1
|
Kumar Podder A, Mohamed MA, Seidman RA, Tseropoulos G, Polanco JJ, Lei P, Sim FJ, Andreadis ST. Injectable shear-thinning hydrogels promote oligodendrocyte progenitor cell survival and remyelination in the central nervous system. SCIENCE ADVANCES 2024; 10:eadk9918. [PMID: 38996029 PMCID: PMC11244542 DOI: 10.1126/sciadv.adk9918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 06/10/2024] [Indexed: 07/14/2024]
Abstract
Cell therapy for the treatment of demyelinating diseases such as multiple sclerosis is hampered by poor survival of donor oligodendrocyte cell preparations, resulting in limited therapeutic outcomes. Excessive cell death leads to the release of intracellular alloantigens, which likely exacerbate local inflammation and may predispose the graft to eventual rejection. Here, we engineered innovative cell-instructive shear-thinning hydrogels (STHs) with tunable viscoelasticity and bioactivity for minimally invasive delivery of primary human oligodendrocyte progenitor cells (hOPCs) to the brain of a shiverer/rag2 mouse, a model of congenital hypomyelinating disease. The STHs enabled immobilization of prosurvival signals, including a recombinantly designed bidomain peptide and platelet-derived growth factor. Notably, STHs reduced the death rate of hOPCs significantly, promoted the production of myelinating oligodendrocytes, and enhanced myelination of the mouse brain 12 weeks post-implantation. Our results demonstrate the potential of STHs loaded with biological cues to improve cell therapies for the treatment of devastating myelopathies.
Collapse
Affiliation(s)
- Ashis Kumar Podder
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, USA
| | - Mohamed Alaa Mohamed
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, USA
| | - Richard A. Seidman
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA
| | - Georgios Tseropoulos
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, USA
| | - Jessie J. Polanco
- Neuroscience Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA
| | - Pedro Lei
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, USA
| | - Fraser J. Sim
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA
- Neuroscience Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, NY, USA
| | - Stelios T. Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, USA
- Department of Biomedical Engineering, University at Buffalo, SUNY, Buffalo, NY, USA
- Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, SUNY, Buffalo, NY, USA
- Center of Cell, Gene and Tissue Engineering, University at Buffalo, SUNY, Buffalo, NY, USA
| |
Collapse
|
2
|
Bruschettini M, Badura A, Romantsik O. Stem cell-based interventions for the treatment of stroke in newborn infants. Cochrane Database Syst Rev 2023; 11:CD015582. [PMID: 37994736 PMCID: PMC10666199 DOI: 10.1002/14651858.cd015582.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
BACKGROUND Perinatal stroke refers to a diverse but specific group of cerebrovascular diseases that occur between 20 weeks of fetal life and 28 days of postnatal life. Acute treatment options for perinatal stroke are limited supportive care, such as controlling hypoglycemia and seizures. Stem cell-based therapies offer a potential therapeutic approach to repair, restore, or regenerate injured brain tissue. Preclinical findings have culminated in ongoing human neonatal studies. OBJECTIVES To evaluate the benefits and harms of stem cell-based interventions for the treatment of stroke in newborn infants compared to control (placebo or no treatment) or stem-cell based interventions of a different type or source. SEARCH METHODS We searched CENTRAL, PubMed, Embase, and three trials registries in February 2023. We planned to search the reference lists of included studies and relevant systematic reviews for studies not identified by the database searches. SELECTION CRITERIA We attempted to include randomized controlled trials, quasi-randomized controlled trials, and cluster trials that evaluated any of the following comparisons. • Stem cell-based interventions (any type) versus control (placebo or no treatment) • Mesenchymal stem/stromal cells (MSCs) of a specifictype (e.g. number of doses or passages) or source (e.g. autologous/allogeneic or bone marrow/cord) versus MSCs of another type or source • Stem cell-based interventions (other than MSCs) of a specific type (e.g. mononuclear cells, oligodendrocyte progenitor cells, neural stem cells, hematopoietic stem cells, or induced pluripotent stem cell-derived cells) or source (e.g. autologous/allogeneic or bone marrow/cord) versus stem cell-based interventions (other than MSCs) of another type or source • MSCs versus stem cell-based interventions other than MSCs We planned to include all types of transplantation regardless of cell source (bone marrow, cord blood, Wharton's jelly, placenta, adipose tissue, peripheral blood), type of graft (autologous or allogeneic), and dose. DATA COLLECTION AND ANALYSIS We used standard Cochrane methods. Our primary outcomes were all-cause neonatal mortality, major neurodevelopmental disability, and immune rejection or any serious adverse event. Our secondary outcomes included all-cause mortality prior to first hospital discharge, seizures, adverse effects, and death or major neurodevelopmental disability at 18 to 24 months of age. We planned to use GRADE to assess the certainty of evidence for each outcome. MAIN RESULTS We identified no completed or ongoing randomized trials that met our inclusion criteria. We excluded three studies: two were phase 1 trials, and one included newborn infants with conditions other than stroke (i.e. cerebral ischemia and anemia). Among the three excluded studies, we identified the first phase 1 trial on the use of stem cells for neonatal stroke. It reported that a single intranasal application of bone marrow-derived MSCs in term neonates with a diagnosis of perinatal arterial ischemic stroke (PAIS) was feasible and apparently not associated with severe adverse events. However, the trial included only 10 infants, and follow-up was limited to three months. AUTHORS' CONCLUSIONS No evidence is currently available to evaluate the benefits and harms of stem cell-based interventions for treatment of stroke in newborn infants. We identified no ongoing studies. Future clinical trials should focus on standardizing the timing and method of cell delivery and cell processing to optimize the therapeutic potential of stem cell-based interventions and safety profiles. Phase 1 and large animal studies might provide the groundwork for future randomized trials. Outcome measures should include all-cause mortality, major neurodevelopmental disability and immune rejection, and any other serious adverse events.
Collapse
Affiliation(s)
- Matteo Bruschettini
- Paediatrics, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
- Cochrane Sweden, Department of Research and Education, Lund University, Skåne University Hospital, Lund, Sweden
| | - Anna Badura
- Department of Neonatology, University Children's Hospital Regensburg, Hospital St Hedwig of the Order of St John, University of Regensburg, Regensburg, Germany
| | - Olga Romantsik
- Paediatrics, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
3
|
Evans D, Barcons AM, Basit RH, Adams C, Chari DM. Evaluating the Feasibility of Hydrogel-Based Neural Cell Sprays. J Funct Biomater 2023; 14:527. [PMID: 37888192 PMCID: PMC10607175 DOI: 10.3390/jfb14100527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Neurological injuries have poor prognoses with serious clinical sequelae. Stem cell transplantation enhances neural repair but is hampered by low graft survival (ca. 80%) and marker expression/proliferative potential of hydrogel-sprayed astrocytes was retained. Combining a cell spray format with polymer encapsulation technologies could form the basis of a non-invasive graft delivery method, offering potential advantages over current cell delivery approaches.
Collapse
Affiliation(s)
- Daisy Evans
- Keele University School of Medicine, Keele University, Staffordshire ST5 5BG, UK;
| | - Aina Mogas Barcons
- Department of Physiology, Anatomy and Genetics, Oxford Parkinson’s Disease Centre, University of Oxford, Oxford OX1 3AZ, UK;
| | - Raja Haseeb Basit
- Department of General Surgery, Queen Elizabeth Hospital, Birmingham B15 2GW, UK;
| | - Christopher Adams
- Neural Tissue Engineering, School of Life Sciences, Keele University, Staffordshire ST5 5BG, UK;
| | - Divya Maitreyi Chari
- Neural Tissue Engineering, School of Life Sciences, Keele University, Staffordshire ST5 5BG, UK;
| |
Collapse
|
4
|
Hossein Geranmayeh M, Farokhi-Sisakht F, Sadigh-Eteghad S, Rahbarghazi R, Mahmoudi J, Farhoudi M. Simultaneous Pericytes and M2 Microglia Transplantation Improve Cognitive Function in Mice Model of mPFC Ischemia. Neuroscience 2023; 529:62-72. [PMID: 37591334 DOI: 10.1016/j.neuroscience.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/27/2023] [Accepted: 08/04/2023] [Indexed: 08/19/2023]
Abstract
Cerebral ischemia is one of the major problems threatening global health. Many of the cerebral ischemia survivors would suffer from the physical and cognitive disabilities for their whole lifetime. Cell based-therapies have been introduced as a therapeutic approach for alleviating ischemia-enforced limitations. Photothrombotic stroke model was applied on the left medial prefrontal cortex (mPFC) of adult male BALB/c mice. Then, pericytes isolated from brain microvessels of adult male BALB/c mice, microglia isolated from brain cortices of the neonatal male BALB/c mice, and M2 phenotype shifted microglia by IL-4 treatment were used for transplantation into the injured area after 24 h of ischemia induction. The behavioural outcomes evaluated by social interaction and Barnes tests and the levels of growth associated protein (GAP)-43 and inflammatory cytokine interleukin (IL)-1 protein were assessed by western blotting 7 days after cell transplantation. Animals in both of the microglia + pericytes and microglia M2 + pericytes transplanted groups showed better performance in social memory as well as enhanced spatial learning and memory compared to ischemic controls. Also, improved escape latency was only observed in microglia M2 + pericytes (p < 0.01) group compared to ischemic controls. GAP-43 showed significant protein expression in microglia + pericytes and microglia M2 + pericytes groups compared to the control group. Conversely, IL-1 levels diminished in all of the pericytes microglia + pericytes, and microglia M2 + pericytes groups compared to the ischemic controls. Current study highlights efficiency of M2 microglia and pericytes combinatory transplantation therapeutic role on relieving ischemic stroke outcomes.
Collapse
Affiliation(s)
- Mohammad Hossein Geranmayeh
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cells Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | - Saeed Sadigh-Eteghad
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Farhoudi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Hirata K, Marushima A, Nagasaki Y, Ishikawa H, Matsumura H, Mujagić A, Hirayama A, Toyomura J, Ohyama A, Takaoka S, Bukawa H, Matsumura A, Ishikawa E, Matsumaru Y. Efficacy of redox nanoparticles for improving survival of transplanted cells in a mouse model of ischemic stroke. Hum Cell 2023; 36:1703-1715. [PMID: 37418231 DOI: 10.1007/s13577-023-00940-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/15/2023] [Indexed: 07/08/2023]
Abstract
The success of cell transplantation therapy for ischemic stroke is hindered by the low cell survival rate in poststroke brain, due in part to high free radical production and ensuing oxidative stress. We have developed redox nanoparticles to eliminate reactive oxygen species. In this study, we tested the protective efficacy of these redox nanoparticles in cell culture and a mouse model of ischemic stroke. Induced human dental pulp stem cells were subjected to oxygen-glucose deprivation and reoxygenation to recapitulate ischemia and reperfusion in the penumbra surrounding a cerebral infarct. Cell viability using WST-8 assay, apoptosis using TUNEL, free radicals using MitoSOX, and inflammatory cytokines using ELISA kit were measured in the presence and absence of redox nanoparticles after oxygen-glucose deprivation and reoxygenation. The scavenging activity of redox nanoparticles against reactive oxygen species was detected by electron spin resonance. Moreover, induced cells were transplanted intracerebrally into to the distal middle cerebral artery occlusion model with and without redox nanoparticles, and the survival rate measured. Cell viability was enhanced, while apoptosis, free radical generation, and inflammatory cytokine expression levels were reduced in cultures with redox nanoparticles. Further, reduced redox nanoparticles were detected in the cytoplasm, indicating free radical scavenging. Addition of redox nanoparticles also improved the survival rate of transplanted cells after 6 weeks in vivo. These redox nanoparticles may increase the applicability and success of induced stem cell therapy for ischemic stroke patents by promoting long-term survival.
