1
|
Zhou J, Yang C, Xv Q, Wang L, Shen L, Lv Q. Usefulness of Serum Translocator Protein as a Potential Predictive Biochemical Marker of Three-Month Cognitive Impairment After Acute Intracerebral Hemorrhage: A Prospective Observational Cohort Study. Int J Gen Med 2023; 16:5389-5403. [PMID: 38021045 PMCID: PMC10674616 DOI: 10.2147/ijgm.s438503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/08/2023] [Indexed: 12/01/2023] Open
Abstract
Background Translocator protein (TSPO) is a biomarker of neuroinflammation and brain injury. This study aimed to ascertain the potential of serum TSPO as a predictor of cognitive impairment after acute intracerebral hemorrhage (ICH). Methods In this prospective observational cohort study, 276 patients with supratentorial ICH were randomly assigned to two groups (184 patients in the study group and 92 in the validation group) in a 2:1 ratio. Serum TSPO levels were gauged at admission, and cognitive status was assessed using the Montreal Cognitive Assessment Scale (MoCA) post-stroke 3 months. A MoCA score of < 26 was considered indicative of cognitive impairment. Results Serum TSPO levels were inversely correlated with MoCA scores (ρ=-0.592; P<0.001). Multivariate linear regression analysis showed that serum TSPO levels were independently associated with MoCA scores (β, -0.934; 95% confidence interval (CI), -1.412--0.455; VIF, 1.473; P<0.001). Serum TSPO levels were substantially higher in patients with cognitive impairment than in the remaining patients (median, 2.7 versus 1.6 ng/mL; P<0.001). Serum TSPO levels were linearly correlated with the risk of cognitive impairment under a restricted cubic spline (P=0.325) and independently predicted cognitive impairment (odds ratio, 1.589; 95% CI, 1.139-2.216; P=0.016). Subgroup analysis showed that the relationship between serum TSPO levels and cognitive impairment was not markedly influenced by other parameters, such as age, sex, drinking, smoking, hypertension, diabetes mellitus, body mass index, and dyslipidemia (all P for interaction > 0.05). The model, which contained serum TSPO, National Institutes of Health Stroke Scale scores and hematoma volume, performed well under the receiver operating characteristic curve, calibration curve and decision curve, and using the Hosmer-Lemeshow test. This model was validated in the validation group. Conclusion Serum TSPO level upon admission after ICH was independently associated with cognitive impairment, substantializing serum TSPO as a reliable predictor of post-ICH cognitive impairment.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Neurosurgery, Shengzhou People’s Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Shengzhou, Zhejiang, People’s Republic of China
| | - Chunsong Yang
- Department of Neurosurgery, Shengzhou People’s Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Shengzhou, Zhejiang, People’s Republic of China
| | - Qichen Xv
- Department of Neurosurgery, Shengzhou People’s Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Shengzhou, Zhejiang, People’s Republic of China
| | - Liyun Wang
- Department of Neurosurgery, Shengzhou People’s Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Shengzhou, Zhejiang, People’s Republic of China
| | - Liangjun Shen
- Department of Neurosurgery, Shengzhou People’s Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Shengzhou, Zhejiang, People’s Republic of China
| | - Qingwei Lv
- Department of Neurosurgery, Shengzhou People’s Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Shengzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
2
|
Vicente-Rodríguez M, Mancuso R, Peris-Yague A, Simmons C, Gómez-Nicola D, Perry VH, Turkheimer F, Lovestone S, Parker CA, Cash D. Pharmacological modulation of TSPO in microglia/macrophages and neurons in a chronic neurodegenerative model of prion disease. J Neuroinflammation 2023; 20:92. [PMID: 37032328 PMCID: PMC10084680 DOI: 10.1186/s12974-023-02769-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 03/20/2023] [Indexed: 04/11/2023] Open
Abstract
Neuroinflammation is an important component of many neurodegenerative diseases, whether as a primary cause or a secondary outcome. For that reason, either as diagnostic tools or to monitor progression and/or pharmacological interventions, there is a need for robust biomarkers of neuroinflammation in the brain. Mitochondrial TSPO (18 kDa Translocator protein) is one of few available biomarkers of neuroinflammation for which there are clinically available PET imaging agents. In this study, we further characterised neuroinflammation in a mouse model of prion-induced chronic neurodegeneration (ME7) including a pharmacological intervention via a CSF1R inhibitor. This was achieved by autoradiographic binding of the second-generation TSPO tracer, [3H]PBR28, along with a more comprehensive examination of the cellular contributors to the TSPO signal changes by immunohistochemistry. We observed regional increases of TSPO in the ME7 mouse brains, particularly in the hippocampus, cortex and thalamus. This increased TSPO signal was detected in the cells of microglia/macrophage lineage as well as in astrocytes, endothelial cells and neurons. Importantly, we show that the selective CSF1R inhibitor, JNJ-40346527 (JNJ527), attenuated the disease-dependent increase in TSPO signal, particularly in the dentate gyrus of the hippocampus, where JNJ527 attenuated the number of Iba1+ microglia and neurons, but not GFAP+ astrocytes or endothelial cells. These findings suggest that [3H]PBR28 quantitative autoradiography in combination with immunohistochemistry are important translational tools for detecting and quantifying neuroinflammation, and its treatments, in neurodegenerative disease. Furthermore, we demonstrate that although TSPO overexpression in the ME7 brains was driven by various cell types, the therapeutic effect of the CSF1R inhibitor was primarily to modulate TSPO expression in microglia and neurons, which identifies an important route of biological action of this particular CSF1R inhibitor and provides an example of a cell-specific effect of this type of therapeutic agent on the neuroinflammatory process.
Collapse
Affiliation(s)
- Marta Vicente-Rodríguez
- Department of Neuroimaging, BRAIN Centre (Biomarker Research and Imaging for Neuroscience), Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
- The Wellcome Trust Consortium for the Neuroimmunology of Mood Disorders and Alzheimer's Disease (NIMA), London, UK.
