1
|
Pippin JA, Chesi A, Wagley Y, Su C, Pahl MC, Hodge KM, Johnson ME, Wells AD, Hankenson KD, Grant SFA. CRISPR-Cas9-Mediated Genome Editing Confirms EPDR1 as an Effector Gene at the BMD GWAS-Implicated ' STARD3NL' Locus. JBMR Plus 2021; 5:e10531. [PMID: 34532616 PMCID: PMC8441377 DOI: 10.1002/jbm4.10531] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/02/2021] [Indexed: 11/12/2022] Open
Abstract
Genome-wide-association studies (GWASs) have discovered genetic signals robustly associated with BMD, but typically not the precise localization of effector genes. By intersecting genome-wide promoter-focused Capture C and assay for transposase-accessible chromatin using sequencing (ATAC-seq) data generated in human mesenchymal progenitor cell (hMSC)-derived osteoblasts, consistent contacts were previously predicted between the EPDR1 promoter and multiple BMD-associated candidate causal variants at the 'STARD3NL' locus. RNAi knockdown of EPDR1 expression in hMSC-derived osteoblasts was shown to lead to inhibition of osteoblastogenesis. To fully characterize the physical connection between these putative noncoding causal variants at this locus and the EPDR1 gene, clustered regularly interspaced short-palindromic repeat Cas9 endonuclease (CRISPR-Cas9) genome editing was conducted in hFOB1.19 cells across the single open-chromatin region harboring candidates for the underlying causal variant, rs1524068, rs6975644, and rs940347, all in close proximity to each other. RT-qPCR and immunoblotting revealed dramatic and consistent downregulation of EPDR1 specifically in the edited differentiated osteoblast cells. Consistent with EPDR1 expression changes, alkaline phosphatase staining was also markedly reduced in the edited differentiated cells. Collectively, CRISPR-Cas9 genome editing in the hFOB1.19 cell model supports previous observations, where this regulatory region harboring GWAS-implicated variation operates through direct long-distance physical contact, further implicating a key role for EPDR1 in osteoblastogenesis and BMD determination. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- James A Pippin
- Center for Spatial and Functional GenomicsChildren's Hospital of PhiladelphiaPhiladelphiaPAUSA
| | - Alessandra Chesi
- Center for Spatial and Functional GenomicsChildren's Hospital of PhiladelphiaPhiladelphiaPAUSA
| | - Yadav Wagley
- Department of Orthopedic SurgeryUniversity of Michigan Medical SchoolAnn ArborMIUSA
| | - Chun Su
- Center for Spatial and Functional GenomicsChildren's Hospital of PhiladelphiaPhiladelphiaPAUSA
| | - Matthew C Pahl
- Center for Spatial and Functional GenomicsChildren's Hospital of PhiladelphiaPhiladelphiaPAUSA
| | - Kenyaita M Hodge
- Genetics and Molecular Biology Graduate Program, Laney Graduate SchoolEmory UniversityAtlantaGAUSA
| | - Matthew E Johnson
- Center for Spatial and Functional GenomicsChildren's Hospital of PhiladelphiaPhiladelphiaPAUSA
| | - Andrew D Wells
- Center for Spatial and Functional GenomicsChildren's Hospital of PhiladelphiaPhiladelphiaPAUSA
- Department of Pathology and Laboratory MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Kurt D Hankenson
- Department of Orthopedic SurgeryUniversity of Michigan Medical SchoolAnn ArborMIUSA
| | - Struan F A Grant
- Center for Spatial and Functional GenomicsChildren's Hospital of PhiladelphiaPhiladelphiaPAUSA
- Department of PediatricsUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
- Divisions of Genetics and EndocrinologyChildren's Hospital of PhiladelphiaPhiladelphiaPAUSA
| |
Collapse
|
2
|
Park JK, Kim KY, Sim YW, Kim YI, Kim JK, Lee C, Han J, Kim CU, Lee JE, Park S. Structures of three ependymin-related proteins suggest their function as a hydrophobic molecule binder. IUCRJ 2019; 6:729-739. [PMID: 31316816 PMCID: PMC6608618 DOI: 10.1107/s2052252519007668] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/27/2019] [Indexed: 06/10/2023]
Abstract