Collapse
Affiliation(s)
- Koji Hirata
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8575, Japan
- Doctoral Program in Clinical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan
| | - Aiki Marushima
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8575, Japan.
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan.
| | - Yukio Nagasaki
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan
| | - Hiroshi Ishikawa
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8575, Japan
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan
| | - Hideaki Matsumura
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8575, Japan
- Doctoral Program in Clinical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan
| | - Arnela Mujagić
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8575, Japan
- Doctoral Program in Clinical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan
| | - Aki Hirayama
- Center for Integrative Medicine, Tsukuba University of Technology, Kasuga 4-12-7, Tsukuba, Ibaraki, Japan
| | - Junko Toyomura
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8575, Japan
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan
| | - Akihiro Ohyama
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8575, Japan
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan
| | - Shohei Takaoka
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan
| | - Hiroki Bukawa
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan
| | - Akira Matsumura
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8575, Japan
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan
| | - Eiichi Ishikawa
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8575, Japan
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan
| | - Yuji Matsumaru
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8575, Japan
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan
| |
Collapse
|
6
|
Han W, Meißner EM, Neunteibl S, Günther M, Kahnt J, Dolga A, Xie C, Plesnila N, Zhu C, Blomgren K, Culmsee C. Dying transplanted neural stem cells mediate survival bystander effects in the injured brain. Cell Death Dis 2023; 14:173. [PMID: 36854658 PMCID: PMC9975220 DOI: 10.1038/s41419-023-05698-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/02/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023]
Abstract
Neural stem and progenitor cell (NSPC) transplants provide neuroprotection in models of acute brain injury, but the underlying mechanisms are not fully understood. Here, we provide evidence that caspase-dependent apoptotic cell death of NSPCs is required for sending survival signals to the injured brain. The secretome of dying NSPCs contains heat-stable proteins, which protect neurons against glutamate-induced toxicity and trophic factor withdrawal in vitro, and from ischemic brain damage in vivo. Our findings support a new concept suggesting a bystander effect of apoptotic NSPCs, which actively promote neuronal survival through the release of a protective "farewell" secretome. Similar protective effects by the secretome of apoptotic NSPC were also confirmed in human neural progenitor cells and neural stem cells but not in mouse embryonic fibroblasts (MEF) or human dopaminergic neurons, suggesting that the observed effects are cell type specific and exist for neural progenitor/stem cells across species.
Collapse
Affiliation(s)
- Wei Han
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Eva-Maria Meißner
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, Marburg, Germany
| | - Stefanie Neunteibl
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, Marburg, Germany
| | - Madeline Günther
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Giessen, Marburg, Germany
| | - Jörg Kahnt
- Max-Planck-Institute for Terrestrial Microbiology, Department of Ecophysiology, Marburg, Germany
| | - Amalia Dolga
- Faculty of Science and Engineering, Molecular Pharmacology - Groningen Research Institute of Pharmacy, Groningen, The Netherlands
| | - Cuicui Xie
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research (ISD), University Clinic Munich, Munich, Germany
| | - Changlian Zhu
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Henan Key Laboratory of Child Brain Injury, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Klas Blomgren
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.
- Pediatric Oncology, Karolinska University Hospital, Stockholm, Sweden.
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, Marburg, Germany.
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Giessen, Marburg, Germany.
| |
Collapse
|
7
|
Bruschettini M, Badura A, Romantsik O. Stem cell‐based interventions for the treatment of stroke in newborn infants. THE COCHRANE DATABASE OF SYSTEMATIC REVIEWS 2023; 2023:CD015582. [PMCID: PMC9933426 DOI: 10.1002/14651858.cd015582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
This is a protocol for a Cochrane Review (intervention). The objectives are as follows: To evaluate the benefits and harms of stem cell‐based interventions for the treatment of stroke in newborn infants compared to control (placebo or no treatment) or stem‐cell based interventions of a different type or source.
Collapse
Affiliation(s)
| | - Matteo Bruschettini
- Department of Clinical Sciences Lund, PaediatricsLund University, Skåne University HospitalLundSweden,Cochrane SwedenLund University, Skåne University HospitalLundSweden
| | | | - Olga Romantsik
- Department of Clinical Sciences Lund, PaediatricsLund University, Skåne University HospitalLundSweden
| |
Collapse
|
8
|
Kim B, Im HI. Chronic nicotine impairs sparse motor learning via striatal fast-spiking parvalbumin interneurons. Addict Biol 2021; 26:e12956. [PMID: 32767546 PMCID: PMC8243919 DOI: 10.1111/adb.12956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/09/2020] [Accepted: 07/21/2020] [Indexed: 01/06/2023]
Abstract
Nicotine can diversely affect neural activity and motor learning in animals. However, the impact of chronic nicotine on striatal activity in vivo and motor learning at long-term sparse timescale remains unknown. Here, we demonstrate that chronic nicotine persistently suppresses the activity of striatal fast-spiking parvalbumin interneurons, which mediate nicotine-induced deficit in sparse motor learning. Six weeks of longitudinal in vivo single-unit recording revealed that mice show reduced activity of fast-spiking interneurons in the dorsal striatum during chronic nicotine exposure and withdrawal. The reduced firing of fast-spiking interneurons was accompanied by spike broadening, diminished striatal delta oscillation power, and reduced sample entropy in local field potential. In addition, chronic nicotine withdrawal impaired motor learning with a weekly sparse training regimen but did not affect general locomotion and anxiety-like behavior. Lastly, the excitatory DREADD hM3Dq-mediated activation of striatal fast-spiking parvalbumin interneurons reversed the chronic nicotine withdrawal-induced deficit in sparse motor learning. Taken together, we identified that chronic nicotine withdrawal impairs sparse motor learning via disruption of activity in striatal fast-spiking parvalbumin interneurons. These findings suggest that sparse motor learning paradigm can reveal the subtle effect of nicotine withdrawal on motor function and that striatal fast-spiking parvalbumin interneurons are a neural substrate of nicotine's effect on motor learning.
Collapse
Affiliation(s)
- Baeksun Kim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia (DTC), Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| | - Heh-In Im
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia (DTC), Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
- Center for Neuroscience, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| |
Collapse
|
9
|
Singh M, Pandey PK, Bhasin A, Padma MV, Mohanty S. Application of Stem Cells in Stroke: A Multifactorial Approach. Front Neurosci 2020; 14:473. [PMID: 32581669 PMCID: PMC7296176 DOI: 10.3389/fnins.2020.00473] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/16/2020] [Indexed: 12/21/2022] Open
Abstract
Stroke has a debilitating effect on the human body and a serious negative effect on society, with a global incidence of one in every six people. According to the World Health Organization, 15 million people suffer stroke worldwide each year. Of these, 5 million die and another 5 million are permanently disabled. Motor and cognitive deficits like hemiparesis, paralysis, chronic pain, and psychomotor and behavioral symptoms can persist long term and prevent the patient from fully reintegrating into society, therefore continuing to add to the costly healthcare burden of stroke. Regenerative medicine using stem cells seems to be a panacea for sequelae after stroke. Stem cell-based therapy aids neuro-regeneration and neuroprotection for neurological recovery in patients. However, the use of stem cells as a therapy in stroke patients still needs a lot of research at both basic and translational levels. As well as the mode of action of stem cells in reversing the symptoms not being clear, there are several clinical parameters that need to be addressed before establishing stem cell therapy in stroke, such as the type of stem cells to be administered, the number of stem cells, the timing of dosage, whether dose-boosters are required, the route of administration, etc. There are upcoming prospects of cell-free therapy also by using exosomes derived from stem cells. There are several ongoing pre-clinical studies aiming to answer these questions. Despite still being in the development stage, stem cell therapy holds great potential for neurological rehabilitation in patients suffering from stroke.
Collapse
Affiliation(s)
- Manisha Singh
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, India
- Dr. Solomon H. Snyder Department of Neurosciences, Johns Hopkins University, Baltimore, MD, United States
| | - Pranav K. Pandey
- Dr. R.P. Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Ashu Bhasin
- Department of Neurosciences, All India Institute of Medical Sciences, New Delhi, India
| | - M. V. Padma
- Department of Neurosciences, All India Institute of Medical Sciences, New Delhi, India
| | - Sujata Mohanty
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
10
|
Xia X, Li C, Wang Y, Deng X, Ma Y, Ding L, Zheng J. Reprogrammed astrocytes display higher neurogenic competence, migration ability and cell death resistance than reprogrammed fibroblasts. Transl Neurodegener 2020; 9:6. [PMID: 32071715 PMCID: PMC7011554 DOI: 10.1186/s40035-020-0184-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 01/30/2020] [Indexed: 12/20/2022] Open
Abstract
The direct reprogramming of somatic cells into induced neural progenitor cells (iNPCs) has been envisioned as a promising approach to overcome ethical and clinical issues of pluripotent stem cell transplantation. We previously reported that astrocyte-derived induced pluripotent stem cells (iPSCs) have more tendencies for neuronal differentiation than fibroblast-derived iPSCs. However, the differences of neurogenic potential between astrocyte-derived iNPCs (AiNPCs) and iNPCs from non-neural origins, such as fibroblast-derived iNPCs (FiNPCs), and the underlying mechanisms remain unclear. Our results suggested that AiNPCs exhibited higher differentiation efficiency, mobility and survival capacities, compared to FiNPCs. The whole transcriptome analysis revealed higher activities of TGFβ signaling in AiNPCs, versus FiNPCs, following a similar trend between astrocytes and fibroblasts. The higher neurogenic competence, migration ability, and cell death resistance of AiNPCs could be abrogated using TGFβ signaling inhibitor LY2157299. Hence, our study demonstrates the difference between iNPCs generated from neural and non-neural cells, together with the underlying mechanisms, which, provides valuable information for donor cell selection in the reprogramming approach.
