1
|
Wang Y, Cao Y, Xie W, Guo Y, Cai J, Huang T, Li P. Advances in clinical translation of stem cell-based therapy in neurological diseases. J Cereb Blood Flow Metab 2025; 45:600-616. [PMID: 39883811 PMCID: PMC11783424 DOI: 10.1177/0271678x251317374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/03/2025] [Accepted: 01/16/2025] [Indexed: 02/01/2025]
Abstract
Stem cell-based therapies have raised considerable interest to develop regenerative treatment for neurological disorders with high disability. In this review, we focus on recent preclinical and clinical evidence of stem cell therapy in the treatment of degenerative neurological diseases and discuss different cell types, delivery routes and biodistribution of stem cell therapy. In addition, recent advances of mechanistic insights of stem cell therapy, including functional replacement by exogenous cells, immunomodulation and paracrine effects of stem cell therapies are also demonstrated. Finally, we also highlight the adjunction approaches that has been implemented to augment their reparative function, survival and migration to target specific tissue, including stem cell preconditioning, genetical engineering, co-transplantation and combined therapy.
Collapse
Affiliation(s)
- Yu Wang
- Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yirong Cao
- Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology, Shanghai Jiao Tong University, Ministry of Education, Shanghai, China
| | - Wanqing Xie
- Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology, Shanghai Jiao Tong University, Ministry of Education, Shanghai, China
| | - Yunlu Guo
- Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology, Shanghai Jiao Tong University, Ministry of Education, Shanghai, China
| | - Jiayi Cai
- Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingting Huang
- Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology, Shanghai Jiao Tong University, Ministry of Education, Shanghai, China
| | - Peiying Li
- Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Anesthesiology, Shanghai Jiao Tong University, Ministry of Education, Shanghai, China
| |
Collapse
|
2
|
Probing Interleukin-6 in Stroke Pathology and Neural Stem Cell Transplantation. Int J Mol Sci 2022; 23:ijms232415453. [PMID: 36555094 PMCID: PMC9779061 DOI: 10.3390/ijms232415453] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Stem cell transplantation is historically understood as a powerful preclinical therapeutic following stroke models. Current clinical strategies including clot busting/retrieval are limited by their time windows (tissue plasminogen activator: 3-4 h) and inevitable reperfusion injuries. However, 24+ h post-stroke, stem cells reduce infarction size, improve neurobehavioral performance, and reduce inflammatory agents including interleukins. Typically, interleukin-6 (IL-6) is regarded as proinflammatory, and thus, preclinical studies often discuss it as beneficial for neurological recuperation when stem cells reduce IL-6's expression. However, some studies have also demonstrated neurological benefit with upregulation of IL-6 or preconditioning of stem cells with IL-6. This review specifically focuses on stem cells and IL-6, and their occasionally disparate, occasionally synergistic roles in the setting of ischemic cerebrovascular insults.
Collapse
|
3
|
Abstract
PURPOSE OF THE REVIEW Despite the significant progress in the development of disease-modifying treatments for multiple sclerosis (MS), repair of existing damage is still poorly addressed. Current research focuses on stem cell-based therapies as a suitable alternative or complement to current drug therapies. RECENT FINDINGS Myelin damage is a hallmark of multiple sclerosis, and novel approaches leading to remyelination represent a promising tool to prevent neurodegeneration of the underlying axon. With increasing evidence of diminishing remyelination capacity of the MS brain with ageing and disease progression, exogenous cell transplantation is a promising therapeutic approach for restoration of oligodendrocyte precursor cell pool reserve and myelin regeneration. SUMMARY The present review summarizes recent developments of remyelinating therapies in multiple sclerosis, focusing on exogenous cell-based strategies and discussing related scientific, practical, and ethical concerns.
Collapse
|
4
|
Friedrich RP, Cicha I, Alexiou C. Iron Oxide Nanoparticles in Regenerative Medicine and Tissue Engineering. NANOMATERIALS 2021; 11:nano11092337. [PMID: 34578651 PMCID: PMC8466586 DOI: 10.3390/nano11092337] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022]
Abstract
In recent years, many promising nanotechnological approaches to biomedical research have been developed in order to increase implementation of regenerative medicine and tissue engineering in clinical practice. In the meantime, the use of nanomaterials for the regeneration of diseased or injured tissues is considered advantageous in most areas of medicine. In particular, for the treatment of cardiovascular, osteochondral and neurological defects, but also for the recovery of functions of other organs such as kidney, liver, pancreas, bladder, urethra and for wound healing, nanomaterials are increasingly being developed that serve as scaffolds, mimic the extracellular matrix and promote adhesion or differentiation of cells. This review focuses on the latest developments in regenerative medicine, in which iron oxide nanoparticles (IONPs) play a crucial role for tissue engineering and cell therapy. IONPs are not only enabling the use of non-invasive observation methods to monitor the therapy, but can also accelerate and enhance regeneration, either thanks to their inherent magnetic properties or by functionalization with bioactive or therapeutic compounds, such as drugs, enzymes and growth factors. In addition, the presence of magnetic fields can direct IONP-labeled cells specifically to the site of action or induce cell differentiation into a specific cell type through mechanotransduction.
Collapse
|
5
|
Hamblin MH, Lee JP. Neural Stem Cells for Early Ischemic Stroke. Int J Mol Sci 2021; 22:ijms22147703. [PMID: 34299322 PMCID: PMC8306669 DOI: 10.3390/ijms22147703] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/11/2022] Open
Abstract
Clinical treatments for ischemic stroke are limited. Neural stem cell (NSC) transplantation can be a promising therapy. Clinically, ischemia and subsequent reperfusion lead to extensive neurovascular injury that involves inflammation, disruption of the blood-brain barrier, and brain cell death. NSCs exhibit multiple potentially therapeutic actions against neurovascular injury. Currently, tissue plasminogen activator (tPA) is the only FDA-approved clot-dissolving agent. While tPA’s thrombolytic role within the vasculature is beneficial, tPA’s non-thrombolytic deleterious effects aggravates neurovascular injury, restricting the treatment time window (time-sensitive) and tPA eligibility. Thus, new strategies are needed to mitigate tPA’s detrimental effects and quickly mediate vascular repair after stroke. Up to date, clinical trials focus on the impact of stem cell therapy on neuro-restoration by delivering cells during the chronic stroke stage. Also, NSCs secrete factors that stimulate endogenous repair mechanisms for early-stage ischemic stroke. This review will present an integrated view of the preclinical perspectives of NSC transplantation as a promising treatment for neurovascular injury, with an emphasis on early-stage ischemic stroke. Further, this will highlight the impact of early sub-acute NSC delivery on improving short-term and long-term stroke outcomes.
Collapse
Affiliation(s)
- Milton H. Hamblin
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
- Correspondence: (M.H.H.); (J.-P.L.)
| | - Jean-Pyo Lee
- Department of Physiology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
- Tulane Brain Institute, Tulane University, 1430 Tulane Ave, New Orleans, LA 70112, USA
- Correspondence: (M.H.H.); (J.-P.L.)
| |
Collapse
|
6
|
Frondelli MJ, Levison SW. Leukemia Inhibitory Factor Is Required for Subventricular Zone Astrocyte Progenitor Proliferation and for Prokineticin-2 Production after a Closed Head Injury in Mice. Neurotrauma Rep 2021; 2:285-302. [PMID: 34223558 PMCID: PMC8244521 DOI: 10.1089/neur.2020.0063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Astrogliosis is one of the hallmarks of brain injury, and after a mild injury activated astrocytes subserve neuroprotective and pro-regenerative functions. We previously found that the astroglial response to closed head injury (CHI) was blunted in mice that were haplodeficient in leukemia inhibitory factor (LIF); therefore, the goal of these studies was to determine if the delayed astrogliosis was due to decreased recruitment of subventricular zone (SVZ) progenitors. CHI's were performed on post-natal day 20 on LIF heterozygous (Het) and wild-type (WT) mice. At 48 h post-CHI, astrocyte progenitor proliferation within the SVZ increased ∼250% in WT mice but was reduced by ∼200% in LIF Het mice compared with sham controls. Using neurospheres to model the SVZ, LIF increased the percentage of proliferating astrocyte progenitors by 2-fold compared with controls but had no effect on neural stem cell proliferation. To rule out the involvement of other cytokines, 105 cytokines were analyzed using a multi-plex array and with targeted validation on injured LIF Het versus WT neocortex. Of the cytokines analyzed, only prokineticin-2 (ProK2) required LIF signaling. Correspondingly, LIF-treated neurospheres expressed higher levels of ProK2, the ProK1 and ProK2 receptors (ProKR1 and ProKR2). Using in situ hybridization, ProK2 messenger RNA (mRNA) was most abundant in neocortical neurons and highly expressed within the SVZ. However, in contrast to LIF, ProK2 decreased astrocyte progenitor proliferation 2-fold. Altogether, these data demonstrate that LIF is necessary for astrocyte progenitor proliferation after injury and reveal a new role for LIF as an essential regulator of the neurotrophic factor ProK2.
Collapse
Affiliation(s)
- Michelle J. Frondelli
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Steven W. Levison
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| |
Collapse
|
7
|
Sabzalizadeh M, Afarinesh MR, Esmaeili-Mahani S, Farsinejad A, Derakhshani A, Arabzadeh E, Sheibani V. Transplantation of rat dental pulp stem cells facilities post-lesion recovery in the somatosensory whisker cortex of male Wistar rats. Brain Res Bull 2021; 173:150-161. [PMID: 33964348 DOI: 10.1016/j.brainresbull.2021.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 04/26/2021] [Accepted: 04/30/2021] [Indexed: 11/17/2022]
Abstract
Damage to somatosensory "barrel" cortex reduces the rats' behavioral sensitivity in discrimination of tactile stimuli. Here, we examined how transplantation of stem cells into the lesioned barrel cortex can help in recovery of sensory capacities. We induced mechanical lesions in the right barrel cortex area of male rats. Three days after lesioning, rats received one of three transplantation types: un-differentiated dental pulp stem cells (U-DPSCs) or differentiated dental pulp stem cells (D-DPSCs), or cell medium (vehicle). A fourth group of rats were control without any Surgery. For 4 consecutive weeks, starting one week after transplantation, we evaluated the rats' preference to explore novel textures as a measure of sensory discrimination ability, also measured the expression of glial fibrillary acidic protein (GFAP), Olig 2, nestin, neuronal nuclei (NeuN), brain-derived neurotrophic factor (BDNF) and neuroligin1 by immunohistochemistry and western blotting. Unilateral mechanical lesion decreased the rats' preferential exploration of novel textures compared to the control group across the 4-week behavioral tests. Following stem cell therapy, the rats' performance significantly improved at week 2-4 compared to the vehicle group. Compared to the control group, there was a significant decrease in the expression of nestin, NeuN, Olig 2, BDNF, neuroligin1 and a significant increase in the expression of GFAP in the vehicle group. The expression of the neural markers was significantly higher in DPSCs compared with the vehicle group whereas GFAP level was lower in DPSCs compared to vehicle. We found that DPSCs therapy affected a range of neuronal markers in the barrel cortex post lesion, and improved the rats' recovery for sensory discrimination.