Ependymin was first discovered as a predominant protein in brain extracellular fluid in fish and was suggested to be involved in functions mostly related to learning and memory. Orthologous proteins to ependymin called ependymin-related proteins (EPDRs) have been found to exist in various tissues from sea urchins to humans, yet their functional role remains to be revealed. In this study, the structures of EPDR1 from frog, mouse and human were determined and analyzed. All of the EPDR1s fold into a dimer using a monomeric subunit that is mostly made up of two stacking antiparallel β-sheets with a curvature on one side, resulting in the formation of a deep hydrophobic pocket. All six of the cysteine residues in the monomeric subunit participate in the formation of three intramolecular disulfide bonds. Other interesting features of EPDR1 include two asparagine residues with glycosylation and a Ca2+-binding site. The EPDR1 fold is very similar to the folds of bacterial VioE and LolA/LolB, which also use a similar hydrophobic pocket for their respective functions as a hydrophobic substrate-binding enzyme and a lipoprotein carrier, respectively. A further fatty-acid binding assay using EPDR1 suggests that it indeed binds to fatty acids, presumably via this pocket. Additional interactome analysis of EPDR1 showed that EPDR1 interacts with insulin-like growth factor 2 receptor and flotillin proteins, which are known to be involved in protein and vesicle translocation.
Collapse
Affiliation(s)
- Jeong Kuk Park
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea
| | - Keon Young Kim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea
| | - Yeo Won Sim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea
| | - Yong-In Kim
- Center for Bioanalysis, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Jin Kyun Kim
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Cheol Lee
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Jeongran Han
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Chae Un Kim
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - J. Eugene Lee
- Center for Bioanalysis, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - SangYoun Park
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea
| |
Collapse
|
3
|
Riffo-Campos ÁL, Castillo J, Vallet-Sánchez A, Ayala G, Cervantes A, López-Rodas G, Franco L. In silico RNA-seq and experimental analyses reveal the differential expression and splicing of EPDR1 and ZNF518B genes in relation to KRAS mutations in colorectal cancer cells. Oncol Rep 2016; 36:3627-3634. [PMID: 27805251 DOI: 10.3892/or.2016.5210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/11/2016] [Indexed: 11/05/2022] Open
Abstract
Several drugs used for the treatment of colorectal cancer (CRC) are targeted at the epidermal growth factor receptor, but mutations in genes of the RAS family cause resistance to these drugs. Thus, extensive research is being carried out to counterbalance this resistance. The G13D mutation of KRAS is common in humans, and we previously reported that this mutation results in the epigenetic modification of hnRNP proteins, involved in RNA splicing. As aberrant splicing often results in oncogenicity, the present study aimed to identify the genes which show altered splicing patterns in connection with the G13D KRAS mutation. To accomplish this, we first carried out an in silico analysis of RNA-seq databases and found that the distribution of alternative splicing isoforms of genes RPL13, HSP90B1, ENO1, EPDR1 and ZNF518B was altered in human CRC cell lines carrying the G13D KRAS mutation when compared to cell lines carrying wild-type KRAS. The in silico results were experimentally validated by quantitative real‑time PCR. Expression of the genes EPDR1 and ZNF518B was negligible in the Caco2, RKO and SW48 cell lines, which possess wild-type KRAS, while the HCT116, DLD1 and D-Mut1 cell lines, harbouring the G13D mutation, expressed these genes. Moreover, in both genes, the ratio of isoforms was significantly different between the parental DLD1 (+/G13D) and D-Mut1 cells, in which the wild-type allele had been knocked out. DWT7m cells also expressed both genes. These cells, derived from DLD1, have spontaneously acquired a G12D mutation in their single KRAS allele in 20% of the population. The present data suggest a relationship between KRAS mutations, particularly G13D, and the expression of the EPDR1 and ZNF518B genes and expression of their isoforms and provide enhanced understanding of the molecular mechanisms involved in the resistance of CRC cells to anti‑EGF receptor therapies.