Collapse
Affiliation(s)
- Xiaohuan Xia
- 1Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, 200072 China
| | - Chunhong Li
- 1Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, 200072 China
| | - Yi Wang
- 1Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, 200072 China
| | - Xiaobei Deng
- 1Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, 200072 China
| | - Yizhao Ma
- 1Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, 200072 China
| | - Lu Ding
- 1Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, 200072 China
| | - Jialin Zheng
- 1Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, 200072 China.,2Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200092 China.,3Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5930 USA.,4Department of Pathology and Microbiology, University of Nebraska Medical Center,, Omaha, NE 68198-5930 USA
| |
Collapse
|
11
|
Matta R, Lee S, Genet N, Hirschi KK, Thomas JL, Gonzalez AL. Minimally Invasive Delivery of Microbeads with Encapsulated, Viable and Quiescent Neural Stem Cells to the Adult Subventricular Zone. Sci Rep 2019; 9:17798. [PMID: 31780709 PMCID: PMC6882840 DOI: 10.1038/s41598-019-54167-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 11/09/2019] [Indexed: 01/29/2023] Open
Abstract
Stem cell therapies demonstrate promising results as treatment for neurological disease and injury, owing to their innate ability to enhance endogenous neural tissue repair and promote functional recovery. However, delivery of undifferentiated and viable neuronal stem cells requires an engineered delivery system that promotes integration of transplanted cells into the inflamed and cytotoxic region of damaged tissue. Within the brain, endothelial cells (EC) of the subventricular zone play a critical role in neural stem cell (NSC) maintenance, quiescence and survival. Therefore, here, we describe the use of polyethylene glycol microbeads for the coincident delivery of EC and NSC as a means of enhancing appropriate NSC quiescence and survival during transplantation into the mouse brain. We demonstrate that EC and NSC co-encapsulation maintained NSC quiescence, enhanced NSC viability, and facilitated NSC extravasation in vitro, as compared to NSC encapsulated alone. In addition, co-encapsulated cells delivered to an in vivo non-injury model reduced inflammatory response compared to freely injected NSC. These results suggest the strong potential of a biomimetic engineered niche for NSC delivery into the brain following neurological injury.
Collapse
Affiliation(s)
- Rita Matta
- Department of Biomedical Engineering, Yale University School of Medicine, New Haven, CT, 06511, United States
| | - Seyoung Lee
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06511, United States
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, 06511, United States
| | - Nafiisha Genet
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, 06511, United States
- Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, 06511, United States
| | - Karen K Hirschi
- Department of Biomedical Engineering, Yale University School of Medicine, New Haven, CT, 06511, United States
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, 06511, United States
- Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, 06511, United States
| | - Jean-Leon Thomas
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06511, United States.
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, 06511, United States.
- Sorbonne Universités, UPMC Université Paris 06, Institut National de la Santé et de la Recherche Médicale U1127, Centre National de la Recherche Scientifique, AP-HP, Institut du Cerveau et de la Moelle Epinière, Hôpital Pitié-Salpêtrière, Paris, France.
| | - Anjelica L Gonzalez
- Department of Biomedical Engineering, Yale University School of Medicine, New Haven, CT, 06511, United States.
| |
Collapse
|
12
|
Modern Concepts in Regenerative Therapy for Ischemic Stroke: From Stem Cells for Promoting Angiogenesis to 3D-Bioprinted Scaffolds Customized via Carotid Shear Stress Analysis. Int J Mol Sci 2019; 20:ijms20102574. [PMID: 31130624 PMCID: PMC6566983 DOI: 10.3390/ijms20102574] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 02/06/2023] Open
Abstract
Ischemic stroke is associated with a tremendous economic and societal burden, and only a few therapies are currently available for the treatment of this devastating disease. The main therapeutic approaches used nowadays for the treatment of ischemic brain injury aim to achieve reperfusion, neuroprotection and neurorecovery. Therapeutic angiogenesis also seems to represent a promising tool to improve the prognosis of cerebral ischemia. This review aims to present the modern concepts and the current status of regenerative therapy for ischemic stroke and discuss the main results of major clinical trials addressing the effectiveness of stem cell therapy for achieving neuroregeneration in ischemic stroke. At the same time, as a glimpse into the future, this article describes modern concepts for stroke prevention, such as the implantation of bioprinted scaffolds seeded with stem cells, whose 3D geometry is customized according to carotid shear stress.
Collapse
|
13
|
George PM, Oh B, Dewi R, Hua T, Cai L, Levinson A, Liang X, Krajina BA, Bliss TM, Heilshorn SC, Steinberg GK. Engineered stem cell mimics to enhance stroke recovery. Biomaterials 2018; 178:63-72. [PMID: 29909038 DOI: 10.1016/j.biomaterials.2018.06.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/31/2018] [Accepted: 06/07/2018] [Indexed: 12/16/2022]
Abstract
Currently, no medical therapies exist to augment stroke recovery. Stem cells are an intriguing treatment option being evaluated, but cell-based therapies have several challenges including developing a stable cell product with long term reproducibility. Since much of the improvement observed from cellular therapeutics is believed to result from trophic factors the stem cells release over time, biomaterials are well-positioned to deliver these important molecules in a similar fashion. Here we show that essential trophic factors secreted from stem cells can be effectively released from a multi-component hydrogel system into the post-stroke environment. Using our polymeric system to deliver VEGF-A and MMP-9, we improved recovery after stroke to an equivalent degree as observed with traditional stem cell treatment in a rodent model. While VEGF-A and MMP-9 have many unique mechanisms of action, connective tissue growth factor (CTGF) interacts with both VEGF-A and MMP-9. With our hydrogel system as well as with stem cell delivery, the CTGF pathway is shown to be downregulated with improved stroke recovery.
Collapse
Affiliation(s)
- Paul M George
- Department of Neurology and the Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA; Stanford Stroke Center and Stanford University School of Medicine, Stanford, CA, USA.
| | - Byeongtaek Oh
- Department of Neurology and the Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Ruby Dewi
- Department of Material Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Thuy Hua
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Lei Cai
- Department of Material Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Alexa Levinson
- Department of Neurology and the Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Xibin Liang
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Brad A Krajina
- Department of Material Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Tonya M Bliss
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Sarah C Heilshorn
- Department of Material Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Gary K Steinberg
- Department of Neurology and the Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA; Stanford Stroke Center and Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
14
|
Syngeneic Transplantation of Olfactory Ectomesenchymal Stem Cells Restores Learning and Memory Abilities in a Rat Model of Global Cerebral Ischemia. Stem Cells Int 2018; 2018:2683969. [PMID: 29861741 PMCID: PMC5971302 DOI: 10.1155/2018/2683969] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/16/2018] [Accepted: 03/25/2018] [Indexed: 01/01/2023] Open
Abstract
Stem cells are considered as promising tools to repair diverse tissue injuries. Among the different stem cell types, the “olfactory ectomesenchymal stem cells” (OE-MSCs) located in the adult olfactory mucosa stand as one of the best candidates. Here, we evaluated if OE-MSC grafts could decrease memory impairments due to ischemic injury. OE-MSCs were collected from syngeneic F344 rats. After a two-step global cerebral ischemia, inducing hippocampal lesions, learning abilities were evaluated using an olfactory associative discrimination task. Cells were grafted into the hippocampus 5 weeks after injury and animal's learning abilities reassessed. Rats were then sacrificed and the brains collected for immunohistochemical analyses. We observed significant impairments in learning and memory abilities following ischemia. However, 4 weeks after OE-MSC grafts, animals displayed learning and memory performances similar to those of controls, while sham rats did not improve them. Immunohistochemical analyses revealed that grafts promoted neuroblast and glial cell proliferation, which could permit to restore cognitive functions. These results demonstrated, for the first time, that syngeneic transplantations of OE-MSCs in rats can restore cognitive abilities impaired after brain injuries and provide support for the development of clinical studies based on grafts of OE-MSCs in amnesic patients following brain injuries.
Collapse
|
15
|
Marei HE, Hasan A, Rizzi R, Althani A, Afifi N, Cenciarelli C, Caceci T, Shuaib A. Potential of Stem Cell-Based Therapy for Ischemic Stroke. Front Neurol 2018; 9:34. [PMID: 29467713 PMCID: PMC5808289 DOI: 10.3389/fneur.2018.00034] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 01/15/2018] [Indexed: 12/15/2022] Open
Abstract
Ischemic stroke is one of the major health problems worldwide. The only FDA approved anti-thrombotic drug for acute ischemic stroke is the tissue plasminogen activator. Several studies have been devoted to assessing the therapeutic potential of different types of stem cells such as neural stem cells (NSCs), mesenchymal stem cells, embryonic stem cells, and human induced pluripotent stem cell-derived NSCs as treatments for ischemic stroke. The results of these studies are intriguing but many of them have presented conflicting results. Additionally, the mechanism(s) by which engrafted stem/progenitor cells exert their actions are to a large extent unknown. In this review, we will provide a synopsis of different preclinical and clinical studies related to the use of stem cell-based stroke therapy, and explore possible beneficial/detrimental outcomes associated with the use of different types of stem cells. Due to limited/short time window implemented in most of the recorded clinical trials about the use of stem cells as potential therapeutic intervention for stroke, further clinical trials evaluating the efficacy of the intervention in a longer time window after cellular engraftments are still needed.
Collapse
Affiliation(s)
- Hany E Marei
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - A Hasan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha, Qatar
| | - R Rizzi
- Institute of Cell Biology and Neurobiology (IBCN), Italian National Council of Research (CNR), Rome, Italy
| | - A Althani
- Biomedical Research Center, Qatar University, Doha, Qatar
| | | | - C Cenciarelli
- Institute of Translational Pharmacology (CNR), Roma, Italy
| | - Thomas Caceci
- Biomedical Sciences, Virginia Tech Carilion School of Medicine and Research Institute, Roanoke, VA, United States
| | - Ashfaq Shuaib
- Neurosciences Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.,University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
16
|
Han HW, Hsu SH. Chitosan derived co-spheroids of neural stem cells and mesenchymal stem cells for neural regeneration. Colloids Surf B Biointerfaces 2017; 158:527-538. [DOI: 10.1016/j.colsurfb.2017.07.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 07/10/2017] [Accepted: 07/15/2017] [Indexed: 12/15/2022]
|
17
|
Zhao L, Zhou C, Li L, Liu J, Shi H, Kan B, Li Z, Li Y, Han J, Yu J. Acupuncture Improves Cerebral Microenvironment in Mice with Alzheimer's Disease Treated with Hippocampal Neural Stem Cells. Mol Neurobiol 2016; 54:5120-5130. [PMID: 27558235 DOI: 10.1007/s12035-016-0054-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 08/11/2016] [Indexed: 12/20/2022]
Abstract
Transplantation with neural stem cells (NSCs) is a promising clinical therapy for Alzheimer's disease (AD). However, the final fate of grafted NSCs is mainly determined by the host microenvironment. Therefore, this study investigated the role of Sanjiao acupuncture in the NSCs-treated hippocampus of a mouse model, senescence-accelerated mouse prone 8 (SAMP8) using Western blot, real-time fluorescent PCR, and immunofluorescence techniques. Meanwhile, we developed a co-culture model of hippocampal tissue specimens and NSCs in vitro, to observe the effects of acupuncture on survival, proliferation and differentiation of grafted NSCs using flow cytometry. Results showed that acupuncture pre- and post-NSCs transplantation significantly improved senescence-induced cognitive dysfunction (P < 0.05); upregulated the expression of basic fibroblast growth factor (bFGF), epidermal growth factor (EGF), and brain-derived neurotrophic factor (BDNF) (P < 0.05); and also increased the count of neuron-specific nuclear protein (NeuN)- and glial fibrillary acidic protein (GFAP)-positive cells (P < 0.05). Therapeutic acupuncture may regulate the cytokine levels associated with survival, proliferation, and differentiation of NSCs in hippocampal microenvironment, to promote the repair of damaged cells, resulting in improved cognitive performance in mice.