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain.
| | - Renzo Mancuso
- The Wellcome Trust Consortium for the Neuroimmunology of Mood Disorders and Alzheimer's Disease (NIMA), London, UK
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Biological Sciences, Southampton General Hospital, University of Southampton, Southampton, UK
| | - Alba Peris-Yague
- Department of Neuroimaging, BRAIN Centre (Biomarker Research and Imaging for Neuroscience), Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Camilla Simmons
- Department of Neuroimaging, BRAIN Centre (Biomarker Research and Imaging for Neuroscience), Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- The Wellcome Trust Consortium for the Neuroimmunology of Mood Disorders and Alzheimer's Disease (NIMA), London, UK
| | - Diego Gómez-Nicola
- The Wellcome Trust Consortium for the Neuroimmunology of Mood Disorders and Alzheimer's Disease (NIMA), London, UK
- Biological Sciences, Southampton General Hospital, University of Southampton, Southampton, UK
| | - V Hugh Perry
- The Wellcome Trust Consortium for the Neuroimmunology of Mood Disorders and Alzheimer's Disease (NIMA), London, UK
- Biological Sciences, Southampton General Hospital, University of Southampton, Southampton, UK
| | - Federico Turkheimer
- Department of Neuroimaging, BRAIN Centre (Biomarker Research and Imaging for Neuroscience), Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- The Wellcome Trust Consortium for the Neuroimmunology of Mood Disorders and Alzheimer's Disease (NIMA), London, UK
| | - Simon Lovestone
- The Wellcome Trust Consortium for the Neuroimmunology of Mood Disorders and Alzheimer's Disease (NIMA), London, UK
- Janssen Medical Ltd, High Wycombe, UK
| | - Christine A Parker
- Department of Neuroimaging, BRAIN Centre (Biomarker Research and Imaging for Neuroscience), Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- The Wellcome Trust Consortium for the Neuroimmunology of Mood Disorders and Alzheimer's Disease (NIMA), London, UK
- GlaxoSmithKline, Stevenage, London, UK
| | - Diana Cash
- Department of Neuroimaging, BRAIN Centre (Biomarker Research and Imaging for Neuroscience), Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- The Wellcome Trust Consortium for the Neuroimmunology of Mood Disorders and Alzheimer's Disease (NIMA), London, UK
| |
Collapse
|
3
|
Cyclic GMP-AMP synthase promotes the inflammatory and autophagy responses in Huntington disease. Proc Natl Acad Sci U S A 2020; 117:15989-15999. [PMID: 32581130 PMCID: PMC7354937 DOI: 10.1073/pnas.2002144117] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Huntington disease (HD) is a genetic disorder caused by glutamine-expansion in the huntingtin (mHTT) protein, which affects motor, psychiatric, and cognitive function, but the mechanisms remain unclear. mHTT is known to induce DNA damage and affect autophagy, both associated with inflammatory responses, but what mediates all these were unknown. Here we report that cGAS, a DNA damage sensor, is highly upregulated in the striatum of a mouse model and HD human patient’s tissue. We found ribosomes, which make proteins, are robustly accumulated on the cGAS mRNA in HD cells. cGAS depletion decreases—and cGAS expression increases—both inflammatory and autophagy responses in HD striatal cells. Thus, cGAS is a therapeutic target for HD. Blocking cGAS will prevent/slow down HD symptoms. Huntington disease (HD) is caused by an expansion mutation of the N-terminal polyglutamine of huntingtin (mHTT). mHTT is ubiquitously present, but it induces noticeable damage to the brain’s striatum, thereby affecting motor, psychiatric, and cognitive functions. The striatal damage and progression of HD are associated with the inflammatory response; however, the underlying molecular mechanisms remain unclear. Here, we report that cGMP-AMP synthase (cGAS), a DNA sensor, is a critical regulator of inflammatory and autophagy responses in HD. Ribosome profiling revealed that the cGAS mRNA has high ribosome occupancy at exon 1 and codon-specific pauses at positions 171 (CCG) and 172 (CGT) in HD striatal cells. Moreover, the protein levels and activity of cGAS (based on the phosphorylated STING and phosphorylated TBK1 levels), and the expression and ribosome occupancy of cGAS-dependent inflammatory genes (Ccl5 and Cxcl10) are increased in HD striatum. Depletion of cGAS diminishes cGAS activity and decreases the expression of inflammatory genes while suppressing the up-regulation of autophagy in HD cells. In contrast, reinstating cGAS in cGAS-depleted HD cells activates cGAS activity and promotes inflammatory and autophagy responses. Ribosome profiling also revealed that LC3A and LC3B, the two major autophagy initiators, show altered ribosome occupancy in HD cells. We also detected the presence of numerous micronuclei, which are known to induce cGAS, in the cytoplasm of neurons derived from human HD embryonic stem cells. Collectively, our results indicate that cGAS is up-regulated in HD and mediates inflammatory and autophagy responses. Thus, targeting the cGAS pathway may offer therapeutic benefits in HD.
Collapse
|
4
|
Nutma E, Stephenson JA, Gorter RP, de Bruin J, Boucherie DM, Donat CK, Breur M, van der Valk P, Matthews PM, Owen DR, Amor S. A quantitative neuropathological assessment of translocator protein expression in multiple sclerosis. Brain 2020; 142:3440-3455. [PMID: 31578541 PMCID: PMC6821167 DOI: 10.1093/brain/awz287] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 06/11/2019] [Accepted: 07/25/2019] [Indexed: 01/09/2023] Open
Abstract
The 18 kDa translocator protein (TSPO) is increasingly used to study brain and spinal cord inflammation in degenerative diseases of the CNS such as multiple sclerosis. The enhanced TSPO PET signal that arises during disease is widely considered to reflect activated pathogenic microglia, although quantitative neuropathological data to support this interpretation have not been available. With the increasing interest in the role of chronic microglial activation in multiple sclerosis, characterising the cellular neuropathology associated with TSPO expression is of clear importance for understanding the cellular and pathological processes on which TSPO PET imaging is reporting. Here we have studied the cellular expression of TSPO and specific binding of two TSPO targeting radioligands (3H-PK11195 and 3H-PBR28) in tissue sections from 42 multiple sclerosis cases and 12 age-matched controls. Markers of homeostatic and reactive microglia, astrocytes, and lymphocytes were used to investigate the phenotypes of cells expressing TSPO. There was an approximate 20-fold increase in cells double positive for TSPO and HLA-DR in active lesions and in the rim of chronic active lesion, relative to normal appearing white matter. TSPO was uniformly expressed across myeloid cells irrespective of their phenotype, rather than being preferentially associated with pro-inflammatory microglia or macrophages. TSPO+ astrocytes were increased up to 7-fold compared to normal-appearing white matter across all lesion subtypes and accounted for 25% of the TSPO+ cells in these lesions. To relate TSPO protein expression to ligand binding, specific binding of the TSPO ligands 3H-PK11195 and 3H-PBR28 was determined in the same lesions. TSPO radioligand binding was increased up to seven times for 3H-PBR28 and up to two times for 3H-PK11195 in active lesions and the centre of chronic active lesions and a strong correlation was found between the radioligand binding signal for both tracers and the number of TSPO+ cells across all of the tissues examined. In summary, in multiple sclerosis, TSPO expression arises from microglia of different phenotypes, rather than being restricted to microglia which express classical pro-inflammatory markers. While the majority of cells expressing TSPO in active lesions or chronic active rims are microglia/macrophages, our findings also emphasize the significant contribution of activated astrocytes, as well as smaller contributions from endothelial cells. These observations establish a quantitative framework for interpretation of TSPO in multiple sclerosis and highlight the need for neuropathological characterization of TSPO expression for the interpretation of TSPO PET in other neurodegenerative disorders.