Collapse
Affiliation(s)
- Mansoureh Sabzalizadeh
- Neuroscience Research Center, Institute of Neuropharmachology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Reza Afarinesh
- Neuroscience Research Center, Institute of Neuropharmachology, Kerman University of Medical Sciences, Kerman, Iran; Cognitive Neuroscience Research Center, Institute of Neuropharmachology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Saeed Esmaeili-Mahani
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Alireza Farsinejad
- Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Derakhshani
- Hydatid Disease Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ehsan Arabzadeh
- Cognitive Neuroscience Research Center, Institute of Neuropharmachology, Kerman University of Medical Sciences, Kerman, Iran; Eccles Institute of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Vahid Sheibani
- Neuroscience Research Center, Institute of Neuropharmachology, Kerman University of Medical Sciences, Kerman, Iran; Cognitive Neuroscience Research Center, Institute of Neuropharmachology, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
8
|
Namestnikova DD, Gubskiy IL, Revkova VA, Sukhinich KK, Melnikov PA, Gabashvili AN, Cherkashova EA, Vishnevskiy DA, Kurilo VV, Burunova VV, Semkina AS, Abakumov MA, Gubsky LV, Chekhonin VP, Ahlfors JE, Baklaushev VP, Yarygin KN. Intra-Arterial Stem Cell Transplantation in Experimental Stroke in Rats: Real-Time MR Visualization of Transplanted Cells Starting With Their First Pass Through the Brain With Regard to the Therapeutic Action. Front Neurosci 2021; 15:641970. [PMID: 33737862 PMCID: PMC7960930 DOI: 10.3389/fnins.2021.641970] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
Cell therapy is an emerging approach to stroke treatment with a potential to limit brain damage and enhance its restoration after the acute phase of the disease. In this study we tested directly reprogrammed neural precursor cells (drNPC) derived from adult human bone marrow cells in the rat middle cerebral artery occlusion (MCAO) model of acute ischemic stroke using human placenta mesenchymal stem cells (pMSC) as a positive control with previously confirmed efficacy. Cells were infused into the ipsilateral (right) internal carotid artery of male Wistar rats 24 h after MCAO. The main goal of this work was to evaluate real-time distribution and subsequent homing of transplanted cells in the brain. This was achieved by performing intra-arterial infusion directly inside the MRI scanner and allowed transplanted cells tracing starting from their first pass through the brain vessels. Immediately after transplantation, cells were observed in the periphery of the infarct zone and in the brain stem, 15 min later small numbers of cells could be discovered deep in the infarct core and in the contralateral hemisphere, where drNPC were seen earlier and in greater numbers than pMSC. Transplanted cells in both groups could no longer be detected in the rat brain 48-72 h after infusion. Histological and histochemical analysis demonstrated that both the drNPC and pMSC were localized inside blood vessels in close contact with the vascular wall. No passage of labeled cells through the blood brain barrier was observed. Additionally, the therapeutic effects of drNPC and pMSC were compared. Both drNPC and pMSC induced substantial attenuation of neurological deficits evaluated at the 7th and 14th day after transplantation using the modified neurological severity score (mNSS). Some of the effects of drNPC and pMSC, such as the influence on the infarct volume and the survival rate of animals, differed. The results suggest a paracrine mechanism of the positive therapeutic effects of IA drNPC and pMSC infusion, potentially enhanced by the cell-cell interactions. Our data also indicate that the long-term homing of transplanted cells in the brain is not necessary for the brain's functional recovery.
Collapse
Affiliation(s)
- Daria D. Namestnikova
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russia
- Radiology and Clinical Physiology Scientific Research Center, Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency of Russian Federation, Moscow, Russia
| | - Ilya L. Gubskiy
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russia
- Radiology and Clinical Physiology Scientific Research Center, Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency of Russian Federation, Moscow, Russia
| | - Veronica A. Revkova
- Cell Technology Laboratory, Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies of the Federal Medical Biological Agency of Russian Federation, Moscow, Russia
| | - Kirill K. Sukhinich
- Laboratory of Problems of Regeneration, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Pavel A. Melnikov
- Cell Technology Laboratory, Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies of the Federal Medical Biological Agency of Russian Federation, Moscow, Russia
- Department of Fundamental and Applied Neurobiology, Serbsky Federal Medical Research Centre of Psychiatry and Narcology of the Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Anna N. Gabashvili
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology “MISIS”, Moscow, Russia
| | - Elvira A. Cherkashova
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russia
- Radiology and Clinical Physiology Scientific Research Center, Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency of Russian Federation, Moscow, Russia
| | - Daniil A. Vishnevskiy
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Victoria V. Kurilo
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Veronica V. Burunova
- Laboratory of Cell Biology, Orekhovich Institute of Biomedical Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Alevtina S. Semkina
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russia
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology “MISIS”, Moscow, Russia
| | - Maxim A. Abakumov
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russia
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology “MISIS”, Moscow, Russia
| | - Leonid V. Gubsky
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russia
- Radiology and Clinical Physiology Scientific Research Center, Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency of Russian Federation, Moscow, Russia
| | - Vladimir P. Chekhonin
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russia
- Department of Fundamental and Applied Neurobiology, Serbsky Federal Medical Research Centre of Psychiatry and Narcology of the Ministry of Healthcare of Russian Federation, Moscow, Russia
| | | | - Vladimir P. Baklaushev
- Cell Technology Laboratory, Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies of the Federal Medical Biological Agency of Russian Federation, Moscow, Russia
| | - Konstantin N. Yarygin
- Laboratory of Cell Biology, Orekhovich Institute of Biomedical Chemistry of the Russian Academy of Sciences, Moscow, Russia
- Russian Medical Academy of Continuous Professional Education of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| |
Collapse
|
9
|
Jarrin S, Cabré S, Dowd E. The potential of biomaterials for central nervous system cellular repair. Neurochem Int 2021; 144:104971. [PMID: 33515647 DOI: 10.1016/j.neuint.2021.104971] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 01/01/2023]
Abstract
The central nervous system (CNS) can be injured or damaged through a variety of insults including traumatic injury, stroke, and neurodegenerative or demyelinating diseases, including Alzheimer's disease, Parkinson's disease and multiple sclerosis. Existing pharmacological and other therapeutics strategies are limited in their ability to repair or regenerate damaged CNS tissue meaning there are significant unmet clinical needs facing patients suffering CNS damage and/or degeneration. Through a variety of mechanisms including neuronal replacement, secretion of therapeutic factors, and stimulation of host brain plasticity, cell-based repair offers a potential mechanism to repair and heal the damaged CNS. However, over the decades of its evolution as a therapeutic strategy, cell-based CNS repair has faced significant hurdles that have prevented its translation to widespread clinical practice. In recent years, advances in cell technologies combined with advances in biomaterial-based regenerative medicine and tissue engineering have meant there is very real potential for many of these hurdles to be overcome. This review will provide an overview of the main CNS conditions that lend themselves to cellular repair and will then outline the potential of biomaterial-based approaches for improving the outcome of cellular repair in these conditions.
Collapse
Affiliation(s)
- Sarah Jarrin
- Pharmacology & Therapeutics and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - Sílvia Cabré
- Pharmacology & Therapeutics and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| | - Eilís Dowd
- Pharmacology & Therapeutics and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland.
| |
Collapse
|
10
|
Chandrasekharan P, Tay ZW, Zhou XY, Yu EY, Fung BK, Colson C, Fellows BD, Lu Y, Huynh Q, Saayujya C, Keselman P, Hensley D, Lu K, Orendorff R, Konkle J, Saritas EU, Zheng B, Goodwill P, Conolly S. Magnetic Particle Imaging for Vascular, Cellular and Molecular Imaging. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00015-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
11
|
Noh JE, Oh SH, Lee S, Lee S, Kim YH, Park HJ, Ju JH, Kim HS, Huh JY, Song J. Intracerebral transplantation of HLA-homozygous human iPSC-derived neural precursors ameliorates the behavioural and pathological deficits in a rodent model of ischaemic stroke. Cell Prolif 2020; 53:e12884. [PMID: 32713053 PMCID: PMC7507302 DOI: 10.1111/cpr.12884] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVES Human-induced pluripotent stem cells (hiPSCs) are a promising cell source for treating ischaemic stroke. Although autologous hiPSCs provide the advantage of avoiding immune rejection, their practical limitations, such as substantial amount of time and costs to generate individual iPSC lines, have hampered their widespread application in clinical settings. In this study, we investigated the therapeutic potential of neural precursor cells derived from human HLA-homozygous induced pluripotent stem cells (hiPSC-NPCs) following intracerebral transplantation into a rodent model of middle cerebral artery occlusion (MCAo). MATERIALS AND METHODS We differentiated a GMP-grade HLA-homozygous hiPSC line (CMC-hiPSC-004) into neural precursor cells for transplantation into rats at the subacute stage of ischaemic stroke (ie at 7 days after the induction of MCAo). To investigate functional recovery, the transplanted animals were subjected to five behavioural tests, namely the rotarod, stepping, mNSS, staircase and apomorphine-induced rotation tests, for up to 12 weeks, followed by histological analyses. RESULTS We observed that the hiPSC-NPC transplantation produced significant behavioural improvements. At 12 weeks post-transplantation, a high proportion of transplanted cells survived and had differentiated into MAP2+ mature neurons, GABAergic neurons and DARPP32+ medium spiny neurons. The transplanted cells formed neuronal connections with striatal neurons in the host brain. In addition, hiPSC-NPC transplantation gave rise to enhanced endogenous repair processes, including decreases of post-stroke neuroinflammation and glial scar formation and an increase of proliferating endogenous neural stem cells in the subventricular zone as well as the perilesional capillary networks. CONCLUSIONS These results strongly suggest that HLA-homozygous hiPSC-NPCs may be useful for treating ischaemic stroke patients.
Collapse
Affiliation(s)
- Jeong-Eun Noh
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, Seongnam-si, Korea
| | - Seung-Hun Oh
- Department of Neurology, CHA Bundang Medical Center, CHA University, Seongnam-si, Korea
| | - Suji Lee
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, Seongnam-si, Korea
| | - Soohyeon Lee
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, Seongnam-si, Korea
| | - Young Hoon Kim
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, Seongnam-si, Korea
| | - Hyun Jung Park
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, Seongnam-si, Korea
| | - Ji Hyeon Ju
- Department of Internal Medicine, Seoul St. Mary's Hospital, Institute of Medical Science, The Catholic University of Korea, Seoul, Korea
| | - Hyun Sook Kim
- Department of Neurology, CHA Bundang Medical Center, CHA University, Seongnam-si, Korea
| | - Ji Young Huh
- Department of Laboratory Medicine, CHA Bundang Medical Center, CHA University, Seongnam-si, Korea
| | - Jihwan Song
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, Seongnam-si, Korea.,iPS Bio, Inc., Seongnam-si, Korea
| |
Collapse
|
12
|
Meyer P, Grandgirard D, Lehner M, Haenggi M, Leib SL. Grafted Neural Progenitor Cells Persist in the Injured Site and Differentiate Neuronally in a Rodent Model of Cardiac Arrest-Induced Global Brain Ischemia. Stem Cells Dev 2020; 29:574-585. [PMID: 31964231 DOI: 10.1089/scd.2019.0190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Hypoxic-ischemic brain injury is the leading cause of disability and death after successful resuscitation from cardiac arrest, and, to date, no specific treatment option is available to prevent subsequent neurofunctional impairments. The hippocampal cornu ammonis segment 1 (CA1) is one of the brain areas most affected by hypoxia, and its degeneration is correlated with memory deficits in patients and corresponding animal models. The aim of this work was to evaluate the feasibility of neural progenitor cell (NPC) transplantation into the hippocampus in a refined rodent cardiac arrest model. Adult rats were subjected to 12 min of potassium-induced cardiac arrest and followed up to 6 weeks. Histological analysis showed extensive neuronal cell death specifically in the hippocampal CA1 segment, without any spontaneous regeneration. Neurofunctional assessment revealed transient memory deficits in ischemic animals compared to controls, detectable after 4 weeks, but not after 6 weeks. Using stereotactic surgery, embryonic NPCs were transplanted in a subset of animals 1 week after cardiac arrest and their survival, migration, and differentiation were assessed histologically. Transplanted cells showed a higher persistence in the CA1 segment of animals after ischemia. Glia in the damaged CA1 segment expressed the chemotactic factor stromal cell-derived factor 1 (SDF-1), while transplanted NPCs expressed its receptor CXC chemokine receptor 4 (CXCR4), suggesting that the SDF-1/CXCR4 pathway, known to be involved in the migration of neural stem cells toward injured brain regions, directs the observed retention of cells in the damaged area. Using immunostaining, we could demonstrate that transplanted cells differentiated into mature neurons. In conclusion, our data document the survival, persistence in the injured area, and neuronal differentiation of transplanted NPCs, and thus their potential to support brain regeneration after hypoxic-ischemic injury. This may represent an option worth further investigation to improve the outcome of patients after cardiac arrest.