Collapse
Affiliation(s)
- Lan Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China. .,Tianjin Key Laboratory of Acupuncture and Moxibustion, Tianjin, 300193, China.
| | - Chunlei Zhou
- Tianjin First Center Hospital, Tianjin, 300192, China
| | - Li Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.,Tianjin Key Laboratory of Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Jianwei Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Huiyan Shi
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.,Tianjin Key Laboratory of Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Bohong Kan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.,Tianjin Key Laboratory of Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Zhen Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.,Tianjin Key Laboratory of Acupuncture and Moxibustion, Tianjin, 300193, China
| | - Yunzhu Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Jingxian Han
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Jianchun Yu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| |
Collapse
|
18
|
Duan W, Zhang YP, Hou Z, Huang C, Zhu H, Zhang CQ, Yin Q. Novel Insights into NeuN: from Neuronal Marker to Splicing Regulator. Mol Neurobiol 2015; 53:1637-1647. [PMID: 25680637 DOI: 10.1007/s12035-015-9122-5] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 02/01/2015] [Indexed: 01/07/2023]
Abstract
Neuronal nuclei (NeuN) is a well-recognized "marker" that is detected exclusively in post-mitotic neurons and was initially identified through an immunological screen to produce neuron-specific antibodies. Immunostaining evidence indicates that NeuN is distributed in the nuclei of mature neurons in nearly all parts of the vertebrate nervous system. NeuN is highly conserved among species and is stably expressed during specific stages of development. Therefore, NeuN has been considered to be a reliable marker of mature neurons for the past two decades. However, this role has been challenged by recent studies indicating that NeuN staining is variable and even absent during certain diseases and specific physiological states. More importantly, despite the widespread use of the anti-NeuN antibody, the natural identity of the NeuN protein remained elusive for 17 years. NeuN was recently eventually identified as an epitope of Rbfox3, which is a novel member of the Rbfox1 family of splicing factors. This identification might provide a novel perspective on NeuN expression during both physiological and pathological conditions. This review summarizes the current progress on the biochemical identity and biological significance of NeuN and recommends caution when applying NeuN immunoreactivity as a definitive marker of mature neurons in certain diseases and specific physiological states.
Collapse
Affiliation(s)
- Wei Duan
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, People's Republic of China
| | - Yu-Ping Zhang
- Department of Pediatrics, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, People's Republic of China
| | - Zhi Hou
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, People's Republic of China
| | - Chen Huang
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - He Zhu
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA.,Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37232, USA.,Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA.,The Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN, 37232, USA
| | - Chun-Qing Zhang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, People's Republic of China.
| | - Qing Yin
- Department of Rehabilitation and Physical Therapy, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, People's Republic of China.
| |
Collapse
|
19
|
Abstract
On average, every four minutes an individual dies from a stroke, accounting for 1 out of every 18 deaths in the United States. Approximately 795,000 Americans have a new or recurrent stroke each year, with just over 600,000 of these being first attack [1]. There have been multiple animal models of stroke demonstrating that novel therapeutics can help improve the clinical outcome. However, these results have failed to show the same outcomes when tested in human clinical trials. This review will discuss the current in vivo animal models of stroke, advantages and limitations, and the rationale for employing these animal models to satisfy translational gating items for examination of neuroprotective, as well as neurorestorative strategies in stroke patients. An emphasis in the present discussion of therapeutics development is given to stem cell therapy for stroke.
Collapse
|
20
|
Wang J, Yang W, Xie H, Song Y, Li Y, Wang L. Ischemic stroke and repair: current trends in research and tissue engineering treatments. Regen Med Res 2014; 2:3. [PMID: 25984331 PMCID: PMC4389883 DOI: 10.1186/2050-490x-2-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 10/24/2013] [Indexed: 03/15/2023] Open
Abstract
Stroke, the third leading cause of mortality, is usually associated with severe disabilities, high recurrence rate and other poor outcomes. Currently, there are no long-term effective treatments for stroke. Cell and cytokine therapies have been explored previously. However, the therapeutic outcomes are often limited by poor survival of transplanted cells, uncontrolled cell differentiation, ineffective engraftment with host tissues and non-sustained delivery of growth factors. A tissue-engineering approach provides an alternative for treating ischemic stroke. The key design considerations for the tissue engineering approach include: choice of scaffold materials, choice of cells and cytokines and delivery methods. Here, we review current cell and biomaterial based therapies available for ischemic stroke, with a special focus on tissue-engineering strategies for regeneration of stroke-affected neuronal tissue.
Collapse
Affiliation(s)
- Jian Wang
- Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen Yang
- Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongjian Xie
- Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Song
- Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongkui Li
- Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Wang
- Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China ; Medical Research Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
Gonzales-Portillo GS, Sanberg PR, Franzblau M, Gonzales-Portillo C, Diamandis T, Staples M, Sanberg CD, Borlongan CV. Mannitol-enhanced delivery of stem cells and their growth factors across the blood-brain barrier. Cell Transplant 2014; 23:531-9. [PMID: 24480552 PMCID: PMC4083632 DOI: 10.3727/096368914x678337] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Ischemic brain injury in adults and neonates is a significant clinical problem with limited therapeutic interventions. Currently, clinicians have only tPA available for stroke treatment and hypothermia for cerebral palsy. Owing to the lack of treatment options, there is a need for novel treatments such as stem cell therapy. Various stem cells including cells from embryo, fetus, perinatal, and adult tissues have proved effective in preclinical and small clinical trials. However, a limiting factor in the success of these treatments is the delivery of the cells and their by-products (neurotrophic factors) into the injured brain. We have demonstrated that mannitol, a drug with the potential to transiently open the blood-brain barrier and facilitate the entry of stem cells and trophic factors, as a solution to the delivery problem. The combination of stem cell therapy and mannitol may improve therapeutic outcomes in adult stroke and neonatal cerebral palsy.
Collapse
Affiliation(s)
- Gabriel S. Gonzales-Portillo
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Paul R. Sanberg
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Max Franzblau
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Chiara Gonzales-Portillo
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Theo Diamandis
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Meaghan Staples
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Cyndy D. Sanberg
- Saneron CCEL Therapeutics, Saneron CCEL Therapeutics, Inc., Tampa, FL, USA
| | - Cesar V. Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| |
Collapse
|
22
|
Liu X, Ye R, Yan T, Yu SP, Wei L, Xu G, Fan X, Jiang Y, Stetler RA, Liu G, Chen J. Cell based therapies for ischemic stroke: from basic science to bedside. Prog Neurobiol 2013; 115:92-115. [PMID: 24333397 DOI: 10.1016/j.pneurobio.2013.11.007] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 11/11/2013] [Accepted: 11/26/2013] [Indexed: 12/20/2022]
Abstract
Cell therapy is emerging as a viable therapy to restore neurological function after stroke. Many types of stem/progenitor cells from different sources have been explored for their feasibility and efficacy for the treatment of stroke. Transplanted cells not only have the potential to replace the lost circuitry, but also produce growth and trophic factors, or stimulate the release of such factors from host brain cells, thereby enhancing endogenous brain repair processes. Although stem/progenitor cells have shown a promising role in ischemic stroke in experimental studies as well as initial clinical pilot studies, cellular therapy is still at an early stage in humans. Many critical issues need to be addressed including the therapeutic time window, cell type selection, delivery route, and in vivo monitoring of their migration pattern. This review attempts to provide a comprehensive synopsis of preclinical evidence and clinical experience of various donor cell types, their restorative mechanisms, delivery routes, imaging strategies, future prospects and challenges for translating cell therapies as a neurorestorative regimen in clinical applications.
Collapse
Affiliation(s)
- Xinfeng Liu
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.
| | - Ruidong Ye
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Tao Yan
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA; Department of Neurology, Tianjin General Hospital, Tianjin University School of Medicine, Tianjin, China
| | - Shan Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Ling Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Gelin Xu
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Xinying Fan
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Yongjun Jiang
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - R Anne Stetler
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - George Liu
- Institute of Cardiovascular Sciences, Peking University Health Science Center, Beijing, China
| | - Jieli Chen
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA.
| |
Collapse
|
23
|
Mino M, Kamii H, Fujimura M, Kondo T, Takasawa S, Okamoto H, Yoshimoto T. Temporal changes of neurogenesis in the mouse hippocampus after experimental subarachnoid hemorrhage. Neurol Res 2013; 25:839-45. [PMID: 14669527 DOI: 10.1179/016164103771953934] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recent studies indicate the existence of progenitor cells and their potential for neurogenesis in the subventricular zone (SVZ) and the hippocampus dentate gyrus (DG) of normal adult mammalian brain. Increased neurogenesis has been shown following cerebral ischemia and traumatic brain injury; however, the involvement of neurogenesis in subarachnoid hemorrhage (SAH) has not been examined. Adult male CD-1 mice were subjected to SAH by endovascular perforation of the left anterior cerebral artery. Mice received intraperitoneal injections of the cell proliferation-specific marker 5'-bromodeoxyuridine (BrdU) after SAH induction. BrdU incorporation was examined from 1 to 30 days after SAH by immunohistochemistry. The BrdU-positive cells were detected in SVZ and DG of normal control brain, and were significantly decreased in both areas three days after SAH. The number of these cells had recovered to its control level seven days after SAH. Double staining with BrdU and NeuN indicated that the majority of the BrdU-positive cells migrating into the granular cell layer of the DG became NeuN-positive 30 days after SAH. In conclusion, temporal changes of the neurogenesis as shown in the present study suggest that neurogenesis in the hippocampus may affect functional outcome after SAH. The induction of the neurogenesis can provide therapeutic value against SAH.