Collapse
Affiliation(s)
- Erik Nutma
- Department of Pathology, Amsterdam UMC, Location VUmc, The Netherlands
| | - Jodie A Stephenson
- Department of Pathology, Amsterdam UMC, Location VUmc, The Netherlands.,Centre for Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - Rianne P Gorter
- Department of Pathology, Amsterdam UMC, Location VUmc, The Netherlands
| | - Joy de Bruin
- Department of Pathology, Amsterdam UMC, Location VUmc, The Netherlands
| | | | | | - Marjolein Breur
- Department of Pathology, Amsterdam UMC, Location VUmc, The Netherlands
| | - Paul van der Valk
- Department of Pathology, Amsterdam UMC, Location VUmc, The Netherlands
| | - Paul M Matthews
- Department of Brain Sciences, Imperial College London, UK.,UK Dementia Research Institute, Imperial College London, UK
| | - David R Owen
- Department of Brain Sciences, Imperial College London, UK
| | - Sandra Amor
- Department of Pathology, Amsterdam UMC, Location VUmc, The Netherlands.,Centre for Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK
| |
Collapse
|
5
|
Tong J, Williams B, Rusjan PM, Mizrahi R, Lacapère JJ, McCluskey T, Furukawa Y, Guttman M, Ang LC, Boileau I, Meyer JH, Kish SJ. Concentration, distribution, and influence of aging on the 18 kDa translocator protein in human brain: Implications for brain imaging studies. J Cereb Blood Flow Metab 2020; 40:1061-1076. [PMID: 31220997 PMCID: PMC7181090 DOI: 10.1177/0271678x19858003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Positron emission tomography (PET) imaging of the translocator protein (TSPO) is widely used as a biomarker of microglial activation. However, TSPO protein concentration in human brain has not been optimally quantified nor has its regional distribution been compared to TSPO binding. We determined TSPO protein concentration, change with age, and regional distribution by quantitative immunoblotting in autopsied human brain. Brain TSPO protein concentration (>0.1 ng/µg protein) was higher than those reported by in vitro binding assays by at least 2 to 70 fold. TSPO protein distributed widely in both gray and white matter regions, with distribution in major gray matter areas ranked generally similar to that of PET binding in second-generation radiotracer studies. TSPO protein concentration in frontal cortex was high at birth, declined precipitously during the first three months, and increased modestly during adulthood/senescence (10%/decade; vs. 30% for comparison astrocytic marker GFAP). As expected, TSPO protein levels were significantly increased (+114%) in degenerating putamen in multiple system atrophy, providing further circumstantial support for TSPO as a gliosis marker. Overall, findings show some similarities between TSPO protein and PET binding characteristics in the human brain but also suggest that part of the TSPO protein pool might be less available for radioligand binding.
Collapse
Affiliation(s)
- Junchao Tong
- Preclinical Imaging, Research Imaging
Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Human Brain Laboratory, Research Imaging
Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Research Imaging Centre and Campbell
Family Mental Health Research Institute, Centre for Addiction and Mental Health,
Toronto, Ontario, Canada
- Junchao Tong, Preclinical Imaging, Centre
for Addiction and Mental Health, 250 College Street, Toronto, Ontario M5T 1R8,
Canada.