Collapse
Affiliation(s)
- Ángela L Riffo-Campos
- Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
| | | | - Azahara Vallet-Sánchez
- Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
| | - Guillermo Ayala
- Department of Statistics and Operational Research, University of Valencia, Burjassot, Valencia, Spain
| | | | - Gerardo López-Rodas
- Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
| | - Luis Franco
- Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
| |
Collapse
|
4
|
Popesku JT, Martyniuk CJ, Trudeau VL. Meta-type analysis of dopaminergic effects on gene expression in the neuroendocrine brain of female goldfish. Front Endocrinol (Lausanne) 2012; 3:130. [PMID: 23130016 PMCID: PMC3487223 DOI: 10.3389/fendo.2012.00130] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 10/12/2012] [Indexed: 12/14/2022] Open
Abstract
Dopamine (DA) is a major neurotransmitter important for neuroendocrine control and recent studies have described genomic signaling pathways activated and inhibited by DA agonists and antagonists in the goldfish brain. Here we perform a meta-type analysis using microarray datasets from experiments conducted with female goldfish to characterize the gene expression responses that underlie dopaminergic signaling. Sexually mature, pre-spawning [gonadosomatic index (GSI) = 4.5 ± 1.3%] or sexually regressing (GSI = 3 ± 0.4%) female goldfish (15-40 g) injected intraperitoneally with either SKF 38393, LY 171555, SCH 23390, sulpiride, or a combination of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and α-methyl-p-tyrosine. Microarray meta-type analysis identified 268 genes in the telencephalon and hypothalamus as having reciprocal (i.e., opposite between agonism and antagonism/depletion) fold change responses, suggesting that these transcripts are likely targets for DA-mediated regulation. Noteworthy genes included ependymin, vimentin, and aromatase, genes that support the significance of DA in neuronal plasticity and tissue remodeling. Sub-network enrichment analysis (SNEA) was used to identify common gene regulators and binding proteins associated with the differentially expressed genes mediated by DA. SNEA analysis identified gene expression targets that were related to three major categories that included cell signaling (STAT3, SP1, SMAD, Jun/Fos), immune response (IL-6, IL-1β, TNFs, cytokine, NF-κB), and cell proliferation and growth (IGF1, TGFβ1). These gene networks are also known to be associated with neurodegenerative disorders such as Parkinsons' disease, well-known to be associated with loss of dopaminergic neurons. This study identifies genes and networks that underlie DA signaling in the vertebrate CNS and provides targets that may be key neuroendocrine regulators. The results provide a foundation for future work on dopaminergic regulation of gene expression in fish model systems.