Collapse
Affiliation(s)
- Masaki Mino
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Stone LL, Grande A, Low WC. Neural repair and neuroprotection with stem cells in ischemic stroke. Brain Sci 2013; 3:599-614. [PMID: 24961416 PMCID: PMC4061842 DOI: 10.3390/brainsci3020599] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/12/2013] [Accepted: 04/12/2013] [Indexed: 01/01/2023] Open
Abstract
Stem cells have been touted as a potential source of cells for repair in regenerative medicine. When transplanted into the central nervous system, stem cells have been shown to differentiate into neurons and glia. Recent studies, however, have also revealed neuroprotective properties of stem cells. These studies suggest that various types of stem cells are able to protect against the loss of neurons in conditions of ischemic brain injury. In this article, we discuss the use of stem cells for ischemic stroke and the parameters under which neuroprotection can occur in the translation of stem cell therapy to the clinical setting.
Collapse
Affiliation(s)
- Laura L Stone
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Andy Grande
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Walter C Low
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
25
|
Wootla B, Denic A, Warrington AE, Rodriguez M. Need for a paradigm shift in therapeutic approaches to CNS injury. Expert Rev Neurother 2012; 12:409-20. [PMID: 22449213 DOI: 10.1586/ern.12.24] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Irreversible damage to the nervous system can result from many causes including trauma, disruption of blood supply, pathogen infection or neurodegenerative disease. Common features following CNS injury include a disruption of axons, neuron death and injury, local B-cell and microglial activation, and the synthesis of pathogenic autoantibodies. CNS injury results in a pervasive inhibitory microenvironment that hinders regeneration. Current approaches to eliminate the inhibitory environment have met with limited success. These results argue for a paradigm shift in therapeutic approaches to CNS injury. Targeting CNS cells (neurons, oligodendrocytes and astrocytes) themselves may drive CNS repair. For example, our group and others have demonstrated that autoreactive antibodies can participate in aspects of CNS regeneration, including remyelination. We have developed recombinant autoreactive natural human IgM antibodies with the therapeutic potential for CNS repair in several neurologic diseases.
Collapse
Affiliation(s)
- Bharath Wootla
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
26
|
Abstract
Adult brain-derived neural stem cells have acquired a lot of interest as an endurable neuronal cell source that can be used for central nervous system repair in a wide range of neurological disorders such as ischemic stroke. Recently, we identified injury-induced neural stem/progenitor cells in the poststroke murine cerebral cortex. In this study, we show that, after differentiation in vitro, injury-induced neural stem/progenitor cells express pyramidal cell markers Emx1 and CaMKIIα, as well as mature neuron markers MAP2 and Tuj1. 5-bromo-2-deoxyuridinine-positive neurons in the peristroke cortex also express such pyramidal markers. The presence of newly regenerated pyramidal neurons in the poststroke brain might provide a noninvasive therapeutic strategy for stroke treatment with functional recovery.
Collapse
|
27
|
Babaei P, Soltani Tehrani B, Alizadeh A. Transplanted bone marrow mesenchymal stem cells improve memory in rat models of Alzheimer's disease. Stem Cells Int 2012; 2012:369417. [PMID: 22754576 PMCID: PMC3382392 DOI: 10.1155/2012/369417] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 04/18/2012] [Accepted: 04/18/2012] [Indexed: 12/13/2022] Open
Abstract
The present study aims to evaluate the effect of bone marrow mesenchymal stem cells (MSCs) grafts on cognition deficit in chemically and age-induced Alzheimer's models of rats. In the first experiments aged animals (30 months) were tested in Morris water maze (MWM) and divided into two groups: impaired memory and unimpaired memory. Impaired groups were divided into two groups and cannulated bilaterally at the CA1 of the hippocampus for delivery of mesenchymal stem cells (500 × 10(3)/μL) and PBS (phosphate buffer saline). In the second experiment, Ibotenic acid (Ibo) was injected bilaterally into the nucleus basalis magnocellularis (NBM) of young rats (3 months) and animals were tested in MWM. Then, animals with memory impairment received the following treatments: MSCs (500 × 10(3)/μL) and PBS. Two months after the treatments, cognitive recovery was assessed by MWM in relearning paradigm in both experiments. Results showed that MSCs treatment significantly increased learning ability and memory in both age- and Ibo-induced memory impairment. Adult bone marrow mesenchymal stem cells show promise in treating cognitive decline associated with aging and NBM lesions.
Collapse
Affiliation(s)
- Parvin Babaei
- Cellular and Molecular Research Center, Faculty of Medecine, Guilan University Complex, Rasht 41996-13769, Iran
- Deptartment of Physiology, Faculty of Medecine, Guilan University Complex, Rasht 41996-13769, Iran
| | - Bahram Soltani Tehrani
- Cellular and Molecular Research Center, Faculty of Medecine, Guilan University Complex, Rasht 41996-13769, Iran
- Deptartment of Pharmacology, Faculty of Medecine, Guilan University Complex, Rasht 41996-13769, Iran
| | - Arsalan Alizadeh
- Cellular and Molecular Research Center, Faculty of Medecine, Guilan University Complex, Rasht 41996-13769, Iran
| |
Collapse
|
28
|
Shinozuka K, Dailey T, Tajiri N, Ishikawa H, Kim DW, Pabon M, Acosta S, Kaneko Y, Borlongan CV. Stem Cells for Neurovascular Repair in Stroke. ACTA ACUST UNITED AC 2012; 4:12912. [PMID: 24077523 DOI: 10.4172/2157-7633.s4-004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Stem cells exert therapeutic effects against ischemic stroke via transplantation of exogenous stem cells or stimulation of endogenous stem cells within the neurogenic niches of subventricular zone and subgranular zone, or recruited from the bone marrow through peripheral circulation. In this paper, we review the different sources of stem cells that have been tested in animal models of stroke. In addition, we discuss specific mechanisms of action, in particular neurovascular repair by endothelial progenitor cells, as key translational research for advancing the clinical applications of stem cells for ischemic stroke.
Collapse
Affiliation(s)
- Kazutaka Shinozuka
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd. MDC78, Tampa, Florida 33612, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
De Filippis L, Delia D. Hypoxia in the regulation of neural stem cells. Cell Mol Life Sci 2011; 68:2831-44. [PMID: 21584807 PMCID: PMC11115125 DOI: 10.1007/s00018-011-0723-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 04/08/2011] [Accepted: 05/03/2011] [Indexed: 12/26/2022]
Abstract
In aerobic organisms, oxygen is a critical factor in tissue and organ morphogenesis from embryonic development throughout post-natal life, as it regulates various intracellular pathways involved in cellular metabolism, proliferation, survival and fate. In the mammalian central nervous system, oxygen plays a critical role in regulating the growth and differentiation state of neural stem cells (NSCs), multipotent neuronal precursor cells that reside in a particular microenvironment called the neural stem cell niche and that, under certain physiological and pathological conditions, differentiate into fully functional mature neurons, even in adults. In both experimental and clinical settings, oxygen is one of the main factors influencing NSCs. In particular, the physiological condition of mild hypoxia (2.5-5.0% O(2)) typical of neural tissues promotes NSC self-renewal; it also favors the success of engraftment when in vitro-expanded NSCs are transplanted into brain of experimental animals. In this review, we analyze how O(2) and specifically hypoxia impact on NSC self-renewal, differentiation, maturation, and homing in various in vitro and in vivo settings, including cerebral ischemia, so as to define the O(2) conditions for successful cell replacement therapy in the treatment of brain injury and neurodegenerative diseases.
Collapse
Affiliation(s)
- Lidia De Filippis
- Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Milan, Italy.
| | | |
Collapse
|
30
|
Intravascular Stem Cell Transplantation for Stroke. Transl Stroke Res 2011; 2:250-65. [DOI: 10.1007/s12975-011-0093-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 07/13/2011] [Indexed: 01/01/2023]
|
31
|
Xu X, Warrington AE, Bieber AJ, Rodriguez M. Enhancing CNS repair in neurological disease: challenges arising from neurodegeneration and rewiring of the network. CNS Drugs 2011; 25:555-73. [PMID: 21699269 PMCID: PMC3140701 DOI: 10.2165/11587830-000000000-00000] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Repair of the central nervous system (CNS) constitutes an integral part of treating neurological disease and plays a crucial role in restoring CNS architecture and function. Distinct strategies have been developed to reconstruct the damaged neural tissue, with many tested preclinically in animal models. We review cell replacement-based repair strategies. By taking spinal cord injury, cerebral ischaemia and degenerative CNS disorders as examples for CNS repair, we discuss progress and potential problems in utilizing embryonic stem cells and adult neural/non-neural stem cells to repair cell loss in the CNS. Nevertheless, CNS repair is not simply a matter of cell transplantation. The major challenge is to induce regenerating neural cells to integrate into the neural network and compensate for damaged neural function. The neural cells confront an environment very different from that of the developmental stage in which these cells differentiate to form interwoven networks. During the repair process, one of the challenges is neurodegeneration, which can develop from interrupted innervations to/from the targets, chronic inflammation, ischaemia, aging or idiopathic neural toxicity. Neurodegeneration, which occurs on the basis of a characteristic vascular and neural web, usually presents as a chronically progressive process with unknown aetiology. Currently, there is no effective treatment to stop or slow down neurodegeneration. Pathological changes from patients with Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis indicate a broken homeostasis in the CNS. We discuss how the blood-brain barrier and neural networks are formed to maintain CNS homeostasis and their contribution to neurodegeneration in diseased conditions. Another challenge is that some inhibitors produced by CNS injury do not facilitate the regenerating neural cells to incorporate into a pre-existing network. We review glial responses to CNS injury. Of note, the reactive astrocytes not only encompass the lesions/pathogens but may also form glial scars to impede regenerating axons from traversing the lesions. In addition, myelin debris can prevent axon growth. Myelination enables saltatory transduction of electrical impulses along axonal calibers and actually provides trophic support to stabilize the axons. Therefore, repair strategies should be designed to promote axonal growth, myelination and modulate astrocytic responses. Finally, we discuss recent progress in developing human monoclonal IgMs that regulate CNS homeostasis and promote neural regeneration.