| | - Belinda Williams
- Human Brain Laboratory, Research Imaging
Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Addiction Imaging Research Group,
Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario,
Canada
| | - Pablo M. Rusjan
- Research Imaging Centre and Campbell
Family Mental Health Research Institute, Centre for Addiction and Mental Health,
Toronto, Ontario, Canada
| | - Romina Mizrahi
- Research Imaging Centre and Campbell
Family Mental Health Research Institute, Centre for Addiction and Mental Health,
Toronto, Ontario, Canada
| | - Jean-Jacques Lacapère
- Sorbonne Universités-UPMC University of
Paris 06, Département de Chimie, École Normale Supérieure-PSL Research University,
Paris, France
| | - Tina McCluskey
- Human Brain Laboratory, Research Imaging
Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Research Imaging Centre and Campbell
Family Mental Health Research Institute, Centre for Addiction and Mental Health,
Toronto, Ontario, Canada
| | - Yoshiaki Furukawa
- Department of Neurology, Juntendo Tokyo
Koto Geriatric Medical Center, and Faculty of Medicine, University & Post
Graduate University of Juntendo, Tokyo, Japan
| | - Mark Guttman
- Centre for Movement Disorders, Toronto,
Ontario, Canada
| | - Lee-Cyn Ang
- Division of Neuropathology, London
Health Science Centre, University of Western Ontario, London, Ontario, Canada
| | - Isabelle Boileau
- Research Imaging Centre and Campbell
Family Mental Health Research Institute, Centre for Addiction and Mental Health,
Toronto, Ontario, Canada
- Addiction Imaging Research Group,
Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario,
Canada
| | - Jeffrey H Meyer
- Research Imaging Centre and Campbell
Family Mental Health Research Institute, Centre for Addiction and Mental Health,
Toronto, Ontario, Canada
| | - Stephen J Kish
- Human Brain Laboratory, Research Imaging
Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Research Imaging Centre and Campbell
Family Mental Health Research Institute, Centre for Addiction and Mental Health,
Toronto, Ontario, Canada
| |
Collapse
|
6
|
Yuan Y, Wu C, Ling EA. Heterogeneity of Microglia Phenotypes: Developmental, Functional and Some Therapeutic Considerations. Curr Pharm Des 2020; 25:2375-2393. [PMID: 31584369 DOI: 10.2174/1381612825666190722114248] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/12/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Microglia play a pivotal role in maintaining homeostasis in complex brain environment. They first exist as amoeboid microglial cells (AMCs) in the developing brain, but with brain maturation, they transform into ramified microglial cells (RMCs). In pathological conditions, microglia are activated and have been classified into M1 and M2 phenotypes. The roles of AMCs, RMCs and M1/M2 microglia phenotypes especially in pathological conditions have been the focus of many recent studies. METHODS Here, we review the early development of the AMCs and RMCs and discuss their specific functions with reference to their anatomic locations, immunochemical coding etc. M1 and M2 microglia phenotypes in different neuropathological conditions are also reviewed. RESULTS Activated microglia are engaged in phagocytosis, production of proinflammatory mediators, trophic factors and synaptogenesis etc. Prolonged microglia activation, however, can cause damage to neurons and oligodendrocytes. The M1 and M2 phenotypes featured prominently in pathological conditions are discussed in depth. Experimental evidence suggests that microglia phenotype is being modulated by multiple factors including external and internal stimuli, local demands, epigenetic regulation, and herbal compounds. CONCLUSION Prevailing views converge that M2 polarization is neuroprotective. Thus, proper therapeutic designs including the use of anti-inflammatory drugs, herbal agents may be beneficial in suppression of microglial activation, especially M1 phenotype, for amelioration of neuroinflammation in different neuropathological conditions. Finally, recent development of radioligands targeting 18 kDa translocator protein (TSPO) in activated microglia may hold great promises clinically for early detection of brain lesion with the positron emission tomography.
Collapse
Affiliation(s)
- Yun Yuan
- Department of Anatomy and Histology/Embryology, Kunming Medical University, 1168 West Chunrong Road, Kunming, China
| | - Chunyun Wu
- Department of Anatomy and Histology/Embryology, Kunming Medical University, 1168 West Chunrong Road, Kunming, China
| | - Eng-Ang Ling
- Department of Anatomy, Yong Loo Lin School of Medicine, 4 Medical Drive, MD10, National University of Singapore, 117594, Singapore
| |
Collapse
|
7
|
Pain S, Vergote J, Gulhan Z, Bodard S, Chalon S, Gaillard A. Inflammatory process in Parkinson disease: neuroprotection by neuropeptide Y. Fundam Clin Pharmacol 2019; 33:544-548. [PMID: 30866091 DOI: 10.1111/fcp.12464] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/26/2019] [Accepted: 03/08/2019] [Indexed: 01/27/2023]
Abstract
Parkinson's disease (PD) is characterized by the degeneration of dopaminergic neurons in the nigro-striatal pathway. Interestingly, it has already been shown that an intracerebral administration of neuropeptide Y (NPY) decreases the neurodegeneration induced by 6-hydroxydopamine (6-OHDA) in rodents and prevents loss of dopamine (DA) and DA transporter density. The etiology of idiopathic PD now suggest that chronic production of inflammatory mediators by activated microglial cells mediates the majority of DA-neuronal tissue destruction. In an animal experimental model of PD, the present study shows that NPY inhibited the activation of microglia evaluated by the binding of the translocator protein (TSPO) ligand [3H]PK11195 in striatum and substantia nigra of 6-OHDA rats. These results suggest a potential role for inflammation in the pathophysiology of the disease and a potential treatment by NPY in PD.
Collapse
Affiliation(s)
- Stéphanie Pain
- Laboratoire de Neurosciences Expérimentales et Cliniques (LNEC)-INSERM U1084, Pôle Biologie-Santé, Université de Poitiers, Poitiers, France
| | - Jackie Vergote
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Zuhal Gulhan
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Sylvie Bodard
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Sylvie Chalon
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Afsaneh Gaillard
- Laboratoire de Neurosciences Expérimentales et Cliniques (LNEC)-INSERM U1084, Pôle Biologie-Santé, Université de Poitiers, Poitiers, France
| |
Collapse
|
8
|
Abstract
Contrary to the notion that neurology but not psychiatry is the domain of disorders evincing structural brain alterations, it is now clear that there are subtle but consistent neuropathological changes in schizophrenia. These range from increases in ventricular size to dystrophic changes in dendritic spines. A decrease in dendritic spine density in the prefrontal cortex (PFC) is among the most replicated of postmortem structural findings in schizophrenia. Examination of the mechanisms that account for the loss of dendritic spines has in large part focused on genes and molecules that regulate neuronal structure. But the simple question of what is the effector of spine loss, ie, where do the lost spines go, is unanswered. Recent data on glial cells suggest that microglia (MG), and perhaps astrocytes, play an important physiological role in synaptic remodeling of neurons during development. Synapses are added to the dendrites of pyramidal cells during the maturation of these neurons; excess synapses are subsequently phagocytosed by MG. In the PFC, this occurs during adolescence, when certain symptoms of schizophrenia emerge. This brief review discusses recent advances in our understanding of MG function and how these non-neuronal cells lead to structural changes in neurons in schizophrenia.