Collapse
Affiliation(s)
- Patricia Meyer
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland.,Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Cluster for Regenerative Neuroscience, DBMR, University of Bern, Bern, Switzerland
| | - Denis Grandgirard
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland.,Cluster for Regenerative Neuroscience, DBMR, University of Bern, Bern, Switzerland
| | - Marika Lehner
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland.,Cluster for Regenerative Neuroscience, DBMR, University of Bern, Bern, Switzerland
| | - Matthias Haenggi
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Stephen L Leib
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland.,Cluster for Regenerative Neuroscience, DBMR, University of Bern, Bern, Switzerland
| |
Collapse
|
13
|
Magnetic Particle Imaging in Neurosurgery. World Neurosurg 2019; 125:261-270. [DOI: 10.1016/j.wneu.2019.01.180] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/16/2019] [Accepted: 01/19/2019] [Indexed: 01/19/2023]
|
14
|
Namestnikova DD, Tairova RT, Sukhinich KK, Cherkashova EA, Gubskiy IL, Gubskiy LV, Yarygin KN. [Cell therapy for ischemic stroke. Stem cell types and results of pre-clinical trials]. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 118:69-75. [PMID: 30499563 DOI: 10.17116/jnevro201811809269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The literature review addresses the use of stem cells (SC) in ischemic stroke (IS). Part 1 of the paper overviews the results of experimental animal studies. Characteristics of different SC types and results of their studies in experimental models of IS are presented in the first section, the second section considers pros and cons of the methods of SC injection.
Collapse
Affiliation(s)
- D D Namestnikova
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - R T Tairova
- National Research Institute of Cerebrovascular Pathology and Stroke, Moscow, Russia
| | - K K Sukhinich
- Kol'tsov Institute of Development Biology, Moscow, Russia
| | - E A Cherkashova
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - I L Gubskiy
- National Research Institute of Cerebrovascular Pathology and Stroke, Moscow, Russia
| | - L V Gubskiy
- National Research Institute of Cerebrovascular Pathology and Stroke, Moscow, Russia
| | - K N Yarygin
- Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
15
|
Sowa K, Nito C, Nakajima M, Suda S, Nishiyama Y, Sakamoto Y, Nitahara-Kasahara Y, Nakamura-Takahashi A, Ueda M, Kimura K, Okada T. Impact of Dental Pulp Stem Cells Overexpressing Hepatocyte Growth Factor after Cerebral Ischemia/Reperfusion in Rats. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 10:281-290. [PMID: 30151417 PMCID: PMC6108066 DOI: 10.1016/j.omtm.2018.07.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 07/26/2018] [Indexed: 02/07/2023]
Abstract
Hepatocyte growth factor (HGF) has neuroprotective effects against ischemia-induced injuries. Dental pulp stem cell (DPSC) transplantation attenuates tissue injury in the brain of rats with post-transient middle cerebral artery occlusion. We sought to determine whether DPSCs that overexpress HGF can enhance their therapeutic effects on brain damage post-ischemia/reperfusion injury. Treatment with DPSCs overexpressing HGF reduced infarct volumes compared to unmodified DPSC treatment at 3 and 7 days post-transient middle cerebral artery occlusion. The use of unmodified DPSCs and DPSCs overexpressing HGF was associated with improved motor function compared to that with administration of vehicle at 7 days post-transient middle cerebral artery occlusion. DPSCs overexpressing HGF significantly inhibited microglial activation and pro-inflammatory cytokine production along with suppression of neuronal degeneration. Post-reperfusion, DPSCs overexpressing HGF attenuated the decreases in tight junction proteins, maintained blood-brain barrier integrity, and increased microvessel density in peri-infarct areas. The administration of DPSCs overexpressing HGF during the acute phase of stroke increased their neuroprotective effects by modulating inflammation and blood-brain barrier permeability, thereby promoting improvements in post-ischemia/reperfusion brain injury.
Collapse
Affiliation(s)
- Kota Sowa
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan.,Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| | - Chikako Nito
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| | - Masataka Nakajima
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan.,Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| | - Satoshi Suda
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| | - Yasuhiro Nishiyama
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| | - Yuki Sakamoto
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan.,Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| | - Yuko Nitahara-Kasahara
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan.,Department of Cell and Gene Therapy, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| | - Aki Nakamura-Takahashi
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan.,Department of Pharmacology, Tokyo Dental College, Tokyo 101-0061, Japan
| | - Masayuki Ueda
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan.,Department of Neurology and Stroke Medicine, Tokyo Metropolitan Tama Medical Center, Tokyo 183-8524, Japan
| | - Kazumi Kimura
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| | - Takashi Okada
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan.,Department of Cell and Gene Therapy, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| |
Collapse
|
16
|
Evaluation of the Safety and Efficacy of the Therapeutic Potential of Adipose-Derived Stem Cells Injected in the Cerebral Ischemic Penumbra. J Stroke Cerebrovasc Dis 2018; 27:2453-2465. [PMID: 30029838 DOI: 10.1016/j.jstrokecerebrovasdis.2018.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 04/24/2018] [Accepted: 05/01/2018] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION Stroke represents an attractive target for cell therapy. Although different types of cells have been employed in animal models with variable results, the human adipose-derived stem cells (hASCs) have demonstrated favorable characteristics in the treatment of diseases with inflammatory substrate, but experience in their intracerebral administration is lacking. The purpose of this study is to evaluate the effect and safety of the intracerebral application of hASCs in a stroke model. METHODS A first group of Athymic Nude mice after stroke received a stereotactic injection of hASCs at a concentration of 4 × 104/µL at the penumbra area, a second group without stroke received the same cell concentration, and a third group had only stroke and no cells. After 7, 15, and 30 days, the animals underwent fluorodeoxyglucose-positron emission tomography and magnetic resonance imaging; subsequently, they were sacrificed for histological evaluation (HuNu, GFAP, IBA-1, Ki67, DCX) of the penumbra area and ipsilateral subventricular zone (iSVZ). RESULTS The in vitro studies found no alterations in the molecular karyotype, clonogenic capacity, and expression of 62 kDa transcription factor and telomerase. Animals implanted with cells showed no adverse events. The implanted cells showed no evidence of proliferation or differentiation. However, there was an increase of capillaries, less astrocytes and microglia, and increased bromodeoxyuridine and doublecortin-positive cells in the iSVZ and in the vicinity of ischemic injury. CONCLUSIONS These results suggest that hASCs in the implanted dose modulate inflammation, promote endogenous neurogenesis, and do not proliferate or migrate in the brain. These data confirm the safety of cell therapy with hASCs.
Collapse
|
17
|
Abdel-Rahman M, Galhom RA, Nasr El-Din WA, Mohammed Ali MH, Abdel-Hamid AEDS. Therapeutic efficacy of olfactory stem cells in rotenone induced Parkinsonism in adult male albino rats. Biomed Pharmacother 2018; 103:1178-1186. [DOI: 10.1016/j.biopha.2018.04.160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 04/23/2018] [Accepted: 04/23/2018] [Indexed: 01/01/2023] Open
|
18
|
Boese AC, Le QSE, Pham D, Hamblin MH, Lee JP. Neural stem cell therapy for subacute and chronic ischemic stroke. Stem Cell Res Ther 2018; 9:154. [PMID: 29895321 PMCID: PMC5998588 DOI: 10.1186/s13287-018-0913-2] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Neural stem cells (NSCs) play vital roles in brain homeostasis and exhibit a broad repertoire of potentially therapeutic actions following neurovascular injury. One such injury is stroke, a worldwide leading cause of death and disability. Clinically, extensive injury from ischemic stroke results from ischemia-reperfusion (IR), which is accompanied by inflammation, blood-brain barrier (BBB) damage, neural cell death, and extensive tissue loss. Tissue plasminogen activator (tPA) is still the only US Food and Drug Administration-approved clot-lysing agent. Whereas the thrombolytic role of tPA within the vasculature is beneficial, the effects of tPA (in a non-thrombolytic role) within the brain parenchyma have been reported as harmful. Thus, new therapies are needed to reduce the deleterious side effects of tPA and quickly facilitate vascular repair following stroke. The Stroke Treatment Academic Industry Roundtable (STAIR) recommends that stroke therapies "focus on drugs/devices/treatments with multiple mechanisms of action and that target multiple pathways". Thus, based on multifactorial ischemic cascades in various stroke stages, effective stroke therapies need to focus on targeting and ameliorating early IR injury as well as facilitating angiogenesis, neurogenesis, and neurorestorative mechanisms following stroke. This review will discuss the preclinical perspectives of NSC transplantation as a promising treatment for neurovascular injury and will emphasize both the subacute and chronic phase of ischemic stroke.
Collapse
Affiliation(s)
- Austin C Boese
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Quan-Son Eric Le
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Dylan Pham
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Milton H Hamblin
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Jean-Pyo Lee
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, 70112, USA. .,Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
| |
Collapse
|
19
|
Marzban M, Mousavizadeh K, Bakhshayesh M, Vousooghi N, Vakilzadeh G, Torkaman-Boutorabi A. Effect of Multiple Intraperitoneal Injections of Human Bone Marrow Mesenchymal Stem Cells on Cuprizone Model of Multiple Sclerosis. IRANIAN BIOMEDICAL JOURNAL 2018; 22:312-21. [PMID: 29409311 PMCID: PMC6058183 DOI: 10.29252/ibj.22.5.312] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background: Bone marrow mesenchymal stem cells (BM-MSCs) elicit neuroprotective effects, and their repair ability has been investigated in different experimental models. We aimed to investigate the effect of multiple i.p. BM-MSCs injections in the cuprizone model of multiple sclerosis in mice. Methods: Adult male C57BL/6 mice (n = 40) were fed a regular diet or a diet containing cuprizone (0.2% w/w) for six weeks. Bone marrow samples were taken from patients with spinal cord injury. BM-MSCs (2 × 106 in 1 milliliter medium) were administered intraperitoneally for two consecutive weeks at the end of the forth weeks of cuprizone administration. Animals (n = 12) were perfused with 10% paraformaldehyde at the end of sixth week. The brains were sectioned coronally in 6-8-μm thickness (-2.3 to 1.8 mm from bregma). The sections were stained by luxol fast blue-cresyl violet, and images were captured via a microscope. Demyelination ratio was estimated in corpus callosum in a blind manner. A quantitative real-time PCR was used to measure the myelin basic protein gene expression at sixth week. Results: Histologically, cuprizone induced demyelination in the corpus callosum. Demyelinated area was diminished in the corpus callosum of cell-administered group. Cuprizone could decrease myelin-binding protein mRNAs expression in corpus callosum, which was significantly recovered after BM-MSCs injections. Conclusion: Our data indicated a remyelination potency of multiple i.p. BM-MSCs in the cuprizone model of multiple sclerosis in mice.
Collapse
Affiliation(s)
- Mohsen Marzban
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kazem Mousavizadeh
- Cellular and Molecular Research Center and Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoomeh Bakhshayesh
- Cellular and Molecular Research Center and Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nasim Vousooghi
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Cognitive and Behavioral Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Gelareh Vakilzadeh
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Anahita Torkaman-Boutorabi
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Cognitive and Behavioral Sciences, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Abstract
Ischemic stroke is the second most common cause of death worldwide and a major cause of disability. It takes place when the brain does not receive sufficient blood supply due to the blood clot in the vessels or narrowing of vessels' inner space due to accumulation of fat products. Apart from thrombolysis (dissolving of blood clot) and thrombectomy (surgical removal of blood clot or widening of vessel inner area) during the first hours after an ischemic stroke, no effective treatment to improve functional recovery exists in the post-ischemic phase. Due to their narrow therapeutic time window, thrombolysis and thrombectomy are unavailable to more than 80% of stroke patients.Many experimental studies carried out in animal models of stroke have demonstrated that stem cell transplantation may become a new therapeutic strategy in stroke. Transplantation of stem cells of different origin and stage of development has been shown to lead to improvement in experimental models of stroke through several mechanisms including neuronal replacement, modulation of cellular and synaptic plasticity and inflammation, neuroprotection and stimulation of angiogenesis. Several clinical studies and trials based on stem cell delivery in stroke patients are in progress with goal of improvements of functional recovery through mechanisms other than neuronal replacement. These approaches may provide therapeutic benefit, but generation of specific neurons for reconstruction of stroke-injured neural circuitry remains ultimate challenge. For this purpose, neural stem cells could be developed from multiple sources and fated to adopt required neuronal phenotype.