Collapse
Affiliation(s)
- Xiaohua Xu
- Department of Neurology, Mayo Clinic and Foundation, Rochester, MN 55905
| | | | - Allan J. Bieber
- Department of Neurology, Mayo Clinic and Foundation, Rochester, MN 55905
| | - Moses Rodriguez
- Department of Neurology, Mayo Clinic and Foundation, Rochester, MN 55905, Department of Immunology, Mayo Clinic and Foundation, Rochester, MN 55905
| |
Collapse
|
32
|
Yang C, Zhou L, Gao X, Chen B, Tu J, Sun H, Liu X, He J, Liu J, Yuan Q. Neuroprotective effects of bone marrow stem cells overexpressing glial cell line-derived neurotrophic factor on rats with intracerebral hemorrhage and neurons exposed to hypoxia/reoxygenation. Neurosurgery 2011; 68:691-704. [PMID: 21311297 DOI: 10.1227/neu.0b013e3182098a8a] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) represents at least 15% of all strokes in the Western population and a considerably higher proportion at 50% to 60% in the Oriental population. OBJECTIVE To investigate whether administration of bone marrow stem cells (BMSCs) overexpressing glial cell line-derived neurotrophic factor (GDNF) provides more efficient neuroprotection for rats with ICH and neurons exposed to hypoxia/reoxygenation. METHODS Primary rat BMSCs were transfected with rat GDNF gene using virus vector (GDNF/BMSCs) and blank virus plasmid (BVP/BMSCs). Primary rat cortical neurons of rats were exposed to hypoxia and then reoxygenated with GDNF/BMSCs (GDNF/BMSCs group) or BVP/BMSCs (BMSCs group) treatment for 12 hours and 1, 2, 3, and 5 days. Hoechst 33258 staining was used to evaluate apoptosis. GDNF/BMSCs, BVP/BMSCs, and saline (GDNF/BMSCs, BMSCs, and control groups) were injected into the right striatum 3 days after rat ICH induced by injecting collagenase. Modified neurological severity scores and hematoxylin and eosin staining were performed to evaluate neurological function and lesion volume at 1 and 2 weeks after transplantation. Immunostaining was used to observe differentiation of grafted cells (neurofilament-200 for neurons, glial fibrillary acidic protein for astrocytes). The GDNF level and apoptosis were evaluated by Western blotting and terminal deoxynucleotidyl transferase dUTP nick-end labeling, respectively. RESULTS The GDNF/BMSCs group had significantly lowered apoptosis compared with the BMSCs group at the given time. The GDNF/BMSCs group had significantly improved functional deficits and reduced lesion volume compared with the BMSCs group. Stable GDNF expression in the GDNF/BMSCs group was detected at the given time in the host brain. The neurofilament-positive grafted cells in the GDNF/BMSCs group were more numerous than in the BMSCs group. The GDNF/BMSCs group had significantly decreased apoptotic cells compared with the BMSCs group. CONCLUSION These results suggest that GDNF/BMSCs provide better neuroprotection for rats with ICH and neurons exposed to hypoxia/reoxygenation.
Collapse
Affiliation(s)
- Chaoxian Yang
- Department of Anatomy and Neurobiology, Tongji University School of Medicine, and Department of Plastic and Reconstructive Surgery, 9th People's Hospital, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kucharova K, Hefferan MP, Patel P, Marsala S, Nejime T, Miyanohara A, Marsala M, Drummond JC. Transplantation of rat synapsin-EGFP-labeled embryonic neurons into the intact and ischemic CA1 hippocampal region: distribution, phenotype, and axodendritic sprouting. Cell Transplant 2011; 20:1163-78. [PMID: 21669049 DOI: 10.3727/096368910x564544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A major limitation of neural transplantation studies is assessing the degree of host-graft interaction. In the present study, rat hippocampal/cortical embryonic neurons (E18) were infected with a lentivirus encoding enhanced green fluorescent protein (GFP) under control of the neuron-specific synapsin promoter, thus permitting robust identification of labeled neurons after in vivo grafting. Two weeks after transient forebrain ischemia or sham-surgery, GFP-expressing neurons were transplanted into CA1 hippocampal regions in immunosuppressed adult Wistar rats. The survival, distribution, phenotype, and axonal projections of GFP-immunoreactive (IR) positive transplanted neurons were evaluated in the sham-operated and ischemia- damaged CA1 hippocampal regions 4, 8, and 12 weeks after transplantation. In both experimental groups, we observed that the main phenotype of host-derived afferents projecting towards grafted GFP-IR neurons as well as transplant-derived GFP-IR efferents were glutamatergic in both animal groups. GFP axonal projections were seen in the nucleus accumbens, septal nuclei, and subiculum-known target areas of CA1 pyramidal neurons. Compared to sham-operated animals, GFP-IR neurons grafted into the ischemia-damaged CA1 migrated more extensively throughout a larger volume of host tissue, particularly in the stratum radiatum. Moreover, enhanced axonal sprouting and neuronal plasticity of grafted cells were evident in the hippocampus, subiculum, septal nuclei, and nucleus accumbens of the ischemia-damaged rats. Our study suggests that the adult rat brain retains some capacity to direct newly sprouting axons of transplanted embryonic neurons to the correct targets and that this capacity is enhanced in previously ischemia-injured forebrain.
Collapse
Affiliation(s)
- K Kucharova
- Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Shoae-Hassani A, Sharif S, Tabatabaei SAM, Verdi J. Could the endogenous opioid, morphine, prevent neural stem cell proliferation? Med Hypotheses 2011; 76:225-9. [DOI: 10.1016/j.mehy.2010.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Revised: 09/18/2010] [Accepted: 10/08/2010] [Indexed: 01/19/2023]
|
35
|
Vazey EM, Connor B. Differential fate and functional outcome of lithium chloride primed adult neural progenitor cell transplants in a rat model of Huntington disease. Stem Cell Res Ther 2010; 1:41. [PMID: 21176221 PMCID: PMC3025443 DOI: 10.1186/scrt41] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 12/22/2010] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION The ability to predetermine the fate of transplanted neural progenitor cells (NPCs) and specifically to direct their maturation has the potential to enhance the efficiency of cell-transplantation therapy for neurodegenerative disease. We previously demonstrated that transient exposure of subventricular zone (SVZ)-derived adult NPCs to lithium chloride during in vitro proliferation alters differential fate in vitro and increases the proportion of cells expressing neuronal markers while reducing glial progeny. To extend these findings, we examined whether in vitro priming of adult SVZ-derived NPCs with lithium chloride before transplantation into the quinolinic acid (QA) lesion rat model of Huntington disease altered in vivo neuronal differentiation and sensorimotor function compared with nonprimed NPC transplants. METHODS NPCs were isolated from the SVZ of the adult rat brain and cultured for 2 weeks. Four days before transplantation into the QA-lesioned rat striatum, the cells were labeled with BrdU and primed with lithium chloride. The rats underwent regular evaluation of forelimb use and sensorimotor neglect to establish functional effects of NPC transplantation. Twelve weeks after transplantation, the brains were analyzed with immunohistochemistry to compare the differential fate of primed and nonprimed NPCs. RESULTS We observed that in vitro priming of adult NPCs with lithium chloride reduced gliogenesis and enhanced the occurrence of DARPP-32-positive neurons when compared with nonprimed cells 12 weeks after transplantation into the QA-lesioned striatum. Lithium chloride priming also augmented the formation of efferent projections from newly formed neurons in the damaged host striatum to the globus pallidus. This was associated with acceleration of sensorimotor function recovery in rats receiving transplants of lithium chloride-primed adult NPCs compared with nonprimed transplants. CONCLUSIONS These initial findings indicate that in vitro priming of adult NPCs with lithium chloride may augment transplant efficiency and accelerate sensorimotor function outcome in vivo.
Collapse
Affiliation(s)
- Elena M Vazey
- Department of Pharmacology and Clinical Pharmacology, Centre for Brain Research, Faculty of Medical Health Sciences, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand.
| | | |
Collapse
|
36
|
Mesenchymal stem cells increase hippocampal neurogenesis and counteract depressive-like behavior. Mol Psychiatry 2010; 15:1164-75. [PMID: 19859069 DOI: 10.1038/mp.2009.110] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Adult bone marrow-derived mesenchymal stem cells (MSCs) are regarded as potential candidates for treatment of neurodegenerative disorders, because of their ability to promote neurogenesis. MSCs promote neurogenesis by differentiating into neural lineages as well as by expressing neurotrophic factors that enhance the survival and differentiation of neural progenitor cells. Depression has been associated with impaired neurogenesis in the hippocampus and dentate gyrus. Therefore, the aim of this study was to analyze the therapeutic potential of MSCs in the Flinders sensitive line (FSL), a rat animal model for depression. Rats received an intracerebroventricular injection of culture-expanded and 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI)-labeled bone marrow-derived MSCs (10⁵ cells). MSC-transplanted FSL rats showed significant improvement in their behavioral performance, as measured by the forced swim test and the dominant-submissive relationship (DSR) paradigm. After transplantation, MSCs migrated mainly to the ipsilateral dentate gyrus, CA1 and CA3 regions of the hippocampus, and to a lesser extent to the thalamus, hypothalamus, cortex and contralateral hippocampus. Neurogenesis was increased in the ipsilateral dentate gyrus and hippocampus of engrafted rats (granular cell layer) and was correlated with MSC engraftment and behavioral performance. We therefore postulate that MSCs may serve as a novel modality for treating depressive disorders.
Collapse
|
37
|
NIH-3T3 fibroblast transplants enhance host regeneration and improve spatial learning in ventral subicular lesioned rats. Behav Brain Res 2010; 218:315-24. [PMID: 21074573 DOI: 10.1016/j.bbr.2010.11.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 10/25/2010] [Accepted: 11/05/2010] [Indexed: 12/28/2022]
Abstract
Transplants, besides providing neural replacement, also stimulate host regeneration, which could serve as a powerful means to establish functional recovery in CNS insults. Earlier, we have reported the H3-GFP transplant mediated recovery of cognitive functions in the ventral subicular lesioned rats. In the present study, we demonstrate the efficacy of a non-neural fibroblast transplants in mediating host regeneration and functional recovery in ventral subicular lesioned rats. Adult male Wistar rats were lesioned with ibotenic acid in the ventral subiculum (VSL) and were transplanted with NIH-3T3 fibroblast cells into CA1 region of the hippocampus. Ventral subicular lesioning impaired the spatial task performances in rats and produced considerable degree of dendritic atrophy of the hippocampal pyramidal neurons. Two months following transplantation, the transplants were seen in the dentate gyrus and expressed BDNF and bFGF. Further, the VSL rats with fibroblast transplants showed enhanced expression of BDNF in the hippocampus and enhanced dendritic branching and increased spine density in the CA1 hippocampal pyramidal neurons. Transplantation of fibroblast cells also helped to establish functional recovery and the rats with transplants showed enhanced spatial learning performances. We attribute the recovery of cognitive functions to the graft mediated host regeneration, although the mechanisms of functional recovery remain to be elucidated.
Collapse
|
38
|
Abstract
Current treatments for stroke, such as the use of thrombolytic agents, are often limited by a narrow therapeutic time window. However, the regeneration of the brain after damage is still active days even weeks after stroke occurs, which might provide a second window for treatment. Cell-based therapy can be categorized into two strategies. One is transplantation of exogenous cells into the injured brain to replace the lost cells or support the remaining cells. The other strategy is to enhance the proliferation, differentiation, migration of endogenous stem or progenitor cells. Recent development in adult stem cell research and advancement in the induction of pluripotent stem cells from somatic adult cells provide a tremendous opportunity for transplantation therapy. Understanding the mechanisms and regulations involved in the endogenous neurogenesis will also help develop novel therapeutic interventions to promote neurogenesis and functional recovery in stroke. This review describes up-to-date progresses in cell-based therapy for the treatment of stroke.