Collapse
Affiliation(s)
| | - Ariel Y Deutch
- Neuroscience Program, Vanderbilt University, Nashville, TN
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN
- Department of Pharmacology, Vanderbilt University, Nashville, TN
| |
Collapse
|
9
|
Simmons DA, James ML, Belichenko NP, Semaan S, Condon C, Kuan J, Shuhendler AJ, Miao Z, Chin FT, Longo FM. TSPO-PET imaging using [18F]PBR06 is a potential translatable biomarker for treatment response in Huntington's disease: preclinical evidence with the p75NTR ligand LM11A-31. Hum Mol Genet 2018; 27:2893-2912. [PMID: 29860333 PMCID: PMC6077813 DOI: 10.1093/hmg/ddy202] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/04/2018] [Accepted: 05/21/2018] [Indexed: 12/11/2022] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder that has no cure. HD therapeutic development would benefit from a non-invasive translatable biomarker to track disease progression and treatment response. A potential biomarker is using positron emission tomography (PET) imaging with a translocator protein 18 kDa (TSPO) radiotracer to detect microglial activation, a key contributor to HD pathogenesis. The ability of TSPO-PET to identify microglial activation in HD mouse models, essential for a translatable biomarker, or therapeutic efficacy in HD patients or mice is unknown. Thus, this study assessed the feasibility of utilizing PET imaging with the TSPO tracer, [18F]PBR06, to detect activated microglia in two HD mouse models and to monitor response to treatment with LM11A-31, a p75NTR ligand known to reduce neuroinflammation in HD mice. [18F]PBR06-PET detected microglial activation in striatum, cortex and hippocampus of vehicle-treated R6/2 mice at a late disease stage and, notably, also in early and mid-stage symptomatic BACHD mice. After oral administration of LM11A-31 to R6/2 and BACHD mice, [18F]PBR06-PET discerned the reductive effects of LM11A-31 on neuroinflammation in both HD mouse models. [18F]PBR06-PET signal had a spatial distribution similar to ex vivo brain autoradiography and correlated with microglial activation markers: increased IBA-1 and TSPO immunostaining/blotting and striatal levels of cytokines IL-6 and TNFα. These results suggest that [18F]PBR06-PET is a useful surrogate marker of therapeutic efficacy in HD mice with high potential as a translatable biomarker for preclinical and clinical HD trials.
Collapse
Affiliation(s)
- Danielle A Simmons
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Michelle L James
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| | - Nadia P Belichenko
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Sarah Semaan
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Christina Condon
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Jason Kuan
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Adam J Shuhendler
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| | - Zheng Miao
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| | - Frederick T Chin
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| | - Frank M Longo
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
10
|
Chen WH, Yeh HL, Tsao CW, Lien LM, Chiwaya A, Alizargar J, Bai CH. Plasma Translocator Protein Levels and Outcomes of Acute Ischemic Stroke: A Pilot Study. DISEASE MARKERS 2018; 2018:9831079. [PMID: 30034558 PMCID: PMC6033241 DOI: 10.1155/2018/9831079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 01/17/2023]
Abstract
Translocator protein 18 kDa (TSPO) has been used as a biomarker of brain injury and inflammation in various neurological diseases. In this study, we measured the level of TSPO in acute ischemic stroke patients and determined its association with the degree of stroke severity and its ability to predict stroke functional outcomes. In total, 38 patients with moderate to severe acute ischemic stroke were enrolled. Demographic information, cerebral risk factors, and stroke severity were examined at the baseline. The National Institutes of Health Stroke Scale, modified Rankin Scale, and Barthal Index were assessed at discharge as measures of poor functional outcomes and severe disability. The baseline fasting plasma TSPO level was assessed within 24 h after the incident stroke and during hospitalization (on days 8-10). The proportion of patients with poor functional outcomes was significantly higher in the higher-TSPO group (compared to the lower group) in terms of clinical worsening (odds ratio (OR) = 11.69, 95% confidence interval (CI) = 2.08-65.6), poor functional outcomes (OR = 10.5, 95% CI = 1.14-96.57), and severe disability (OR = 4.8, 95% CI = 1.20-19.13). Plasma TSPO may be intimately linked with disease progression and worse functional outcomes in acute ischemic stroke patients.
Collapse
Affiliation(s)
- Wen-Hung Chen
- Department of Neurology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Hsu-Ling Yeh
- Department of Neurology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Chiung-Wen Tsao
- Department of Nursing, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Li-Ming Lien
- Department of Neurology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Arthur Chiwaya
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Javad Alizargar
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Chyi-Huey Bai
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
11
|
Leva G, Klein C, Benyounes J, Hallé F, Bihel F, Collongues N, De Seze J, Mensah-Nyagan AG, Patte-Mensah C. The translocator protein ligand XBD173 improves clinical symptoms and neuropathological markers in the SJL/J mouse model of multiple sclerosis. Biochim Biophys Acta Mol Basis Dis 2017; 1863:3016-3027. [PMID: 28899788 DOI: 10.1016/j.bbadis.2017.09.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/04/2017] [Accepted: 09/08/2017] [Indexed: 12/18/2022]
Abstract
Multiple sclerosis (MS) is a severe autoimmune disease characterized by inflammatory, demyelinating and neurodegenerative components causing motor, sensory, visual and/or cognitive symptoms. The relapsing-remitting MS affecting 85% of patients is reliably mimicked by the proteolipid-protein (PLP)-induced experimental autoimmune encephalomyelitis (EAE) SJL/J-mouse model. Significant progress was made for MS treatment but the development of effective therapies devoid of severe side-effects remains a great challenge. Here, we combine clinical, behavioral, histopathological, biochemical and molecular approaches to demonstrate that low and well tolerated doses (10-20mg/kg) of TSPO ligand XBD173 (Emapunil) efficiently ameliorate clinical signs and neuropathology of PLP-EAE mice. In addition to the conventional clinical scoring of symptoms, we applied the robust behavioral Catwalk-method to confirm that XBD173 (10mg/kg) increases the maximum contact area parameter at EAE-disease peak, indicating an improvement/recovery of motor functions. Consistently, histopathological studies coupled with microscope-cellSens quantification and RT-qPCR analyzes showed that XBD173 prevented demyelination by restoring normal protein and mRNA levels of myelin basic protein that was significantly repressed in PLP-EAE mice spinal cord and brain. Interestingly, ELISA-based measurement revealed that XBD173 increased allopregnanolone concentrations in PLP-EAE mice spinal and brain tissues. Furthermore, flow cytometry assessment demonstrated that XBD173 therapy decreased serum level of pro-inflammatory cytokines, including interleukin-17A, Interleukin-6 and tumor-necrosis-factor alpha in PLP-EAE mice. As the optimal XBD173 dosing exerting the maximal beneficial action in EAE mice is the lower 10mg/kg dose, the paper opens interesting perspectives for the development of efficient and safe therapies against MS with slight or no side-effects.