Collapse
Affiliation(s)
- Zaal Kokaia
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, University Hospital, Lund, Sweden.
| | - Vladimer Darsalia
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
21
|
Su Z, Jing H, Zhang Z, Tu M, Ying H, Zhuge Q, Zeng Y, Zhang Y. Expression of Vascular Endothelial Growth Factor after Transfection of Human Neural Stem Cells with the Lentiviral Vector Encoding the VEGF165 Gene. NEUROPHYSIOLOGY+ 2017. [DOI: 10.1007/s11062-017-9678-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
22
|
Wei L, Wei ZZ, Jiang MQ, Mohamad O, Yu SP. Stem cell transplantation therapy for multifaceted therapeutic benefits after stroke. Prog Neurobiol 2017; 157:49-78. [PMID: 28322920 PMCID: PMC5603356 DOI: 10.1016/j.pneurobio.2017.03.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 01/30/2017] [Accepted: 03/05/2017] [Indexed: 02/06/2023]
Abstract
One of the exciting advances in modern medicine and life science is cell-based neurovascular regeneration of damaged brain tissues and repair of neuronal structures. The progress in stem cell biology and creation of adult induced pluripotent stem (iPS) cells has significantly improved basic and pre-clinical research in disease mechanisms and generated enthusiasm for potential applications in the treatment of central nervous system (CNS) diseases including stroke. Endogenous neural stem cells and cultured stem cells are capable of self-renewal and give rise to virtually all types of cells essential for the makeup of neuronal structures. Meanwhile, stem cells and neural progenitor cells are well-known for their potential for trophic support after transplantation into the ischemic brain. Thus, stem cell-based therapies provide an attractive future for protecting and repairing damaged brain tissues after injury and in various disease states. Moreover, basic research on naïve and differentiated stem cells including iPS cells has markedly improved our understanding of cellular and molecular mechanisms of neurological disorders, and provides a platform for the discovery of novel drug targets. The latest advances indicate that combinatorial approaches using cell based therapy with additional treatments such as protective reagents, preconditioning strategies and rehabilitation therapy can significantly improve therapeutic benefits. In this review, we will discuss the characteristics of cell therapy in different ischemic models and the application of stem cells and progenitor cells as regenerative medicine for the treatment of stroke.
Collapse
Affiliation(s)
- Ling Wei
- Laboratories of Stem Cell Biology and Regenerative Medicine, Department of Neurology, Experimental Research Center and Neurological Disease Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zheng Z Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Michael Qize Jiang
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Osama Mohamad
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Shan Ping Yu
- Laboratories of Stem Cell Biology and Regenerative Medicine, Department of Neurology, Experimental Research Center and Neurological Disease Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
23
|
Neuroprotective Effects of Stem Cells in Ischemic Stroke. Stem Cells Int 2017; 2017:4653936. [PMID: 28757878 PMCID: PMC5512103 DOI: 10.1155/2017/4653936] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 06/11/2017] [Indexed: 12/29/2022] Open
Abstract
Ischemic stroke, the most common subtype of stroke, has been one of the leading causes of mobility and mortality worldwide. However, it is still lacking of efficient agents. Stem cell therapy, with its vigorous advantages, has attracted researchers around the world. Numerous experimental researches in animal models of stroke have demonstrated the promising efficacy in treating ischemic stroke. The underlying mechanism involved antiapoptosis, anti-inflammation, promotion of angiogenesis and neurogenesis, formation of new neural cells and neuronal circuitry, antioxidation, and blood-brain barrier (BBB) protection. This review would focus on the types and neuroprotective actions of stem cells and its potential mechanisms for ischemic stroke.
Collapse
|
24
|
Ochenashko OV, Volkova NA, Mazur SP, Somov AY, Fuller BJ, Petrenko AY. Cryopreserved Fetal Liver Cell Transplants Support the Chronic Failing Liver in Rats with CCl4-Induced Cirrhosis. Cell Transplant 2017; 15:23-33. [PMID: 16700327 DOI: 10.3727/000000006783982232] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Hepatocyte transplantation is a promising method for supporting hepatic function in a broad spectrum of liver diseases. The aim of this work was to test the efficacy of human fetal liver cells to support the chronic failing liver in an experimental model of carbon tetrachloride (CCl4)-induced cirrhosis in rats. Liver cirrhosis was induced by intraperitoneal administration of CCl4 at a dose of 0.2 ml (50% v/v solution)/100 g body weight, twice a week for 3 months in rats. Ten days after stopping CCl4 administration (experimental day 0), rats received intrasplenic injection of cryopreserved fetal liver cells (FLC, 1 × 107 cells in 0.3 ml medium). As a cirrhotic control group, CCl4-induced cirrhotic rats were used with intrasplenic injection of an equal volume of medium alone. Animals were sacrificed on experimental day 15. Human fetal liver cell transplantation almost completely prevented the death of cirrhotic animals during the 2 weeks after treatment, while high ongoing mortality was seen in the cirrhotic control group. Cell transplantation into the spleen normalized total bilirubin and TBARSs levels and increased albumin levels in blood serum, as well as restoring mitochondrial function and liver detoxification function (assessed by cytochrome P450 contents and activity) compared with the activities seen in the cirrhosis control group. In parallel with this restoration of biochemical and functional liver indices, morphological patterns of liver recovery or regeneration after liver cell transplantation were demonstrated in day 15 samples by light microscopy. These were absent in the group that had received only medium alone.
Collapse
Affiliation(s)
- Olga V Ochenashko
- Department of Biochemistry, Institute for Problems of Cryobiology and Cryomedicine, Kharkov 61015, Ukraine
| | | | | | | | | | | |
Collapse
|
25
|
Choi SS, Yoon SB, Lee SR, Kim SU, Cha YJ, Lee D, Kim SU, Chang KT, Lee HJ. Establishment and Characterization of Immortalized Minipig Neural Stem Cell Line. Cell Transplant 2017; 26:271-281. [PMID: 27524466 DOI: 10.3727/096368916x692852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Despite the increasing importance of minipigs in biomedical research, there has been relatively little research concerning minipig-derived adult stem cells as a promising research tool that could be used to develop stem cell-based therapies. We first generated immortalized neural stem cells (iNSCs) from primary minipig olfactory bulb cells (pmpOBCs) and defined the characteristics of the cell line. Primary neural cells were prepared from minipig neonate olfactory bulbs and immortalized by infection with retrovirus carrying the v-myc gene. The minipig iNSCs (mpiNSCs) had normal karyotypes and expressed NSC-specific markers, including nestin, vimentin, Musashi1, and SOX2, suggesting a similarity to human NSCs. On the basis of the global gene expression profiles from the microarray analysis, neurogenesis-associated transcript levels were predominantly altered in mpiNSCs compared with pmpOBCs. These findings increase our understanding of minipig stem cells and contribute to the utility of mpiNSCs as resources for immortalized stem cell experiments.
Collapse
|
26
|
Manthey AL, Liu W, Jiang ZX, Lee MHK, Ji J, So KF, Lai JSM, Lee VWH, Chiu K. Using Electrical Stimulation to Enhance the Efficacy of Cell Transplantation Therapies for Neurodegenerative Retinal Diseases: Concepts, Challenges, and Future Perspectives. Cell Transplant 2017; 26:949-965. [PMID: 28155808 DOI: 10.3727/096368917x694877] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Disease or trauma-induced loss or dysfunction of neurons in any central nervous system (CNS) tissue will have a significant impact on the health of the affected patient. The retina is a multilayered tissue that originates from the neuroectoderm, much like the brain and spinal cord. While sight is not required for life, neurodegeneration-related loss of vision not only affects the quality of life for the patient but also has societal implications in terms of health care expenditure. Thus, it is essential to develop effective strategies to repair the retina and prevent disease symptoms. To address this need, multiple techniques have been investigated for their efficacy in treating retinal degeneration. Recent advances in cell transplantation (CT) techniques in preclinical, animal, and in vitro culture studies, including further evaluation of endogenous retinal stem cells and the differentiation of exogenous adult stem cells into various retinal cell types, suggest that this may be the most appropriate option to replace lost retinal neurons. Unfortunately, the various limitations of CT, such as immune rejection or aberrant cell behavior, have largely prevented this technique from becoming a widely used clinical treatment option. In parallel with the advances in CT methodology, the use of electrical stimulation (ES) to treat retinal degeneration has also been recently evaluated with promising results. In this review, we propose that ES could be used to enhance CT therapy, whereby electrical impulses can be applied to the retina to control both native and transplanted stem cell behavior/survival in order to circumvent the limitations associated with retinal CT. To highlight the benefits of this dual treatment, we have briefly outlined the recent developments and limitations of CT with regard to its use in the ocular environment, followed by a brief description of retinal ES, as well as described their combined use in other CNS tissues.
Collapse
|
27
|
Ahn JH, Chen BH, Shin BN, Cho JH, Kim IH, Park JH, Lee JC, Tae HJ, Lee YL, Lee J, Byun K, Jeong GB, Lee B, Kim SU, Kim YM, Won MH, Choi SY. Intravenously Infused F3.Olig2 Improves Memory Deficits via Restoring Myelination in the Aged Hippocampus following Experimental Ischemic Stroke. Cell Transplant 2016; 25:2129-2144. [DOI: 10.3727/096368916x692230] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Oligodendrocytes play a crucial role in creating the myelin sheath that is an important component in neural transmission. In an animal model of transient cerebral ischemia, application of oligodendrocyte progenitor cells (OPCs) has not yet been reported. In this study, the effects of F3.Olig2 transplantation on memory and cognitive dysfunction were investigated in the aged gerbil in which ischemic stroke was induced. To investigate the possible mechanisms underlying repair, changes in the expression of myelin basic protein (MBP), oligodendrocyte-specific protein (OSP), and brain-derived neurotrophic factor (BDNF) were examined. Experimental ischemic stroke was induced by occlusion of bilateral common carotid arteries in aged gerbils. Gerbils ( n = 31 per group) were randomly divided into three groups: (1) vehicle sham group, (2) vehicle ischemia group, and (3) F3.Olig2 ischemia group. After 1, 3, and 7 days of ischemia–reperfusion (I-R), saline or F3.Olig2 cells (1 × 10 6 cells in 100 μl) were injected into the gerbils intravenously. The gerbils were sacrificed 10 days after I-R for identification of grafted F3.Olig2 cells, and 15 and 30 days after I-R for tissue analysis after conducting passive avoidance and novel object recognition test. Injected F3.Olig2 cells and MBP, OSP, and BDNF were detected by specific antibodies using immunohistochemistry and/or Western blots. Memory and cognition were significantly increased in the F3.Olig2 ischemia group compared with the vehicle ischemia group. In the F3.Olig2 ischemia group, the neurons were not protected from ischemic damage; however, MBP, OSP, and BDNF expressions were significantly increased. Our results show that injection of F3.Olig2 cells significantly improved impaired memory and cognition, which might be related to increased MBP expression via increasing OSP and BDNF expression in the aged gerbil hippocampus following transient cerebral ischemia.
