminated concrete fines have been treated, stabilized with FS, and disposed in a non-hazardous waste disposal site.
Collapse
Affiliation(s)
- J Ming Zhuang
- NORAM Engineering and Constructors Ltd., 200 Granville Street, Vancouver, BC, Canada, V6C 1S4
| | | | | | | |
Collapse
|
14
|
de la Rosa G, Gardea-Torresdey JL, Peralta-Videa JR, Herrera I, Contreras C. Use of silica-immobilized humin for heavy metal removal from aqueous solution under flow conditions. BIORESOURCE TECHNOLOGY 2003; 90:11-17. [PMID: 12835051 DOI: 10.1016/s0960-8524(03)00099-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Humin extracted from Sphagnum peat moss was immobilized in a silica matrix and column experiments were performed in order to evaluate the removal and recovery of metal ions from aqueous solution under flow conditions. These experiments also allowed testing the recycling capacity of the column. Single-element solutions of Cu(II) and Pb(II), and a multi-metal solution containing Cd(II), Cu(II), Pb(II), Ni(II), and Cr(III) were passed through the columns at a flow rate of 2 ml/min. A 0.5 M sodium citrate solution was used as the stripping agent in the metal-ion recovery process. Humin immobilized in the silica matrix exhibited a similar, and in some cases, even a higher capacity than other biosorbents for the removal of metal ions from aqueous solutions under flow conditions. The sodium citrate was effective in removing Cu(II), Pb(II), Cd(II), and Ni(II) from the metal saturated column. The selectivity of the immobilized biomass was as follows: Cr(III)>Pb(II)>Cu(II)>Cd(II)>Ni(II). This investigation provides a new, environmentally friendly and cost-effective possibility to clean up heavy-metal contaminated wastewaters by using the new silica-immobilized humin material.
Collapse
Affiliation(s)
- G de la Rosa
- Department of Environmental Science and Engineering Ph.D. Program, University of Texas, 500 W, University Avenue, El Paso, TX 79968-0513, USA
| | | | | | | | | |
Collapse
|