Collapse
Affiliation(s)
- Jason T. Popesku
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of OttawaOttawa, ON, Canada
- *Correspondence: Jason T. Popesku, Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, ON, Canada K1N 6N5. e-mail: ; Vance L. Trudeau, Department of Biology, University of Ottawa, Room 160, Gendron Hall, 30 Marie Curie, Ottawa, ON, Canada K1N 6N5. e-mail:
| | - Christopher J. Martyniuk
- Canadian Rivers Institute and Department of Biology, University of New BrunswickSaint John, NB, Canada
| | - Vance L. Trudeau
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of OttawaOttawa, ON, Canada
- *Correspondence: Jason T. Popesku, Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, ON, Canada K1N 6N5. e-mail: ; Vance L. Trudeau, Department of Biology, University of Ottawa, Room 160, Gendron Hall, 30 Marie Curie, Ottawa, ON, Canada K1N 6N5. e-mail:
| |
Collapse
|
5
|
Burke RD, Angerer LM, Elphick MR, Humphrey GW, Yaguchi S, Kiyama T, Liang S, Mu X, Agca C, Klein WH, Brandhorst BP, Rowe M, Wilson K, Churcher AM, Taylor JS, Chen N, Murray G, Wang D, Mellott D, Olinski R, Hallböök F, Thorndyke MC. A genomic view of the sea urchin nervous system. Dev Biol 2006; 300:434-60. [PMID: 16965768 PMCID: PMC1950334 DOI: 10.1016/j.ydbio.2006.08.007] [Citation(s) in RCA: 215] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 07/29/2006] [Accepted: 08/02/2006] [Indexed: 10/24/2022]
Abstract
The sequencing of the Strongylocentrotus purpuratus genome provides a unique opportunity to investigate the function and evolution of neural genes. The neurobiology of sea urchins is of particular interest because they have a close phylogenetic relationship with chordates, yet a distinctive pentaradiate body plan and unusual neural organization. Orthologues of transcription factors that regulate neurogenesis in other animals have been identified and several are expressed in neurogenic domains before gastrulation indicating that they may operate near the top of a conserved neural gene regulatory network. A family of genes encoding voltage-gated ion channels is present but, surprisingly, genes encoding gap junction proteins (connexins and pannexins) appear to be absent. Genes required for synapse formation and function have been identified and genes for synthesis and transport of neurotransmitters are present. There is a large family of G-protein-coupled receptors, including 874 rhodopsin-type receptors, 28 metabotropic glutamate-like receptors and a remarkably expanded group of 161 secretin receptor-like proteins. Absence of cannabinoid, lysophospholipid and melanocortin receptors indicates that this group may be unique to chordates. There are at least 37 putative G-protein-coupled peptide receptors and precursors for several neuropeptides and peptide hormones have been identified, including SALMFamides, NGFFFamide, a vasotocin-like peptide, glycoprotein hormones and insulin/insulin-like growth factors. Identification of a neurotrophin-like gene and Trk receptor in sea urchin indicates that this neural signaling system is not unique to chordates. Several hundred chemoreceptor genes have been predicted using several approaches, a number similar to that for other animals. Intriguingly, genes encoding homologues of rhodopsin, Pax6 and several other key mammalian retinal transcription factors are expressed in tube feet, suggesting tube feet function as photosensory organs. Analysis of the sea urchin genome presents a unique perspective on the evolutionary history of deuterostome nervous systems and reveals new approaches to investigate the development and neurobiology of sea urchins.
Collapse
Affiliation(s)
- R D Burke
- Department of Biology, University of Victoria, Victoria, POB 3020, STN CSC, Victoria, BC, Canada V8W 3N5.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Shashoua VE, Adams DS, Volodina NV, Li H. New synthetic peptides can enhance gene expression of key antioxidant defense enzymes in vitro and in vivo. Brain Res 2004; 1024:34-43. [PMID: 15451365 DOI: 10.1016/j.brainres.2004.06.086] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2004] [Indexed: 12/01/2022]
Abstract
Neurodegenerative, cardiovascular, and age-related disorders have been attributed to the cellular damage caused by elevated production of reactive oxygen species (ROS) and free radicals (FRs). These cannot be adequately defended by existing levels of key antioxidant enzymes. Two peptides, 8 and 14 amino acids long, were synthesized and found to up-regulate, at nanomolar concentrations, superoxide dismutase (SOD) and catalase (CAT) m-RNAs (9- to 12-fold) within 3 h, and then elevate by 5- to 10-fold the protein levels of SOD, CAT, and glutathione peroxidase (GPX) in rat primary cortical cultures. Kinetic studies showed that the peptide up-regulation of all three enzymes appears to be a coordinated process which occurs in vitro and in vivo. We also found that ischemia alone, without added drugs, can lead to enhanced gene expression of SOD, CAT, and GPX. This suggests that the CNS can initiate its own "defense" against ROS and FR. Thus, our peptides may activate such systems, as well as AP-1 transcription factor, reported in earlier findings to lead to "repair" (growth) of injured cells.