Collapse
Affiliation(s)
- Ji Hyeon Ahn
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, South Korea
| | - Bai Hui Chen
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Bich Na Shin
- Department of Physiology, College of Medicine, Institute of Neurodegeneration and Neuroregeneration, Hallym University, Chuncheon, South Korea
| | - Jeong Hwi Cho
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - In Hye Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Joon Ha Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, South Korea
| | - Jae Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Hyun Jin Tae
- Bio-Safety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, South Korea
| | - Yun Lyul Lee
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Jaesuk Lee
- Center for Genomics and Proteomics, Institute for Regenerative Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, South Korea
| | - Kyunghee Byun
- Center for Genomics and Proteomics, Institute for Regenerative Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, South Korea
- Department of Anatomy and Cell Biology, Gachon University Graduate School of Medicine, Incheon, South Korea
| | - Goo-Bo Jeong
- Department of Anatomy and Cell Biology, Gachon University Graduate School of Medicine, Incheon, South Korea
| | - Bonghee Lee
- Center for Genomics and Proteomics, Institute for Regenerative Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, South Korea
- Department of Anatomy and Cell Biology, Gachon University Graduate School of Medicine, Incheon, South Korea
| | - Seung U. Kim
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, South Korea
| |
Collapse
|
28
|
Iraci N, Leonardi T, Gessler F, Vega B, Pluchino S. Focus on Extracellular Vesicles: Physiological Role and Signalling Properties of Extracellular Membrane Vesicles. Int J Mol Sci 2016; 17:171. [PMID: 26861302 PMCID: PMC4783905 DOI: 10.3390/ijms17020171] [Citation(s) in RCA: 220] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 09/24/2015] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) are a heterogeneous population of secreted membrane vesicles, with distinct biogenesis routes, biophysical properties and different functions both in physiological conditions and in disease. The release of EVs is a widespread biological process, which is conserved across species. In recent years, numerous studies have demonstrated that several bioactive molecules are trafficked with(in) EVs, such as microRNAs, mRNAs, proteins and lipids. The understanding of their final impact on the biology of specific target cells remains matter of intense debate in the field. Also, EVs have attracted great interest as potential novel cell-free therapeutics. Here we describe the proposed physiological and pathological functions of EVs, with a particular focus on their molecular content. Also, we discuss the advances in the knowledge of the mechanisms regulating the secretion of EV-associated molecules and the specific pathways activated upon interaction with the target cell, highlighting the role of EVs in the context of the immune system and as mediators of the intercellular signalling in the brain.
Collapse
Affiliation(s)
- Nunzio Iraci
- Wellcome Trust-Medical Research Council Stem Cell Institute, Clifford Allbutt Building-Cambridge Biosciences Campus, Department of Clinical Neurosciences, and NIHR Biomedical Research Centre, University of Cambridge, Hills Road CB2 0PY, UK.
| | - Tommaso Leonardi
- Wellcome Trust-Medical Research Council Stem Cell Institute, Clifford Allbutt Building-Cambridge Biosciences Campus, Department of Clinical Neurosciences, and NIHR Biomedical Research Centre, University of Cambridge, Hills Road CB2 0PY, UK.
- EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SD, UK.
| | - Florian Gessler
- Wellcome Trust-Medical Research Council Stem Cell Institute, Clifford Allbutt Building-Cambridge Biosciences Campus, Department of Clinical Neurosciences, and NIHR Biomedical Research Centre, University of Cambridge, Hills Road CB2 0PY, UK.
| | - Beatriz Vega
- Wellcome Trust-Medical Research Council Stem Cell Institute, Clifford Allbutt Building-Cambridge Biosciences Campus, Department of Clinical Neurosciences, and NIHR Biomedical Research Centre, University of Cambridge, Hills Road CB2 0PY, UK.
| | - Stefano Pluchino
- Wellcome Trust-Medical Research Council Stem Cell Institute, Clifford Allbutt Building-Cambridge Biosciences Campus, Department of Clinical Neurosciences, and NIHR Biomedical Research Centre, University of Cambridge, Hills Road CB2 0PY, UK.
| |
Collapse
|
29
|
Zheng B, Vazin T, Goodwill PW, Conway A, Verma A, Ulku Saritas E, Schaffer D, Conolly SM. Magnetic Particle Imaging tracks the long-term fate of in vivo neural cell implants with high image contrast. Sci Rep 2015; 5:14055. [PMID: 26358296 PMCID: PMC4566119 DOI: 10.1038/srep14055] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 08/12/2015] [Indexed: 01/15/2023] Open
Abstract
We demonstrate that Magnetic Particle Imaging (MPI) enables monitoring of cellular grafts with high contrast, sensitivity, and quantitativeness. MPI directly detects the intense magnetization of iron-oxide tracers using low-frequency magnetic fields. MPI is safe, noninvasive and offers superb sensitivity, with great promise for clinical translation and quantitative single-cell tracking. Here we report the first MPI cell tracking study, showing 200-cell detection in vitro and in vivo monitoring of human neural graft clearance over 87 days in rat brain.
Collapse
Affiliation(s)
- Bo Zheng
- Department of Bioengineering, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Tandis Vazin
- Department of Bioengineering, University of California at Berkeley, Berkeley, CA 94720, USA
- Department of Chemical and Biomolecular Engineering, University of California at Berkeley, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Patrick W. Goodwill
- Department of Bioengineering, University of California at Berkeley, Berkeley, CA 94720, USA
- Magnetic Insight, Inc., Newark, CA 94560, USA
| | - Anthony Conway
- Department of Chemical and Biomolecular Engineering, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Aradhana Verma
- Department of Chemical and Biomolecular Engineering, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Emine Ulku Saritas
- Department of Bioengineering, University of California at Berkeley, Berkeley, CA 94720, USA
| | - David Schaffer
- Department of Bioengineering, University of California at Berkeley, Berkeley, CA 94720, USA
- Department of Chemical and Biomolecular Engineering, University of California at Berkeley, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Steven M. Conolly
- Department of Bioengineering, University of California at Berkeley, Berkeley, CA 94720, USA
- Department of Electrical Engineering and Computer Science, University of California at Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
30
|
Fan HC, Ho LI, Chi CS, Cheng SN, Juan CJ, Chiang KL, Lin SZ, Harn HJ. Current proceedings of cerebral palsy. Cell Transplant 2015; 24:471-85. [PMID: 25706819 DOI: 10.3727/096368915x686931] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cerebral palsy (CP) is a complicated disease with varying causes and outcomes. It has created significant burden to both affected families and societies, not to mention the quality of life of the patients themselves. There is no cure for the disease; therefore, development of effective therapeutic strategies is in great demand. Recent advances in regenerative medicine suggest that the transplantation of stem cells, including embryonic stem cells, neural stem cells, bone marrow mesenchymal stem cells, induced pluripotent stem cells, umbilical cord blood cells, and human embryonic germ cells, focusing on the root of the problem, may provide the possibility of developing a complete cure in treating CP. However, safety is the first factor to be considered because some stem cells may cause tumorigenesis. Additionally, more preclinical and clinical studies are needed to determine the type of cells, route of delivery, cell dose, timing of transplantation, and combinatorial strategies to achieve an optimal outcome.
Collapse
Affiliation(s)
- Hueng-Chuen Fan
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Partial recovery from brain injury due to trauma, hypoxia, or stroke, is ubiquitous and occurs largely through unknown mechanisms. It is now well accepted that injury enhances proliferation of quiescent stem and progenitor cells in specialized niches within the brain. However, whether this injury-induced neurogenesis contributes to recovery after brain injury remains controversial. Recent evidence suggests that hippocampal neural stem/precursor cell activation and subsequent neurogenesis are responsible for at least some aspects of spontaneous recovery following brain injury from a variety of causes. However, other aspects of injury-induced neurogenesis, including its contribution to adverse sequelae such as seizures, are still being investigated. The purpose of this review is to provide an overview of adult hippocampal neurogenesis and how it relates to injury and explain how current mouse technology is allowing for better understanding of whether manipulating this natural process might eventually help inform therapy following brain injury.
Collapse
Affiliation(s)
- Tzong-Shiue Yu
- Departments of Pediatrics and Pathology & Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Patricia M Washington
- Departments of Pediatrics and Pathology & Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Steven G Kernie
- Departments of Pediatrics and Pathology & Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
32
|
Kumar SKS, Perumal S, Rajagopalan V. Therapeutic effect of bone marrow mesenchymal stem cells on cold stress induced changes in the hippocampus of rats. Neural Regen Res 2014; 9:1740-4. [PMID: 25422634 PMCID: PMC4238161 DOI: 10.4103/1673-5374.143416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2014] [Indexed: 01/22/2023] Open
Abstract
The present study aims to evaluate the effect of bone marrow mesenchymal stem cells on cold stress induced neuronal changes in hippocampal CA1 region of Wistar rats. Bone marrow mesenchymal stem cells were isolated from a 6-week-old Wistar rat. Bone marrow from adult femora and tibia was collected and mesenchymal stem cells were cultured in minimal essential medium containing 10% heat-inactivated fetal bovine serum and were sub-cultured. Passage 3 cells were analyzed by flow cytometry for positive expression of CD44 and CD90 and negative expression of CD45. Once CD44 and CD90 positive expression was achieved, the cells were cultured again to 90% confluence for later experiments. Twenty-four rats aged 8 weeks old were randomly and evenly divided into normal control, cold water swim stress (cold stress), cold stress + PBS (intravenous infusion), and cold stress + bone marrow mesenchymal stem cells (1 × 10(6); intravenous infusion) groups. The total period of study was 60 days which included 1 month stress period followed by 1 month treatment. Behavioral functional test was performed during the entire study period. After treatment, rats were sacrificed for histological studies. Treatment with bone marrow mesenchymal stem cells significantly increased the number of neuronal cells in hippocampal CA1 region. Adult bone marrow mesenchymal stem cells injected by intravenous administration show potential therapeutic effects in cognitive decline associated with stress-related lesions.
Collapse
|
33
|
Faravelli I, Riboldi G, Nizzardo M, Simone C, Zanetta C, Bresolin N, Comi GP, Corti S. Stem cell transplantation for amyotrophic lateral sclerosis: therapeutic potential and perspectives on clinical translation. Cell Mol Life Sci 2014; 71:3257-68. [PMID: 24699704 PMCID: PMC11113626 DOI: 10.1007/s00018-014-1613-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 02/26/2014] [Accepted: 03/17/2014] [Indexed: 12/14/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurological disease characterized by degeneration of upper and lower motor neurons. There are currently no clinically impactful treatments for this disorder. Death occurs 3-5 years after diagnosis, usually due to respiratory failure. ALS pathogenesis seems to involve several pathological mechanisms (i.e., oxidative stress, inflammation, and loss of the glial neurotrophic support, glutamate toxicity) with different contributions from environmental and genetic factors. This multifaceted combination highlights the concept that an effective therapeutic approach should counteract simultaneously different aspects: stem cell therapies are able to maintain or rescue motor neuron function and modulate toxicity in the central nervous system (CNS) at the same time, eventually representing the most comprehensive therapeutic approach for ALS. To achieve an effective cell-mediated therapy suitable for clinical applications, several issues must be addressed, including the identification of the most performing cell source, a feasible administration protocol, and the definition of therapeutic mechanisms. The method of cell delivery represents a major issue in developing cell-mediated approaches since the cells, to be effective, need to be spread across the CNS, targeting both lower and upper motor neurons. On the other hand, there is the need to define a strategy that could provide a whole distribution without being too invasive or burdened by side effects. Here, we review the recent advances regarding the therapeutic potential of stem cells for ALS with a focus on the minimally invasive strategies that could facilitate an extensive translation to their clinical application.