Collapse
Affiliation(s)
- Yu Luo
- National Institute on Drug Abuse, I.R.P., 251 Bayview BLVD, Baltimore, MD 21224, USA.
| |
Collapse
|
39
|
Dezawa M, Ishikawa H, Hoshino M, Itokazu Y, Nabeshima YI. Potential of bone marrow stromal cells in applications for neuro-degenerative, neuro-traumatic and muscle degenerative diseases. Curr Neuropharmacol 2010; 3:257-66. [PMID: 18369401 DOI: 10.2174/157015905774322507] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Accepted: 08/02/2005] [Indexed: 01/21/2023] Open
Abstract
Cell transplantation is a promising strategy for the treatment of neurodegenerative and muscle degenerative diseases. Many kinds of cells, including embryonic stem cells and tissue stem cells, have been considered as candidates for transplantation therapy. Bone marrow stromal cells (MSCs) have great potential as therapeutic agents since they are easy to isolate and can be expanded from patients without serious ethical or technical problems. We discovered a new method for the highly efficient and specific induction of functional Schwann cells, neurons and skeletal muscle lineage cells from both rat and human MSCs. These induced cells were transplanted into animal models of neurotraumatic injuries, Parkinson's disease, stroke and muscle dystrophies, resulting in the successful integration of transplanted cells and an improvement in behavior of the transplanted animals. Here we focus on the respective potentials of MSC-derived cells and discuss the possibility of clinical application in degenerative diseases.
Collapse
Affiliation(s)
- Mari Dezawa
- Department of Anatomy and Neurobiology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | | | | | | | | |
Collapse
|
40
|
Doeppner TR, El Aanbouri M, Dietz GPH, Weise J, Schwarting S, Bähr M. Transplantation of TAT-Bcl-xL-transduced neural precursor cells: long-term neuroprotection after stroke. Neurobiol Dis 2010; 40:265-76. [PMID: 20554038 DOI: 10.1016/j.nbd.2010.05.033] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 05/14/2010] [Accepted: 05/30/2010] [Indexed: 01/19/2023] Open
Abstract
Neural precursor cells (NPC) are an interesting tool in experimental stroke research, but their therapeutic potential is limited due to poor long-term survival. We therefore in vitro transduced subventricular zone-(SVZ)-derived NPC with the anti-apoptotic fusion protein TAT-Bcl-x(L) and analyzed NPC survival, differentiation, and post-stroke functional deficits after experimental ischemia in mice. Survival of TAT-Bcl-x(L)-transduced NPC, which were injected at day 7 post-stroke into the ischemic striatum, was significantly increased at 4 weeks after stroke. Increased survival of NPC was associated with reduced infarct injury and decreased post-stroke functional deficits. Animals grafted with TAT-Bcl-x(L)-transduced NPC showed an increased number of immature cells expressing the neuronal marker doublecortin. Since mature neuronal differentiation of NPC was not observed, reduced post-stroke injury cannot be attributed to enhanced neuronal regeneration, but rather to indirect by-stander effects of grafted NPC. In line with this, NPC-mediated neuroprotection of cortical neurons in vitro was associated with increased secretion of growth factors. Thus, in vitro transduction of cultivated NPC with TAT-Bcl-x(L) results in enhanced resistance of transplanted NPC followed by long-term neuroprotection and ameliorated functional deficits after transient focal cerebral ischemia in mice.
Collapse
Affiliation(s)
- Thorsten R Doeppner
- Department of Neurology, University of Goettingen Medical School, 37075 Goettingen, Germany.
| | | | | | | | | | | |
Collapse
|
41
|
Kazma M, Izrael M, Revel M, Chebath J, Yanai J. Survival, differentiation, and reversal of heroin neurobehavioral teratogenicity in mice by transplanted neural stem cells derived from embryonic stem cells. J Neurosci Res 2010; 88:315-23. [PMID: 19746435 DOI: 10.1002/jnr.22193] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cell therapies in animal models of neurobehavioral defects are normally derived from neural stem cells (NSC) of the developing cortex. However, the clinical feasibility of NSC therapies would be greatly improved by deriving transplanted cells and from a tissue culture source that is self-renewing, containing cells that potentially differentiate into the desired neuronal phenotypes. These cultures can be engineered to contain the appropriate factors to support their therapeutic action and likely evoke lesser immune reactions. In the current study, we employed our model of mice neurobehaviorally impaired via prenatal exposure to heroin, to test the therapeutic efficacy of NSC derived from murine embryonic stem cells culture (ESC). The culture contained elongated bipolar cells, 90% of which are positive for nestin, the intermediate filament protein found in neural precursors. After removal of growth factors, the NSC differentiated into neurons (34.0% +/- 3.8% NF-160 positive), including cholinergic cells (ChAT positive), oligodendrocytes (29.9% +/- 4.2% O(4)), and astrocytes (36.1% +/- 4.7% GFAP positive). Reverse transcriptase polymerase chain reaction (RT-PCR) analysis confirmed the immunocytochemical findings. Mice made deficient in Morris maze behavior by prenatal heroin exposure (10 mg/kg heroin s.c. on gestational days 9-18) were transplanted into the hippocampus region on postnatal day 35 with the ES culture-derived NSC (ES-NSC) labeled with dialkylcarbocyanine (Dil) cell tracker. Dil+ and NF160+ cells were detected in the hippocampal region (50% +/- 8% survival). The transplantation completely restored maze performance to normal; e.g., on day 3, transplantation improved the behavior from the deficient level of 11.9-sec latency to the control of 5.6-sec latency (44.5% improvement).
Collapse
Affiliation(s)
- Meital Kazma
- The Ross Laboratory for Studies in Neural Birth Defects, Department of Medical Neurobiology, Institute for Medical Research, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
42
|
Nakagomi N, Nakagomi T, Kubo S, Nakano-Doi A, Saino O, Takata M, Yoshikawa H, Stern DM, Matsuyama T, Taguchi A. Endothelial cells support survival, proliferation, and neuronal differentiation of transplanted adult ischemia-induced neural stem/progenitor cells after cerebral infarction. Stem Cells 2009; 27:2185-95. [PMID: 19557831 DOI: 10.1002/stem.161] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Transplantation of neural stem cells (NSCs) has been proposed as a therapy for a range of neurological disorders. To realize the potential of this approach, it is essential to control survival, proliferation, migration, and differentiation of NSCs after transplantation. NSCs are regulated in vivo, at least in part, by their specialized microenvironment or "niche." In the adult central nervous system, neurogenic regions, such as the subventricular and subgranular zones, include NSCs residing in a vascular niche with endothelial cells. Although there is accumulating evidence that endothelial cells promote proliferation of NSCs in vitro, there is no description of their impact on transplanted NSCs. In this study, we grafted cortex-derived stroke-induced neural stem/progenitor cells, obtained from adult mice, onto poststroke cortex in the presence or absence of endothelial cells, and compared survival, proliferation, and neuronal differentiation of the neural precursors in vivo. Cotransplantation of endothelial cells and neural stem/progenitor cells increased survival and proliferation of ischemia-induced neural stem/progenitor cells and also accelerated neuronal differentiation compared with transplantation of neural precursors alone. These data indicate that reconstitution of elements in the vascular niche enhances transplantation of adult neural progenitor cells.
Collapse
Affiliation(s)
- Nami Nakagomi
- Department of Cerebrovascular Disease, National Cardiovascular Center, Osaka, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Optimizing the success of cell transplantation therapy for stroke. Neurobiol Dis 2009; 37:275-83. [PMID: 19822211 DOI: 10.1016/j.nbd.2009.10.003] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 09/30/2009] [Accepted: 10/02/2009] [Indexed: 12/22/2022] Open
Abstract
Stem cell transplantation has evolved as a promising experimental treatment approach for stroke. In this review, we address the major hurdles for successful translation from basic research into clinical applications and discuss possible strategies to overcome these issues. We summarize the results from present pre-clinical and clinical studies and focus on specific areas of current controversy and research: (i) the therapeutic time window for cell transplantation; (ii) the selection of patients likely to benefit from such a therapy; (iii) the optimal route of cell delivery to the ischemic brain; (iv) the most suitable cell types and sources; (v) the potential mechanisms of functional recovery after cell transplantation; and (vi) the development of imaging techniques to monitor cell therapy.
Collapse
|
44
|
Chen B, Gao XQ, Yang CX, Tan SK, Sun ZL, Yan NH, Pang YG, Yuan M, Chen GJ, Xu GT, Zhang K, Yuan QL. Neuroprotective effect of grafting GDNF gene-modified neural stem cells on cerebral ischemia in rats. Brain Res 2009; 1284:1-11. [PMID: 19520066 DOI: 10.1016/j.brainres.2009.05.100] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 05/24/2009] [Accepted: 05/28/2009] [Indexed: 10/20/2022]
Abstract
Previous studies indicated the beneficial effects of glial cell line-derived neurotrophic factor (GDNF) and transplanted neural stem cells (NSCs) on stroke. Here, we explored whether transplantation of neural stem cells (NSCs) modified by GDNF gene provides a better therapeutic effect than native NSCs after stroke. Primary rat NSCs were transfected with GDNF plasmid (GDNF/NSCs, labeled by green fluorescent protein from AdEasy-1, GFP). Adult rats were subjected to two-hour middle cerebral artery occlusion and reperfusion, followed by infusion of NSCs (labeled with5-bromo-2'-deoxyuridine before infusion, BrdU), GDNF/NSCs and saline at 3 days after reperfusion (NSCs group, GDNF/NSCs group, control group), respectively. All rats were sacrificed at 1, 2, 3, 5, and 7 weeks after reperfusion. Modified Neurological Severity Scores (mNSS) test and H and E staining were respectively performed to evaluate neurological function and lesion volume. Immunohistochemistry was used to identify implanted cells and observe the expressions of Synaptophysin (Syp) and postsynaptic density-95 (PSD-95) and caspase-3. TdT-mediated dUTP-biotin nick-end labeling (TUNEL) was employed to observe apoptotic cells. Western blotting was used to detect brain-derived neurotrophic factor (BDNF) and NT-3 protein expression. Significant recovery of mNSS was found in GDNF/NSCs rats at 2 and 3 weeks after reperfusion compared with NSCs rats. Lesion volume in the NSCs and GDNF/NSCs groups was reduced significantly compared with control group. The number of NSCs in the GDNF/NSCs group was significantly increased in comparison with NSCs group. Moreover, Syp-immunoreactive product at 2 and 3 weeks after reperfusion and PSD-95 immunoreactive product in the GDNF/NSCs group were significantly increased compared with NSCs group. In contrast, caspase-3 positive cells and TUNEL-positive cells in the GDNF/NSCs group were significantly decreased compared with NSCs group. Significant increase of BDNF protein in the GDNF/NSCs and NSCs groups was observed compared to the control group at different time points of reperfusion, and GDNF/NSCs grafting significantly increased BDNF protein expression compared to NSCs grafting. In addition, significant increase of NT-3 protein in GDNF/NSCs and NSCs groups was detected only at 1 week of reperfusion compared to control group. The results demonstrate that grafting NSCs modified by GDNF gene provides better neuroprotection for stroke than NSCs grafting alone.