Collapse
Affiliation(s)
- Géraldine Leva
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment 3 de la Faculté de Médecine, 11 rue Humann, 67 000 Strasbourg, France
| | - Christian Klein
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment 3 de la Faculté de Médecine, 11 rue Humann, 67 000 Strasbourg, France
| | - Jérémie Benyounes
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment 3 de la Faculté de Médecine, 11 rue Humann, 67 000 Strasbourg, France
| | - François Hallé
- Laboratoire d'innovation thérapeutique (LIT) CNRS UMR 7200, Faculté de Pharmacie de Strasbourg, 74 route du Rhin, CS 60024, 67401 Illkirch Cedex, France
| | - Frédéric Bihel
- Laboratoire d'innovation thérapeutique (LIT) CNRS UMR 7200, Faculté de Pharmacie de Strasbourg, 74 route du Rhin, CS 60024, 67401 Illkirch Cedex, France
| | - Nicolas Collongues
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment 3 de la Faculté de Médecine, 11 rue Humann, 67 000 Strasbourg, France
| | - Jérôme De Seze
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment 3 de la Faculté de Médecine, 11 rue Humann, 67 000 Strasbourg, France
| | - Ayikoe-Guy Mensah-Nyagan
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment 3 de la Faculté de Médecine, 11 rue Humann, 67 000 Strasbourg, France.
| | - Christine Patte-Mensah
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, INSERM U1119, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Bâtiment 3 de la Faculté de Médecine, 11 rue Humann, 67 000 Strasbourg, France.
| |
Collapse
|
12
|
Tronel C, Largeau B, Santiago Ribeiro MJ, Guilloteau D, Dupont AC, Arlicot N. Molecular Targets for PET Imaging of Activated Microglia: The Current Situation and Future Expectations. Int J Mol Sci 2017; 18:ijms18040802. [PMID: 28398245 PMCID: PMC5412386 DOI: 10.3390/ijms18040802] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/15/2017] [Accepted: 03/28/2017] [Indexed: 12/13/2022] Open
Abstract
Microglia, as cellular mediators of neuroinflammation, are implicated in the pathogenesis of a wide range of neurodegenerative diseases. Positron emission tomography (PET) imaging of microglia has matured over the last 20 years, through the development of radiopharmaceuticals targeting several molecular biomarkers of microglial activation and, among these, mainly the translocator protein-18 kDa (TSPO). Nevertheless, current limitations of TSPO as a PET microglial biomarker exist, such as low brain density, even in a neurodegenerative setting, expression by other cells than the microglia (astrocytes, peripheral macrophages in the case of blood brain barrier breakdown), genetic polymorphism, inducing a variation for most of TSPO PET radiopharmaceuticals’ binding affinity, or similar expression in activated microglia regardless of its polarization (pro- or anti-inflammatory state), and these limitations narrow its potential interest. We overview alternative molecular targets, for which dedicated radiopharmaceuticals have been proposed, including receptors (purinergic receptors P2X7, cannabinoid receptors, α7 and α4β2 nicotinic acetylcholine receptors, adenosine 2A receptor, folate receptor β) and enzymes (cyclooxygenase, nitric oxide synthase, matrix metalloproteinase, β-glucuronidase, and enzymes of the kynurenine pathway), with a particular focus on their respective contribution for the understanding of microglial involvement in neurodegenerative diseases. We discuss opportunities for these potential molecular targets for PET imaging regarding their selectivity for microglia expression and polarization, in relation to the mechanisms by which microglia actively participate in both toxic and neuroprotective actions in brain diseases, and then take into account current clinicians’ expectations.
Collapse
Affiliation(s)
- Claire Tronel
- INSERM U930, Université François Rabelais de Tours, 10 boulevard Tonnelé, 37032 Tours, France.
| | | | - Maria Joao Santiago Ribeiro
- INSERM U930, Université François Rabelais de Tours, 10 boulevard Tonnelé, 37032 Tours, France.
- CHRU de Tours, 37044 Tours, France.
| | - Denis Guilloteau
- INSERM U930, Université François Rabelais de Tours, 10 boulevard Tonnelé, 37032 Tours, France.
- CHRU de Tours, 37044 Tours, France.
| | - Anne-Claire Dupont
- INSERM U930, Université François Rabelais de Tours, 10 boulevard Tonnelé, 37032 Tours, France.
- CHRU de Tours, 37044 Tours, France.
| | - Nicolas Arlicot
- INSERM U930, Université François Rabelais de Tours, 10 boulevard Tonnelé, 37032 Tours, France.
- CHRU de Tours, 37044 Tours, France.
| |
Collapse
|
13
|
Dupont AC, Largeau B, Santiago Ribeiro MJ, Guilloteau D, Tronel C, Arlicot N. Translocator Protein-18 kDa (TSPO) Positron Emission Tomography (PET) Imaging and Its Clinical Impact in Neurodegenerative Diseases. Int J Mol Sci 2017; 18:ijms18040785. [PMID: 28387722 PMCID: PMC5412369 DOI: 10.3390/ijms18040785] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/31/2017] [Accepted: 04/04/2017] [Indexed: 02/06/2023] Open
Abstract
In vivo exploration of activated microglia in neurodegenerative diseases is achievable by Positron Emission Tomography (PET) imaging, using dedicated radiopharmaceuticals targeting the translocator protein-18 kDa (TSPO). In this review, we emphasized the major advances made over the last 20 years, thanks to TSPO PET imaging, to define the pathophysiological implication of microglia activation and neuroinflammation in neurodegenerative diseases, including Parkinson’s disease, Huntington’s disease, dementia, amyotrophic lateral sclerosis, multiple sclerosis, and also in psychiatric disorders. The extent and upregulation of TSPO as a molecular biomarker of activated microglia in the human brain is now widely documented in these pathologies, but its significance, and especially its protective or deleterious action regarding the disease’s stage, remains under debate. Thus, we exposed new and plausible suggestions to enhance the contribution of TSPO PET imaging for biomedical research by exploring microglia’s role and interactions with other cells in brain parenchyma. Multiplex approaches, associating TSPO PET radiopharmaceuticals with other biomarkers (PET imaging of cellular metabolism, neurotransmission or abnormal protein aggregates, but also other imaging modalities, and peripheral cytokine levels measurement and/or metabolomics analysis) was considered. Finally, the actual clinical impact of TSPO PET imaging as a routine biomarker of neuroinflammation was put into perspective regarding the current development of diagnostic and therapeutic strategies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Anne-Claire Dupont
- CHRU Tours, 2 Boulevard Tonnellé, 37044 Tours, France.