Collapse
Affiliation(s)
- Irene Faravelli
- Department of Pathophysiology and Transplantation (DEPT), Neuroscience Section, Dino Ferrari Centre, Neurology Unit, University of Milan, IRCCS Foundation Ca’Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy
| | - Giulietta Riboldi
- Department of Pathophysiology and Transplantation (DEPT), Neuroscience Section, Dino Ferrari Centre, Neurology Unit, University of Milan, IRCCS Foundation Ca’Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy
| | - Monica Nizzardo
- Department of Pathophysiology and Transplantation (DEPT), Neuroscience Section, Dino Ferrari Centre, Neurology Unit, University of Milan, IRCCS Foundation Ca’Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy
| | - Chiara Simone
- Department of Pathophysiology and Transplantation (DEPT), Neuroscience Section, Dino Ferrari Centre, Neurology Unit, University of Milan, IRCCS Foundation Ca’Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy
| | - Chiara Zanetta
- Department of Pathophysiology and Transplantation (DEPT), Neuroscience Section, Dino Ferrari Centre, Neurology Unit, University of Milan, IRCCS Foundation Ca’Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy
| | - Nereo Bresolin
- Department of Pathophysiology and Transplantation (DEPT), Neuroscience Section, Dino Ferrari Centre, Neurology Unit, University of Milan, IRCCS Foundation Ca’Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy
| | - Giacomo P. Comi
- Department of Pathophysiology and Transplantation (DEPT), Neuroscience Section, Dino Ferrari Centre, Neurology Unit, University of Milan, IRCCS Foundation Ca’Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy
| | - Stefania Corti
- Department of Pathophysiology and Transplantation (DEPT), Neuroscience Section, Dino Ferrari Centre, Neurology Unit, University of Milan, IRCCS Foundation Ca’Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy
| |
Collapse
|
34
|
Banerjee S, Bentley P, Hamady M, Marley S, Davis J, Shlebak A, Nicholls J, Williamson DA, Jensen SL, Gordon M, Habib N, Chataway J. Intra-Arterial Immunoselected CD34+ Stem Cells for Acute Ischemic Stroke. Stem Cells Transl Med 2014; 3:1322-30. [PMID: 25107583 DOI: 10.5966/sctm.2013-0178] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Treatment with CD34+ hematopoietic stem/progenitor cells has been shown to improve functional recovery in nonhuman models of ischemic stroke via promotion of angiogenesis and neurogenesis. We aimed to determine the safety and feasibility of treatment with CD34+ cells delivered intra-arterially in patients with acute ischemic stroke. This was the first study in human subjects. We performed a prospective, nonrandomized, open-label, phase I study of autologous, immunoselected CD34+ stem/progenitor cell therapy in patients presenting within 7 days of onset with severe anterior circulation ischemic stroke (National Institutes of Health Stroke Scale [NIHSS] score≥8). CD34+ cells were collected from the bone marrow of the subjects before being delivered by catheter angiography into the ipsilesional middle cerebral artery. Eighty-two patients with severe anterior circulation ischemic stroke were screened, of whom five proceeded to treatment. The common reasons for exclusion were age>80 years (n=19); medical instability (n=17), and significant carotid stenosis (n=13). The procedure was well tolerated in all patients, and no significant treatment-related adverse effects occurred. All patients showed improvements in clinical functional scores (Modified Rankin Score and NIHSS score) and reductions in lesion volume during a 6-month follow-up period. Autologous CD34+ selected stem/progenitor cell therapy delivered intra-arterially into the infarct territory can be achieved safely in patients with acute ischemic stroke. Future studies that address eligibility criteria, dosage, delivery site, and timing and that use surrogate imaging markers of outcome are desirable before larger scale clinical trials.
Collapse
Affiliation(s)
- Soma Banerjee
- Department of Stroke Medicine, Clinical Neurosciences, Department of Interventional Radiology, Stem Cell Transplant Unit, and Department of Haematology, Imperial College Healthcare National Health Services Trust, London, United Kingdom; Departments of Surgery and Haematology, Faculty of Medicine, Imperial College London, London, United Kingdom; Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand; National Hospital for Neurology and Neurosurgery, University College London Hospitals National Health Services Foundation Trust, London, United Kingdom; Institute of Neurology, University College London, London, United Kingdom
| | - Paul Bentley
- Department of Stroke Medicine, Clinical Neurosciences, Department of Interventional Radiology, Stem Cell Transplant Unit, and Department of Haematology, Imperial College Healthcare National Health Services Trust, London, United Kingdom; Departments of Surgery and Haematology, Faculty of Medicine, Imperial College London, London, United Kingdom; Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand; National Hospital for Neurology and Neurosurgery, University College London Hospitals National Health Services Foundation Trust, London, United Kingdom; Institute of Neurology, University College London, London, United Kingdom
| | - Mohammad Hamady
- Department of Stroke Medicine, Clinical Neurosciences, Department of Interventional Radiology, Stem Cell Transplant Unit, and Department of Haematology, Imperial College Healthcare National Health Services Trust, London, United Kingdom; Departments of Surgery and Haematology, Faculty of Medicine, Imperial College London, London, United Kingdom; Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand; National Hospital for Neurology and Neurosurgery, University College London Hospitals National Health Services Foundation Trust, London, United Kingdom; Institute of Neurology, University College London, London, United Kingdom
| | - Stephen Marley
- Department of Stroke Medicine, Clinical Neurosciences, Department of Interventional Radiology, Stem Cell Transplant Unit, and Department of Haematology, Imperial College Healthcare National Health Services Trust, London, United Kingdom; Departments of Surgery and Haematology, Faculty of Medicine, Imperial College London, London, United Kingdom; Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand; National Hospital for Neurology and Neurosurgery, University College London Hospitals National Health Services Foundation Trust, London, United Kingdom; Institute of Neurology, University College London, London, United Kingdom
| | - John Davis
- Department of Stroke Medicine, Clinical Neurosciences, Department of Interventional Radiology, Stem Cell Transplant Unit, and Department of Haematology, Imperial College Healthcare National Health Services Trust, London, United Kingdom; Departments of Surgery and Haematology, Faculty of Medicine, Imperial College London, London, United Kingdom; Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand; National Hospital for Neurology and Neurosurgery, University College London Hospitals National Health Services Foundation Trust, London, United Kingdom; Institute of Neurology, University College London, London, United Kingdom
| | - Abdul Shlebak
- Department of Stroke Medicine, Clinical Neurosciences, Department of Interventional Radiology, Stem Cell Transplant Unit, and Department of Haematology, Imperial College Healthcare National Health Services Trust, London, United Kingdom; Departments of Surgery and Haematology, Faculty of Medicine, Imperial College London, London, United Kingdom; Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand; National Hospital for Neurology and Neurosurgery, University College London Hospitals National Health Services Foundation Trust, London, United Kingdom; Institute of Neurology, University College London, London, United Kingdom
| | - Joanna Nicholls
- Department of Stroke Medicine, Clinical Neurosciences, Department of Interventional Radiology, Stem Cell Transplant Unit, and Department of Haematology, Imperial College Healthcare National Health Services Trust, London, United Kingdom; Departments of Surgery and Haematology, Faculty of Medicine, Imperial College London, London, United Kingdom; Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand; National Hospital for Neurology and Neurosurgery, University College London Hospitals National Health Services Foundation Trust, London, United Kingdom; Institute of Neurology, University College London, London, United Kingdom
| | - Deborah A Williamson
- Department of Stroke Medicine, Clinical Neurosciences, Department of Interventional Radiology, Stem Cell Transplant Unit, and Department of Haematology, Imperial College Healthcare National Health Services Trust, London, United Kingdom; Departments of Surgery and Haematology, Faculty of Medicine, Imperial College London, London, United Kingdom; Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand; National Hospital for Neurology and Neurosurgery, University College London Hospitals National Health Services Foundation Trust, London, United Kingdom; Institute of Neurology, University College London, London, United Kingdom
| | - Steen L Jensen
- Department of Stroke Medicine, Clinical Neurosciences, Department of Interventional Radiology, Stem Cell Transplant Unit, and Department of Haematology, Imperial College Healthcare National Health Services Trust, London, United Kingdom; Departments of Surgery and Haematology, Faculty of Medicine, Imperial College London, London, United Kingdom; Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand; National Hospital for Neurology and Neurosurgery, University College London Hospitals National Health Services Foundation Trust, London, United Kingdom; Institute of Neurology, University College London, London, United Kingdom
| | - Myrtle Gordon
- Department of Stroke Medicine, Clinical Neurosciences, Department of Interventional Radiology, Stem Cell Transplant Unit, and Department of Haematology, Imperial College Healthcare National Health Services Trust, London, United Kingdom; Departments of Surgery and Haematology, Faculty of Medicine, Imperial College London, London, United Kingdom; Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand; National Hospital for Neurology and Neurosurgery, University College London Hospitals National Health Services Foundation Trust, London, United Kingdom; Institute of Neurology, University College London, London, United Kingdom
| | - Nagy Habib
- Department of Stroke Medicine, Clinical Neurosciences, Department of Interventional Radiology, Stem Cell Transplant Unit, and Department of Haematology, Imperial College Healthcare National Health Services Trust, London, United Kingdom; Departments of Surgery and Haematology, Faculty of Medicine, Imperial College London, London, United Kingdom; Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand; National Hospital for Neurology and Neurosurgery, University College London Hospitals National Health Services Foundation Trust, London, United Kingdom; Institute of Neurology, University College London, London, United Kingdom
| | - Jeremy Chataway
- Department of Stroke Medicine, Clinical Neurosciences, Department of Interventional Radiology, Stem Cell Transplant Unit, and Department of Haematology, Imperial College Healthcare National Health Services Trust, London, United Kingdom; Departments of Surgery and Haematology, Faculty of Medicine, Imperial College London, London, United Kingdom; Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand; National Hospital for Neurology and Neurosurgery, University College London Hospitals National Health Services Foundation Trust, London, United Kingdom; Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
35
|
Kim SU, Lee HJ, Park IH, Chu K, Lee ST, Kim M, Roh JK, Kim SK, Wang KC. Human nerual stem cells for brain repair. Int J Stem Cells 2014; 1:27-35. [PMID: 24855505 DOI: 10.15283/ijsc.2008.1.1.27] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2008] [Indexed: 01/17/2023] Open
Abstract
Cell replacement therapy and gene transfer to the diseased or injured brain have provided the basis for the development of potentially powerful new therapeutic strategies for a broad spectrum of human neurological diseases including Parkinson disease, Huntington disease, amyotrophic lateral sclerosis (ALS), Alzheimer disease, multiple sclerosis (MS), stroke, spinal cord injury and brain cancer. In recent years, neurons and glial cells have successfully been generated from neural stem cells, and extensive efforts by investigators to develop neural stem cell-based transplantation therapies have been carried out. We review here notable experimental and pre-clinical studies we have previously conducted involving human neural stem cell-based cell- and gene-therapies for Parkinson disease, Huntington disease, ALS, stroke and brain cancer.
Collapse
Affiliation(s)
- Seung U Kim
- Institute for Regenerative Medicine, Gachon Medical University Gil Hospital, Incheon, Korea ; Division of Neurology, Department of Medicine, UBC Hospital, University of British Columbia, Vancouver, Canada
| | - Hong J Lee
- Institute for Regenerative Medicine, Gachon Medical University Gil Hospital, Incheon, Korea
| | - In H Park
- Institute for Regenerative Medicine, Gachon Medical University Gil Hospital, Incheon, Korea
| | - Kon Chu
- Department of Neurology Seoul National University Hospital, Seoul, Korea
| | - Soon T Lee
- Department of Neurology Seoul National University Hospital, Seoul, Korea
| | - Manho Kim
- Department of Neurology Seoul National University Hospital, Seoul, Korea
| | - Jae K Roh
- Department of Neurology Seoul National University Hospital, Seoul, Korea
| | - Seung K Kim
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea
| | - Kyu C Wang
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
36
|
Donegà M, Giusto E, Cossetti C, Schaeffer J, Pluchino S. Systemic injection of neural stem/progenitor cells in mice with chronic EAE. J Vis Exp 2014. [PMID: 24798882 DOI: 10.3791/51154] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Neural stem/precursor cells (NPCs) are a promising stem cell source for transplantation approaches aiming at brain repair or restoration in regenerative neurology. This directive has arisen from the extensive evidence that brain repair is achieved after focal or systemic NPC transplantation in several preclinical models of neurological diseases. These experimental data have identified the cell delivery route as one of the main hurdles of restorative stem cell therapies for brain diseases that requires urgent assessment. Intraparenchymal stem cell grafting represents a logical approach to those pathologies characterized by isolated and accessible brain lesions such as spinal cord injuries and Parkinson's disease. Unfortunately, this principle is poorly applicable to conditions characterized by a multifocal, inflammatory and disseminated (both in time and space) nature, including multiple sclerosis (MS). As such, brain targeting by systemic NPC delivery has become a low invasive and therapeutically efficacious protocol to deliver cells to the brain and spinal cord of rodents and nonhuman primates affected by experimental chronic inflammatory damage of the central nervous system (CNS). This alternative method of cell delivery relies on the NPC pathotropism, specifically their innate capacity to (i) sense the environment via functional cell adhesion molecules and inflammatory cytokine and chemokine receptors; (ii) cross the leaking anatomical barriers after intravenous (i.v.) or intracerebroventricular (i.c.v.) injection; (iii) accumulate at the level of multiple perivascular site(s) of inflammatory brain and spinal cord damage; and (i.v.) exert remarkable tissue trophic and immune regulatory effects onto different host target cells in vivo. Here we describe the methods that we have developed for the i.v. and i.c.v. delivery of syngeneic NPCs in mice with experimental autoimmune encephalomyelitis (EAE), as model of chronic CNS inflammatory demyelination, and envisage the systemic stem cell delivery as a valuable technique for the selective targeting of the inflamed brain in regenerative neurology.