Collapse
Affiliation(s)
- B Chen
- Luzhou Medical College, Department of Neurobiology, 646000, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Shetty AK, Rao MS, Hattiangady B. Behavior of hippocampal stem/progenitor cells following grafting into the injured aged hippocampus. J Neurosci Res 2009; 86:3062-74. [PMID: 18618674 DOI: 10.1002/jnr.21764] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Multipotent neural stem/progenitor cells (NSCs) from the embryonic hippocampus are potentially useful as donor cells to repopulate the degenerated regions of the aged hippocampus after stroke, epilepsy, or Alzheimer's disease. However, the efficacy of the NSC grafting strategy for repairing the injured aged hippocampus is unknown. To address this issue, we expanded FGF-2-responsive NSCs from the hippocampus of embryonic day 14 green fluorescent protein-expressing transgenic mice as neurospheres in vitro and grafted them into the hippocampus of 24-month-old F344 rats 4 days after CA3 region injury. Engraftment, migration, and neuronal/glial differentiation of cells derived from NSCs were analyzed 1 month after grafting. Differentiation of neurospheres in culture dishes or after placement on organotypic hippocampal slice cultures demonstrated that these cells had the ability to generate considerable numbers of neurons, astrocytes, and oligodendrocytes. Following grafting into the injured aged hippocampus, cells derived from neurospheres survived and dispersed, but exhibited no directed migration into degenerated or intact hippocampal cell layers. Phenotypic analyses of graft-derived cells revealed neuronal differentiation in 3%-5% of cells, astrocytic differentiation in 28% of cells, and oligodendrocytic differentiation in 6%-10% cells. The results demonstrate for the first time that NSCs derived from the fetal hippocampus survive and give rise to all three CNS phenotypes following transplantation into the injured aged hippocampus. However, grafted NSCs do not exhibit directed migration into lesioned areas or widespread neuronal differentiation, suggesting that direct grafting of primitive NSCs is not adequate for repair of the injured aged brain without priming the microenvironment.
Collapse
Affiliation(s)
- Ashok K Shetty
- Department of Surgery (Neurosurgery), Duke University Medical Center, Durham, NC 27710, USA.
| | | | | |
Collapse
|
46
|
Zhang P, Li J, Liu Y, Chen X, Kang Q. Transplanted human embryonic neural stem cells survive, migrate, differentiate and increase endogenous nestin expression in adult rat cortical peri-infarction zone. Neuropathology 2009; 29:410-21. [PMID: 19170896 DOI: 10.1111/j.1440-1789.2008.00993.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Transplantation of stem cells is a potential therapeutic strategy for stroke damage. The survival, migration, and differentiation of transplanted human embryonic neural stem cells in the acute post-ischemic environment were characterized and endogenous nestin expression after transplantation was investigated. Human embryonic neural stem cells obtained from the temporal lobe cortex were cultured and labeled with fluorescent 1,1'-dioctadecy-6,6'-di (4-sulfopheyl)-3,3,3',3'-tetramethylindocarbocyanin (DiI) in vitro. Labeled cells were transplanted into cortical peri-infarction zones of adult rats 24 h after permanent middle cerebral artery occlusion. Survival, migration, and differentiation of grafted cells were quantified in immunofluorescence-stained sections from rats sacrificed at 7, 14, and 28 days after transplantation. Endogenous nestin-positive cells in the cortical peri-infarction zone were counted at serial time points. The cells transplanted into the cortical peri-infarction zone displayed the morphology of living cells and became widely located around the ischemic area. Moreover, some of the transplanted cells expressed nestin, GFAP, or NeuN in the peri-infarction zone. Furthermore, compared with the control group, endogenous nestin-positive cells in the peri-infarction zone had increased significantly 7 days after cell transplantation. These results confirm the survival, migration, and differentiation of transplanted cells in the acute post-ischemic environment and enhanced endogenous nestin expression within a brief time window. These findings indicate that transplantation of neural stem cells into the peri-infarction zone may be performed as early as 24 h after ischemia.
Collapse
Affiliation(s)
- Pengbo Zhang
- Institute of Neurobiology, National Key Academic Subject of Physiology, Xi'an Jiaotong University School of Medicine, Xi'an, China
| | | | | | | | | |
Collapse
|
47
|
Andres RH, Choi R, Steinberg GK, Guzman R. Potential of adult neural stem cells in stroke therapy. Regen Med 2008; 3:893-905. [DOI: 10.2217/17460751.3.6.893] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Despite state-of-the-art therapy, clinical outcome after stroke remains poor, with many patients left permanently disabled and dependent on care. Stem cell therapy has evolved as a promising new therapeutic avenue for the treatment of stroke in experimental studies, and recent clinical trials have proven its feasibility and safety in patients. Replacement of damaged cells and restoration of function can be accomplished by transplantation of different cell types, such as embryonic, fetal or adult stem cells, human fetal tissue and genetically engineered cell lines. Adult neural stem cells offer the advantage of avoiding the ethical problems associated with embryonic or fetal stem cells and can be harvested as autologous grafts from the individual patients. Furthermore, stimulation of endogenous adult stem cell-mediated repair mechanisms in the brain might offer new avenues for stroke therapy without the necessity of transplantation. However, important scientific issues need to be addressed to advance our understanding of the molecular mechanisms underlying the critical steps in cell-based repair to allow the introduction of these experimental techniques into clinical practice. This review describes up-to-date experimental concepts using adult neural stem cells for the treatment of stroke.
Collapse
Affiliation(s)
- Robert H Andres
- Department of Neurosurgery, Stanford University School of Medicine, 300 Pasteur Drive, R211, Stanford, CA 94305-5327, USA
| | - Raymond Choi
- Department of Neurosurgery, Stanford University School of Medicine, 300 Pasteur Drive, R211, Stanford, CA 94305-5327, USA
| | - Gary K Steinberg
- Department of Neurosurgery, Stanford University School of Medicine, 300 Pasteur Drive, R211, Stanford, CA 94305-5327, USA
| | - Raphael Guzman
- Department of Neurosurgery, Stanford University School of Medicine, 300 Pasteur Drive, R211, Stanford, CA 94305-5327, USA
| |
Collapse
|
48
|
Tang J, Xu H, Fan X, Li D, Rancourt D, Zhou G, Li Z, Yang L. Embryonic stem cell-derived neural precursor cells improve memory dysfunction in Abeta(1-40) injured rats. Neurosci Res 2008; 62:86-96. [PMID: 18634835 DOI: 10.1016/j.neures.2008.06.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 05/22/2008] [Accepted: 06/15/2008] [Indexed: 12/16/2022]
Abstract
The versatility of neural precursor cells (NPCs) derived from mouse embryonic stem cells (ESCs) has recently rekindled interests in cell replacement strategies aimed at neurodegenerative diseases. We observed the survival, migration, differentiation and functional recovery of NPCs transplanted into the hippocampus of aggregated beta-amyloid (Abeta) peptide injured rats. Congo Red plaques, Fluro-jade B positive degenerating neurons and neuronal loss were observed in the Abeta-injured hippocampus of rats, accompanied with significant increases in escape latency and decrease in the ratio of exploratory time in a Morris water maze test. EGFP-expressing mouse ES cells were induced into Nestin-positive NPCs before transplantation into the Abeta-injured hippocampus. A marked decrease in escape latency and exploratory time were observed at least 16 weeks after transplantation compared to Abeta-injured animals without grafts. Grafted EGFP-expressing NPCs spread away from the injection tract and about 12.01+/-0.67% and 9.41+/-0.78% of NPCs differentiated into, respectively, GFAP- and NF200-positive cells 4 W after transplantation. These ratios gradually increased to 40.25+/-0.57% and 19.35+/-0.84% by 16 W. The restoration of hippocampal function by ESCs suggests that cell transplantation may be the effective choice to improve the cognitive function caused by Abeta injured.
Collapse
Affiliation(s)
- Jun Tang
- Department of Physiology, Third Military Medical University, 30 Gaotanyan Street, Chongqing 400038, PR China
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Guzman R, Choi R, Gera A, De Los Angeles A, Andres RH, Steinberg GK. Intravascular cell replacement therapy for stroke. Neurosurg Focus 2008; 24:E15. [DOI: 10.3171/foc/2008/24/3-4/e14] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
✓ The use of stem cell transplantation to restore neurological function after stroke is being recognized as a potential novel therapy. Before stem cell transplantation can become widely applicable, however, questions remain about the optimal site of delivery and timing of transplantation. In particular, there seems to be increasing evidence that intravascular cell delivery after stroke is a viable alternative to intracerebral transplantation. In this review, the authors focus on the intravascular delivery of stem cells for stroke treatment with an emphasis on timing, transendothelial migration and possible mechanisms leading to neuroprotection, angiogenesis, immunomodulation, and neural plasticity. They also review current concepts of in vivo imaging and tracking of stem cells after stroke.
Collapse
|
50
|
Ben-Shaanan TL, Ben-Hur T, Yanai J. Transplantation of neural progenitors enhances production of endogenous cells in the impaired brain. Mol Psychiatry 2008; 13:222-31. [PMID: 17876325 DOI: 10.1038/sj.mp.4002084] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Grafting of neural progenitors has been shown to reverse a wide variety of neurobehavioral defects. While their role of replacing injured cells and restoring damaged circuitries has been shown, it is widely accepted that this cannot be the only mechanism, as therapy can occur even when an insufficient number of transplanted cells are found. We hypothesized that one major mechanism by which transplanted neural progenitors exert their therapeutic effect is by enhancing endogenous cells production. Consequently, in an allographic model of transplantation, prenatally heroin-exposed genetically heterogeneous (HS) mice were made defective in their hippocampal neurobehavioral function by exposing their mothers to heroin (10 mg kg(-1) heroin on gestation days 9-18). Hippocampal damage was confirmed by deficient performance in the Morris maze (P<0.009), and decreased production of endogenous cells in the dentate gyrus by 39% was observed. On postnatal day 35, they received an HS-derived neural progenitors transplant followed by repeated bromodeoxyuridine injections. The transplant returned endogenous cells production to normal levels (P<0.006) and reversed the behavioral defects (P<0.03), despite the fact that only 0.0334% of the transplanted neural progenitors survived and that they differentiated mainly to astrocytes. An immunological study demonstrated the presence of macrophages and T cells as a possible explanation for the paucity of the transplanted cells. This study suggests one mechanism for the therapeutic action of neural progenitors, the enhancement of the production of endogenous cells, pointing to future clinical applications in this direction by use of neural progenitors or by analogous cell-inducing techniques.
Collapse
Affiliation(s)
- T L Ben-Shaanan
- The Ross Laboratory for Studies in Neural Birth Defects, Department of Anatomy and Cell Biology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | |
Collapse
|