- Institut National de la Santé et de la Recherche Médicale U930, 10 Boulevard Tonnellé, 37032 Tours, France.
| | | | - Maria Joao Santiago Ribeiro
- CHRU Tours, 2 Boulevard Tonnellé, 37044 Tours, France.
- Institut National de la Santé et de la Recherche Médicale U930, 10 Boulevard Tonnellé, 37032 Tours, France.
| | - Denis Guilloteau
- CHRU Tours, 2 Boulevard Tonnellé, 37044 Tours, France.
- Institut National de la Santé et de la Recherche Médicale U930, 10 Boulevard Tonnellé, 37032 Tours, France.
| | - Claire Tronel
- Institut National de la Santé et de la Recherche Médicale U930, 10 Boulevard Tonnellé, 37032 Tours, France.
| | - Nicolas Arlicot
- CHRU Tours, 2 Boulevard Tonnellé, 37044 Tours, France.
- Institut National de la Santé et de la Recherche Médicale U930, 10 Boulevard Tonnellé, 37032 Tours, France.
| |
Collapse
|
14
|
Eberl S, Katsifis A, Peyronneau MA, Wen L, Henderson D, Loc'h C, Greguric I, Verschuer J, Pham T, Lam P, Mattner F, Mohamed A, Fulham MJ. Preclinical in vivo and in vitro comparison of the translocator protein PET ligands [ 18F]PBR102 and [ 18F]PBR111. Eur J Nucl Med Mol Imaging 2016; 44:296-307. [PMID: 27699720 DOI: 10.1007/s00259-016-3517-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 09/05/2016] [Indexed: 11/27/2022]
Abstract
PURPOSE To determine the metabolic profiles of the translocator protein ligands PBR102 and PBR111 in rat and human microsomes and compare their in vivo binding and metabolite uptake in the brain of non-human primates (Papio hamadryas) using PET-CT. METHODS In vitro metabolic profiles of PBR102 and PBR111 in rat and human liver microsomes were assessed by liquid chromatography-tandem mass spectrometry. [18F]PBR102 and [18F]PBR111 were prepared by nucleophilic substitution of their corresponding p-toluenesulfonyl precursors with [18F]fluoride. List mode PET-CT brain imaging with arterial blood sampling was performed in non-human primates. Blood plasma measurements and metabolite analysis, using solid-phase extraction, provided the metabolite profile and metabolite-corrected input functions for kinetic model fitting. Blocking and displacement PET-CT scans, using PK11195, were performed. RESULTS Microsomal analyses identified the O-de-alkylated, hydroxylated and N-de-ethyl derivatives of PBR102 and PBR111 as the main metabolites. The O-de-alkylated compounds were the major metabolites in both species; human liver microsomes were less active than those from rat. Metabolic profiles in vivo in non-human primates and previously published rat experiments were consistent with the microsomal results. PET-CT studies showed that K1 was similar for baseline and blocking studies for both radiotracers; VT was reduced during the blocking study, suggesting low non-specific binding and lack of appreciable metabolite uptake in the brain. CONCLUSIONS [18F]PBR102 and [18F]PBR111 have distinct metabolic profiles in rat and non-human primates. Radiometabolites contributed to non-specific binding and confounded in vivo brain analysis of [18F]PBR102 in rodents; the impact in primates was less pronounced. Both [18F]PBR102 and [18F]PBR111 are suitable for PET imaging of TSPO in vivo. In vitro metabolite studies can be used to predict in vivo radioligand metabolism and can assist in the design and development of better radioligands.
Collapse
Affiliation(s)
- S Eberl
- Department of Molecular Imaging (PET and Nuclear Medicine), Royal Prince Alfred Hospital, Building 63, Level A7, Missenden Road, Camperdown, NSW, 2050, Australia. .,Faculty of Engineering and Information Technologies, University of Sydney, Sydney, NSW, 2006, Australia.