Collapse
Affiliation(s)
- Matteo Donegà
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, UK
| | - Elena Giusto
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, UK
| | - Chiara Cossetti
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, UK
| | - Julia Schaeffer
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, UK
| | - Stefano Pluchino
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, UK;
| |
Collapse
|
37
|
Lee SR, Lee HJ, Cha SH, Jeong KJ, Lee Y, Jeon CY, Yi KS, Lim I, Cho ZH, Chang KT, Kim SU. Long-term survival and differentiation of human neural stem cells in nonhuman primate brain with no immunosuppression. Cell Transplant 2014; 24:191-201. [PMID: 24480401 DOI: 10.3727/096368914x678526] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Cellular fate of human neural stem cells (hNSCs) transplanted in the brain of nonhuman primates (NHPs) with no immunosuppression was determined at 22 and 24 months posttransplantation (PTx) regarding survival, differentiation, and tumorigenesis. Survival of hNSCs labeled with magnetic nanoparticles was successfully detected around injection sites in the brain at 22 months PTx by MRI. Histological examination of brain sections with H&E and Prussian blue staining at 24 months revealed that most of the grafted hNSCs were found located along the injection tract. Grafted hNSCs were found to differentiate into neurons at 24 months PTx. In addition, none of the grafted hNSCs were bromodeoxyuridine positive in the monkey brain, indicating that hNSCs did not replicate in the NHP brain and did not cause tumor formation. This study serves as a proof of principle and provides evidence that hNSCs transplanted in NHP brain could survive and differentiate into neurons in the absence of immunosuppression. It also serves as a preliminary study in our scheduled preclinical studies of hNSC transplantation in NHP stroke models.
Collapse
Affiliation(s)
- Sang-Rae Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Sondossi K, Majdzadeh M, Ghaeli P, Ghahremani MH, Shafaroodi H, Paknejad B, Ostad SN. Analysis of the antiepileptic, ethosuximide impacts on neurogenesis of rat forebrain stem cells. Fundam Clin Pharmacol 2014; 28:512-8. [PMID: 24354536 DOI: 10.1111/fcp.12061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 11/18/2013] [Accepted: 12/10/2013] [Indexed: 12/01/2022]
Abstract
Specific GABAergic interneurons in the hilus are lost in animal models with temporal-lobe epilepsy (TLE). Some preclinical evidence has indicated that GABAergic cells may provide relief from seizures in these models. This study was aimed to examine the ability of ethosuximide, an anticonvulsant drug, to promote neurogenesis in 3-day-old rat forebrain cortex stem cells. Most of the cells were found to be nestin-positive undifferentiated neural stem cells prior to their exposure to ethosuximide. It was noted that the number and percentage of tubulin β-III immunopositive neurons were increased after 6 days treatment with ethosuximide. Upon bFGF withdrawal, exposure to ethosuximide differentiated the stem cells to MAP2 positive neural cells (7.18 ± 0.43, 21.766 ± 0.55 and 41.57 ± 0.5 for control, 0.1 and 1 μM, respectively). GABA immunofluorescence images illustrated that ethosuximide increased GABAergic neurons (7.19 ± 0.32, 23.23 ± 0.55, and 46.30 ± 0.44 for control, 0.1 and 1 μM, respectively). Additionally, BrdU immunofluorescence assay showed that ethosuximide-enhanced nucleus proliferation in the neuronal stem cells. Therefore, the results of this study suggest that ethosuximide may compensate damage caused by seizure attacks and possibly other neuronal loss disorders.
Collapse
Affiliation(s)
- Kiana Sondossi
- Department of Pharmacology, Pharmaceutical Sciences Branch, Islamic Azad University (IAU), Tehran, Iran
| | | | | | | | | | | | | |
Collapse
|
39
|
Kim WK, Kim D, Cui J, Jang HH, Kim KS, Lee HJ, Kim SU, Ahn SM. Secretome analysis of human oligodendrocytes derived from neural stem cells. PLoS One 2014; 9:e84292. [PMID: 24392122 PMCID: PMC3879300 DOI: 10.1371/journal.pone.0084292] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 11/13/2013] [Indexed: 01/17/2023] Open
Abstract
In this study, we investigated the secretome of human oligodendrocytes (F3.Olig2 cells) generated from human neural stem cells by transduction with the gene encoding the Olig2 transcription factor. Using mRNA sequencing and protein cytokine arrays, we identified a number of biologically important secretory proteins whose expression has not been previously reported in oligodendrocytes. We found that F3.Olig2 cells secrete IL-6, PDGF-AA, GRO, GM-CSF, and M-CSF, and showed prominent expression of their corresponding receptors. Co-expression of ligands and receptors suggests that autocrine signaling loops may play important roles in both differentiation and maintenance of oligodendrocytes. We also found that F3.Olig2 cells secrete matrix metalloproteinases and matrix metalloproteinase-associated proteins associated with functional competence of oligodendrocytes. The results of our secretome analysis provide insights into the functional and molecular details of human oligodendrocytes. To the best of our knowledge, this is the first systematic analysis of the secretome of oligodendrocytes.
Collapse
Affiliation(s)
- Woo Kyung Kim
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
- Asan Center for Cancer Genome Discovery, Asan Institute for Life Science, Ulsan University College of Medicine, Asan Medical Center, Seoul, Korea
- BRC Genome Research Center, Bio Research Complex, Incheon, Korea
| | - Deokhoon Kim
- Asan Center for Cancer Genome Discovery, Asan Institute for Life Science, Ulsan University College of Medicine, Asan Medical Center, Seoul, Korea
| | - Jun Cui
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
| | - Ho Hee Jang
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
| | - Kwang Sei Kim
- Medical Research Institute, Chung-Ang University College of Medicine, Seoul, Korea
| | - Hong Jun Lee
- Medical Research Institute, Chung-Ang University College of Medicine, Seoul, Korea
| | - Seung U. Kim
- Medical Research Institute, Chung-Ang University College of Medicine, Seoul, Korea
- Division of Neurology, Department of Medicine, UBC Hospital, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail: (SUK); (SMA)
| | - Sung-Min Ahn
- Asan Center for Cancer Genome Discovery, Asan Institute for Life Science, Ulsan University College of Medicine, Asan Medical Center, Seoul, Korea
- Department of Oncology, Ulsan University College of Medicine, Seoul, Korea
- * E-mail: (SUK); (SMA)
| |
Collapse
|
40
|
Song M, Kim YJ, Kim YH, Roh J, Kim EC, Lee HJ, Kim SU, Yoon BW. Long-term effects of magnetically targeted ferumoxide-labeled human neural stem cells in focal cerebral ischemia. Cell Transplant 2013; 24:183-90. [PMID: 24380414 DOI: 10.3727/096368913x675755] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The long-term effect of magnetically targeted neural stem cells in a rat focal cerebral ischemia model was investigated. In middle cerebral artery occlusion (MCAO) stroke model rats, ferumoxide-labeled human neural stem cells (hNSCs) were injected into the tail vein. MCAO rats were divided into three groups: ischemia only (IO), ischemia with NSC injection (IC), and ischemia with NSC injection and the use of magnet targeting (IM). Four weeks after MCAO and 3 weeks posttransplantation, a greater number of hNSCs were found in ischemic lesion sites in IM rat brain compared with IO and IC animals. In addition, differentiation of hNSCs into neurons or astrocytes and angiogenesis were markedly increased. In IM rats, infarct volume was considerably reduced, and function was significantly improved. The present study indicates that long-term use of magnetic fields may be a useful way to improve the efficacy of targeted migration of stem cells and functional deficits in stem cell-based therapy for ischemic brain injury.
Collapse
Affiliation(s)
- Miyeoun Song
- Department of Neurology, Clinical Research Institute, Seoul National University Hospital, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Chang DJ, Moon H, Lee YH, Lee N, Lee HJ, Jeon I, Lee H, Hwang TS, Oh SH, Shin DA, Kim SU, Hong KS, Song J. In vivo Tracking of Human Neural Stem Cells Following Transplantation into a Rodent Model of Ischemic Stroke. Int J Stem Cells 2013; 5:79-83. [PMID: 24298359 DOI: 10.15283/ijsc.2012.5.1.79] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2012] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Ischemic stroke caused by middle cerebral artery occlusion (MCAo) is the major type of stroke, but there are currently very limited options for cure. It has been shown that neural stem cells (NSCs) or neural precursor cells (NPCs) can survive and improve neurological deficits when they are engrafted in animal models of various neurological diseases. However, how the transplanted NSCs or NPCs are act in vivo in the injured or diseased brain is largely unknown. In this study, we utilized magnetic resonance imaging (MRI) techniques in order to understand the fates of human NSCs (HB1.F3) following transplantation into a rodent model of MCAo. METHODS AND RESULTS HB1.F3 human NSCs were pre-labeled with ferumoxides (Feridex(®))-protamine sulfate complexes, which were visualized and examined by MRI up to 9 weeks after transplantation. Migration of the transplanted cells to the infarct area was further confirmed by histological methods. CONCLUSIONS Based on these observations, we speculate that the transplanted NSCs have the extensive migratory ability to the injured site, which will in turn contribute to functional recovery in stroke.
Collapse
Affiliation(s)
- Da-Jeong Chang
- CHA Stem Cell Institute, Department of Biomedical Science, CHA University, Seoul
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Klose J, Schmidt NO, Melms A, Dohi M, Miyazaki JI, Bischof F, Greve B. Suppression of experimental autoimmune encephalomyelitis by interleukin-10 transduced neural stem/progenitor cells. J Neuroinflammation 2013; 10:117. [PMID: 24053338 PMCID: PMC3852052 DOI: 10.1186/1742-2094-10-117] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 09/08/2013] [Indexed: 02/07/2023] Open
Abstract
Neural stem/progenitor cells (NSPCs) have the ability to migrate into the central nervous system (CNS) to replace damaged cells. In inflammatory CNS disease, cytokine transduced neural stem cells may be used as vehicles to specifically reduce inflammation and promote cell replacement. In this study, we used NSPCs overexpressing IL-10, an immunomodulatory cytokine, in an animal model for CNS inflammation and multiple sclerosis (MS). Intravenous injection of IL-10 transduced neural stem/progenitor cells (NSPCIL-10) suppressed myelin oligodendrocyte glycoprotein aa 35–55 (MOG35-55)- induced experimental autoimmune encephalomyelitis (EAE) and, following intravenous injection, NSPCIL-10 migrated to peripheral lymphoid organs and into the CNS. NSPCIL-10 suppressed antigen-specific proliferation and proinflammatory cytokine production of lymph node cells obtained from MOG35-55 peptide immunized mice. In this model, IL-10 producing NSPCs act via a peripheral immunosuppressive effect to attenuate EAE.
Collapse
Affiliation(s)
- Juliane Klose
- Center of Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Otfried-Müller-Strasse 27, 72076 Tübingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
43
|
Kim KS, Lee HJ, An J, Kim YB, Ra JC, Lim I, Kim SU. Transplantation of human adipose tissue-derived stem cells delays clinical onset and prolongs life span in ALS mouse model. Cell Transplant 2013; 23:1585-1597. [PMID: 24070071 DOI: 10.3727/096368913x673450] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that selectively affects motor neurons in the cortex, brain stem, and spinal cord. The precise pathogenic mechanism remains unknown, and there is currently no effective therapy. We evaluated the therapeutic effects of human adipose tissue-derived stem cells (ASCs) in an animal model of ALS. Human abdominal subcutaneous fat tissues were obtained by simple liposuction from donors, and ASCs were isolated from the fat stromal vascular fraction. ASCs were found to differentiate into adipocytes, chondrocytes, osteocytes, and neurons. SOD1G93A ALS mice were divided into three groups: sham, intravenous (IV), and intracerebroventricular (ICV) groups. Human ASCs were transplanted in the ALS mice at 70 postnatal days before the appearance of clinical symptoms. Behavior of transplanted animals was assessed by rotarod test, paw grip endurance (PaGE), and reflex index. Mice in every group were sacrificed after 4 weeks posttransplantation. Transplanted ASCs were identified in the lumbar spinal cords with an antihuman mitochondria antibody and cell type-specific markers for neurons or astrocytes. Delayed onset of clinical symptoms (26 days) and extended survival of animals (24 days) were observed in ALS mice transplanted with ASCs via ICV route. ASCs were found to secrete high levels of neurotrophic factors such as NGF, BDNF, IGF-1, and VEGF. Reduction of apoptotic cell death by these factors was confirmed in cultured CNS cells and in the ALS spinal cord. These results indicate that transplantation of ASCs in ALS mice provides neuroprotective effects by production of cytokines/growth factors, delays disease progression, and prolongs the life span of ALS mice.