Collapse
Affiliation(s)
- Victor E Shashoua
- CereMedix Research Laboratory, 63 Great Road, Maynard, MA 01754, USA.
| | | | | | | |
Collapse
|
7
|
Suárez-Castillo EC, Medina-Ortíz WE, Roig-López JL, García-Arrarás JE. Ependymin, a gene involved in regeneration and neuroplasticity in vertebrates, is overexpressed during regeneration in the echinoderm Holothuria glaberrima. Gene 2004; 334:133-43. [PMID: 15256263 DOI: 10.1016/j.gene.2004.03.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2003] [Revised: 02/25/2004] [Accepted: 03/18/2004] [Indexed: 11/22/2022]
Abstract
We report the characterization of an ependymin-related gene (EpenHg) from a regenerating intestine cDNA library of the sea cucumber Holothuria glaberrima. This finding is remarkable because no ependymin sequence has ever been reported from invertebrates. Database comparisons of the conceptual translation of the EpenHg gene reveal 63% similarity (47% identity) with mammalian ependymin-related proteins (MERPs) and close relationship with the frog and piscine ependymins. We also report the partial sequences of ependymin representatives from another species of sea cucumber and from a sea urchin species. Conventional and real-time reverse transcriptase polymerase chain reaction (RT-PCRs) show that the gene is expressed in several echinoderm tissues, including esophagus, mesenteries, gonads, respiratory trees, hemal system, tentacles and body wall. Moreover, the ependymin product in the intestine is overexpressed during sea cucumber intestinal regeneration. The discovery of ependymins in echinoderms, a group well known for their regenerative capacities, can give us an insight on the evolution and roles of ependymin molecules.
Collapse
Affiliation(s)
- Edna C Suárez-Castillo
- Department of Biology, University of Puerto Rico, Room 220 JGD Building, Ponce de Leon Avenue, PO Box 23360, UPR Station, San Juan, PR 00931-3360, USA
| | | | | | | |
Collapse
|
8
|
Shashoua VE, Adams DS, Boyer-Boiteau A, Cornell-Bell A, Li F, Fisher M. Neuroprotective effects of a new synthetic peptide, CMX-9236, in in vitro and in vivo models of cerebral ischemia. Brain Res 2003; 963:214-23. [PMID: 12560127 DOI: 10.1016/s0006-8993(02)04058-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
NGF (nerve growth factor) and BDNF (brain-derived neurotrophic factor) are protein molecules (MW 26 and 13.6 kDa, respectively) that are neuroprotective in the middle cerebral artery occlusion (MCAO) rat stroke model. Their mechanism of action involves the activation of transcription factor AP-1 that turns on neuronal growth genes. In our ongoing studies we are designing short peptides that mimic some of the properties of full-length neurotrophic factors. We have synthesized a neuroprotective 14-amino acid peptide (CMX-9236) with an N-terminal docosahexaenoic acid (DHA). DHA enhances entry through the blood-brain barrier. Using primary rat brain cortical cultures and a fluorescent assay we found that CMX-9236 can counteract the excitotoxic effects of glutamate or kainate, reversing the intracellular accumulation of Ca(2+) to normal levels. Administration (i.v.) of CMX-9236 post initiation of ischemia reduced the lesion volumes from 178+/-50 to 117+/-55 mm(3) in the temporary rat MCAO model (90 min), and from 216+/-58 to 127+/-57 mm(3) in the permanent (24 h) model for stroke, corresponding to 34+/-28% (P=0.01) and 41+/-19% (P=0.038) reductions of the infarct volumes. Neurological behavior scores showed 57 and 47% improvements for treated temporary and permanent models, respectively. Dose-response studies indicated a 60-fold activation of AP-1 transcription factor in cells treated with 100 ng/ml of the peptide. These studies illustrate that a small peptide can function as a neuroprotective agent and an activator of a beneficial signal transduction pathway.
Collapse
Affiliation(s)
- Victor E Shashoua
- CereMedix, Inc., 317 Egan Research Center, Northeastern University, 120 Forsyth Street, Boston, MA 02115, USA.
| | | | | | | | | | | |
Collapse
|