Collapse
Affiliation(s)
- Kwang S Kim
- Medical Research Institute, Chung-Ang University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
44
|
Selective delivery of a therapeutic gene for treatment of head and neck squamous cell carcinoma using human neural stem cells. Clin Exp Otorhinolaryngol 2013; 6:176-83. [PMID: 24069522 PMCID: PMC3781232 DOI: 10.3342/ceo.2013.6.3.176] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 11/12/2012] [Accepted: 01/16/2013] [Indexed: 12/16/2022] Open
Abstract
Objectives Based on studies of the extensive tropism of neural stem cells (NSCs) toward malignant brain tumor, we hypothesized that NSCs could also target head and neck squamous cell carcinoma (HNSCC) and could be used as a cellular therapeutic delivery system. Methods To apply this strategy to the treatment of HNSCC, we used a human NSC line expressing cytosine deaminase (HB1.F3-CD), an enzyme that converts 5-fluorocytosine (5-FC) into 5-fluorouracil (5-FU), an anticancer agent. HB1. F3-CD in combination with 5-FC were cocultured with the HNSCC (SNU-1041) to examine the cytotoxicity on target tumor cells in vitro. For in vivo studies, an HNSCC mouse model was created by subcutaneous implantation of human HNSCC cells into athymic nude mice. HB1.F3-CD cells were injected into mice using tumoral, peritumoral, or intravenous injections, followed by systemic 5-FC administration. Results In vitro, the HB1.F3-CD cells significantly inhibited the growth of an HNSCC cell line in the presence of the 5-FC. Independent of the method of injection, the HB1.F3-CD cells migrated to the HNSCC tumor, causing a significant reduction in tumor volume. In comparison to 5-FU administration, HB1.F3-CD cell injection followed by 5-FC administration reduced systemic toxicity, but achieved the same level of therapeutic efficacy. Conclusion Transplantation of human NSCs that express the suicide enzyme cytosine deaminase combined with systemic administration of the prodrug 5-FC may be an effective regimen for the treatment of HNSCC.
Collapse
|
45
|
Dai J, Li SQ, Qiu YM, Xiong WH, Yin YH, Jia F, Jiang JY. Migration of neural stem cells to ischemic brain regions in ischemic stroke in rats. Neurosci Lett 2013; 552:124-8. [DOI: 10.1016/j.neulet.2013.07.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 07/04/2013] [Accepted: 07/27/2013] [Indexed: 12/12/2022]
|
46
|
Yuan T, Liao W, Feng NH, Lou YL, Niu X, Zhang AJ, Wang Y, Deng ZF. Human induced pluripotent stem cell-derived neural stem cells survive, migrate, differentiate, and improve neurologic function in a rat model of middle cerebral artery occlusion. Stem Cell Res Ther 2013; 4:73. [PMID: 23769173 PMCID: PMC3706848 DOI: 10.1186/scrt224] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 06/10/2013] [Indexed: 01/10/2023] Open
Abstract
Introduction Stroke is a major cause of permanent neurologic damage, with few effective treatments available to restore lost function. Induced pluripotent stem cells (iPSCs) have the potential to generate all cell types in vitro and can be generated from a stroke patient. Therefore, iPSCs are attractive donor sources of genetically identical “patient-specific” cells to hold promise in therapy for stroke. In the present study, we established a four-stage culture system by using serum-free medium and retinoic acid (RA) to differentiate iPSCs into neural stem cells (NSCs) effectively and stably. Our hypothesis was that iPSC-derived NSCs would survive, migrate, and differentiate in vivo, and improve neurologic function after transplantation into the brains of rats with ischemic stroke. Methods Human iPSCs (iPS-S-01) and human ESCs (HuES17) were used to differentiate into NSCs by using our four-stage culture system. iPSCs and differentiated NSCs were characterized by immunocytochemistry staining and reverse transcription-polymerase chain reaction (RT-PCR) analysis. After establishment of focal cerebral ischemia with occlusion of the middle cerebral artery (MCA) and cell transplantation, animals were killed at 1 week and 2 weeks to analyze survival, migration, and differentiation of implanted cells in brain tissue. Animal behavior was evaluated via rope grabbing, beam walking, and Morris water maze tests. Results iPSCs were efficiently induced into NSCs by using a newly established four-stage induction system in vitro. iPSCs expressed pluripotency-associated genes Oct4, Sox2, and Nanog before NSC differentiation. The iPSC-derived NSCs spontaneously differentiated into neurons and astrocytes, which highly express β-tubulin and glial fibrillary acidic protein (GFAP), respectively. On transplantation into the striatum, CM-DiI labeled iPSC-derived NSCs were found to migrate into the ischemia area at 1 week and 2 weeks, and animal-function recovery was significantly improved in comparison with control groups at 3 weeks. Conclusions The four-stage induction system is stable and effective to culture, differentiate, and induce iPSCs to NSCs by using serum-free medium combined with retinoic acid (RA). Implanted iPSC-derived NSCs were able to survive, migrate into the ischemic brain area to differentiate into mature neural cells, and seem to have potential to restore lost neurologic function from damage due to stroke in a rat model.
Collapse
|
47
|
In vivo bioluminescence reporter gene imaging for the activation of neuronal differentiation induced by the neuronal activator neurogenin 1 (Ngn1) in neuronal precursor cells. Eur J Nucl Med Mol Imaging 2013; 40:1607-17. [PMID: 23754760 DOI: 10.1007/s00259-013-2457-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 05/03/2013] [Indexed: 10/26/2022]
Abstract
PURPOSE Facilitation of the ability of neuronal lineages derived from transplanted stem cells to differentiate is essential to improve the low efficacy of neuronal differentiation in stem cell therapy in vivo. Neurogenin 1 (Ngn1), a basic helix-loop-helix factor, has been used as an activator of neuronal differentiation. In this study, we monitored the in vivo activation of neuronal differentiation by Ngn1 in neuronal precursor cells using neuron-specific promoter-based optical reporters. METHODS The NeuroD promoter coupled with the firefly luciferase reporter system (pNeuroD-Fluc) was used to monitor differentiation in F11 neuronal precursor cells. In vitro luciferase activity was measured and normalized by protein content. The in vivo-jetPEI(TM) system was used for in vivo transgene delivery. The IVIS 100 imaging system was used to monitor in vivo luciferase activity. RESULTS The Ngn1-induced neuronal differentiation of F11 cells generated neurite outgrowth within 2 days of Ngn1 induction. Immunofluorescence staining demonstrated that early and late neuronal marker expression (βIII-tubulin, NeuroD, MAP2, NF-M, and NeuN) was significantly increased at 3 days after treatment with Ngn1. When Ngn1 and the pNeuroD-Fluc vector were cotransfected into F11 cells, we observed an approximately 11-fold increase in the luciferase signal. An in vivo study showed that bioluminescence signals were gradually increased in Ngn1-treated F11 cells for up to 3 days. CONCLUSION In this study, we examined the in vivo tracking of neuronal differentiation induced by Ngn1 using an optical reporter system. This reporter system could be used effectively to monitor the activation efficiency of neuronal differentiation in grafted stem cells treated with Ngn1 for stem cell therapy.
Collapse
|
48
|
Pluchino S, Cossetti C. How stem cells speak with host immune cells in inflammatory brain diseases. Glia 2013; 61:1379-401. [PMID: 23633288 DOI: 10.1002/glia.22500] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/01/2013] [Indexed: 12/14/2022]
Abstract
Advances in stem cell biology have raised great expectations that diseases and injuries of the central nervous system (CNS) may be ameliorated by the development of non-hematopoietic stem cell medicines. Yet, the application of adult stem cells as CNS therapeutics is challenging and the interpretation of some of the outcomes ambiguous. In fact, the initial idea that stem cell transplants work only via structural cell replacement has been challenged by the observation of consistent cellular signaling between the graft and the host. Cellular signaling is the foundation of coordinated actions and flexible responses, and arises via networks of exchanging and interacting molecules that transmit patterns of information between cells. Sustained stem cell graft-to-host communication leads to remarkable trophic effects on endogenous brain cells and beneficial modulatory actions on innate and adaptive immune responses in vivo, ultimately promoting the healing of the injured CNS. Among a number of adult stem cell types, mesenchymal stem cells (MSCs) and neural stem/precursor cells (NPCs) are being extensively investigated for their ability to signal to the immune system upon transplantation in experimental CNS diseases. Here, we focus on the main cellular signaling pathways that grafted MSCs and NPCs use to establish a therapeutically relevant cross talk with host immune cells, while examining the role of inflammation in regulating some of the bidirectionality of these communications. We propose that the identification of the players involved in stem cell signaling might contribute to the development of innovative, high clinical impact therapeutics for inflammatory CNS diseases.
Collapse
Affiliation(s)
- Stefano Pluchino
- Department of Clinical Neurosciences, John van Geest Cambridge Centre for Brain Repair and Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, United Kingdom.
| | | |
Collapse
|
49
|
Neuro-immune interactions of neural stem cell transplants: from animal disease models to human trials. Exp Neurol 2013; 260:19-32. [PMID: 23507035 DOI: 10.1016/j.expneurol.2013.03.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 03/05/2013] [Accepted: 03/08/2013] [Indexed: 12/14/2022]
Abstract
Stem cell technology is a promising branch of regenerative medicine that is aimed at developing new approaches for the treatment of severely debilitating human diseases, including those affecting the central nervous system (CNS). Despite the increasing understanding of the mechanisms governing their biology, the application of stem cell therapeutics remains challenging. The initial idea that stem cell transplants work in vivo via the replacement of endogenous cells lost or damaged owing to disease has been challenged by accumulating evidence of their therapeutic plasticity. This new concept covers the remarkable immune regulatory and tissue trophic effects that transplanted stem cells exert at the level of the neural microenvironment to promote tissue healing via combination of immune modulatory and tissue protective actions, while retaining predominantly undifferentiated features. Among a number of promising candidate stem cell sources, neural stem/precursor cells (NPCs) are under extensive investigation with regard to their therapeutic plasticity after transplantation. The significant impact in vivo of experimental NPC therapies in animal models of inflammatory CNS diseases has raised great expectations that these stem cells, or the manipulation of the mechanisms behind their therapeutic impact, could soon be translated to human studies. This review aims to provide an update on the most recent evidence of therapeutically-relevant neuro-immune interactions following NPC transplants in animal models of multiple sclerosis, cerebral stroke and traumas of the spinal cord, and consideration of the forthcoming challenges related to the early translation of some of these exciting experimental outcomes into clinical medicines.
Collapse
|
50
|
Shi F, Edge ASB. Prospects for replacement of auditory neurons by stem cells. Hear Res 2013; 297:106-12. [PMID: 23370457 DOI: 10.1016/j.heares.2013.01.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 01/16/2013] [Accepted: 01/18/2013] [Indexed: 02/07/2023]
Abstract
Sensorineural hearing loss is caused by degeneration of hair cells or auditory neurons. Spiral ganglion cells, the primary afferent neurons of the auditory system, are patterned during development and send out projections to hair cells and to the brainstem under the control of largely unknown guidance molecules. The neurons do not regenerate after loss and even damage to their projections tends to be permanent. The genesis of spiral ganglion neurons and their synapses forms a basis for regenerative approaches. In this review we critically present the current experimental findings on auditory neuron replacement. We discuss the latest advances with a focus on (a) exogenous stem cell transplantation into the cochlea for neural replacement, (b) expression of local guidance signals in the cochlea after loss of auditory neurons, (c) the possibility of neural replacement from an endogenous cell source, and (d) functional changes from cell engraftment.
Collapse
Affiliation(s)
- Fuxin Shi
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02114, USA
| | | |
Collapse
|