| | - A Katsifis
- Department of Molecular Imaging (PET and Nuclear Medicine), Royal Prince Alfred Hospital, Building 63, Level A7, Missenden Road, Camperdown, NSW, 2050, Australia.,Faculty of Pharmacy, University of Sydney, Sydney, NSW, 2006, Australia
| | - M A Peyronneau
- IMIV, CEA, Inserm, Univ. Paris-Sud, CNRS, Université Paris-Saclay, CEA-SHFJ, Orsay, France
| | - L Wen
- Department of Molecular Imaging (PET and Nuclear Medicine), Royal Prince Alfred Hospital, Building 63, Level A7, Missenden Road, Camperdown, NSW, 2050, Australia.,Faculty of Engineering and Information Technologies, University of Sydney, Sydney, NSW, 2006, Australia
| | - D Henderson
- Department of Molecular Imaging (PET and Nuclear Medicine), Royal Prince Alfred Hospital, Building 63, Level A7, Missenden Road, Camperdown, NSW, 2050, Australia
| | - C Loc'h
- Department of Molecular Imaging (PET and Nuclear Medicine), Royal Prince Alfred Hospital, Building 63, Level A7, Missenden Road, Camperdown, NSW, 2050, Australia
| | - I Greguric
- Radiochemistry and Radiotracers Platform, ANSTO, New Illawarra Road, Lucas Heights, NSW, 2234, Australia
| | - J Verschuer
- Department of Molecular Imaging (PET and Nuclear Medicine), Royal Prince Alfred Hospital, Building 63, Level A7, Missenden Road, Camperdown, NSW, 2050, Australia
| | - T Pham
- Radiochemistry and Radiotracers Platform, ANSTO, New Illawarra Road, Lucas Heights, NSW, 2234, Australia
| | - P Lam
- Department of Molecular Imaging (PET and Nuclear Medicine), Royal Prince Alfred Hospital, Building 63, Level A7, Missenden Road, Camperdown, NSW, 2050, Australia
| | - F Mattner
- Department of Molecular Imaging (PET and Nuclear Medicine), Royal Prince Alfred Hospital, Building 63, Level A7, Missenden Road, Camperdown, NSW, 2050, Australia
| | - A Mohamed
- Department of Molecular Imaging (PET and Nuclear Medicine), Royal Prince Alfred Hospital, Building 63, Level A7, Missenden Road, Camperdown, NSW, 2050, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia
| | - M J Fulham
- Department of Molecular Imaging (PET and Nuclear Medicine), Royal Prince Alfred Hospital, Building 63, Level A7, Missenden Road, Camperdown, NSW, 2050, Australia.,Faculty of Engineering and Information Technologies, University of Sydney, Sydney, NSW, 2006, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
15
|
Toyohara J, Sakata M, Hatano K, Yanai S, Endo S, Ishibashi K, Wagatsuma K, Ishii K, Ishiwata K. Preclinical and first-in-man studies of [(11)C]CB184 for imaging the 18-kDa translocator protein by positron emission tomography. Ann Nucl Med 2016; 30:534-543. [PMID: 27329083 DOI: 10.1007/s12149-016-1094-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 05/30/2016] [Indexed: 01/17/2023]
Abstract
OBJECTIVE We performed preclinical and first-in-man clinical positron emission tomography (PET) studies in human brain using N,N-di-n-propyl-2-[2-(4-[(11)C]methoxyphenyl)-6,8-dichloroimidazol[1,2-a]pyridine-3-yl]acetamide ([(11)C]CB184) to image the 18-kDa translocator protein (TSPO), which is overexpressed in activated microglia in neuroinflammatory conditions. METHODS In vitro selectivity of CB184 was characterized. The radiation absorbed dose by [(11)C]CB184 in humans was calculated from murine distribution data. Acute toxicity of CB184 hydrochloride in rats at a dose of 5.81 mg/kg body weight, which is >10,000-fold higher than the clinical equivalent dose of [(11)C]CB184, was evaluated. Acute toxicity of [(11)C]CB184 injection of a 400-fold dose to administer a postulated dose of 740 MBq [(11)C]CB184 was also evaluated after the decay-out of (11)C. The mutagenicity of CB184 was studied with a reverse mutation test (Ames test). The pharmacological effect of CB184 injection in mice was studied with an open field test. The first PET imaging of TSPO with [(11)C]CB184 in a normal human volunteer was performed. RESULTS A suitable preparation method for [(11)C]CB184 injection was established. CB184 showed low activity in a 28-standard receptor binding profile. The radiation absorbed dose by [(11)C]CB184 in humans was sufficiently low for clinical use, and no acute toxicity of CB184 or [(11)C]CB184 injection was found. No mutagenicity or apparent effect on locomotor activity or anxiety status was observed for CB184. We safely performed brain imaging with PET following administration of [(11)C]CB184 in a normal human volunteer. A 90-min dynamic scan showed rapid initial uptake of radioactivity in the brain followed by prompt clearance. [(11)C]CB184 was homogeneously distributed in the gray matter. The total distribution volume of [(11)C]CB184 was highest in the thalamus followed by the cerebellar cortex and elsewhere. Although regional differences were small, the observed [(11)C]CB184 binding pattern was consistent with the TSPO distribution in normal human brain. Peripherally, [(11)C]CB184 was metabolized in humans: 30 % of the radioactivity in plasma was detected as the unchanged form after 60 min. CONCLUSIONS [(11)C]CB184 is suitable for imaging TSPO in human brain and provides an acceptable radiation dose. Pharmacological safety was noted at the dose required for PET imaging.
Collapse
Affiliation(s)
- Jun Toyohara
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan.
| | - Muneyuki Sakata
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Kentaro Hatano
- Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Shuichi Yanai
- Research Team for Aging Neuroscience, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Shogo Endo
- Research Team for Aging Neuroscience, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Kenji Ishibashi
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Kei Wagatsuma
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Kenji Ishii
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Kiichi Ishiwata
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
- Institute of Cyclotron and Drug Discovery Research, Southern Tohoku Research Institute for Neuroscience, Koriyama, Japan
- Department of Biofunctional Imaging, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
16
|
Ishikawa M, Yoshitomi T, Covey DF, Zorumski CF, Izumi Y. TSPO activation modulates the effects of high pressure in a rat ex vivo glaucoma model. Neuropharmacology 2016; 111:142-159. [PMID: 27596950 DOI: 10.1016/j.neuropharm.2016.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/12/2016] [Accepted: 09/01/2016] [Indexed: 01/02/2023]
Abstract
We previously reported that elevated pressure induces axonal swelling and facilitates the synthesis of the neurosteroid, allopregnanolone (AlloP), in the ex vivo rat retina. Exogenously applied AlloP attenuates the axonal swelling, suggesting that the neurosteroid plays a neuroprotective role against glaucomatous pressure-induced injuries, although mechanisms underlying neurosteroidogenesis have not been clarified. The aim of this study was to determine whether AlloP synthesis involves activation of translocator protein 18 kD (TSPO) and whether TSPO modulates pressure-induced retinal injury. Ex vivo rat retinas were exposed to various pressures (10, 35, or 75 mmHg) for 24 h. Expression of TSPO, 5α-reductase (5aRD), and AlloP was examined by quantitative real-time RT-PCR, ELISA, immunohistochemistry, and LC-MS/MS. We also examined the effects of TSPO ligands on AlloP synthesis and retinal damage. In this acute model, quantitative real-time RT-PCR and ELISA analyses revealed that elevated pressure facilitated TSPO expression. Similarly, these methods also detected enhanced 5aRD (mostly type II), which was observed in retinal ganglion cells (RGC) and the inner nuclear layer (INL). Atriol, a TSPO antagonist, suppressed pressure mediated AlloP synthesis and induced more severe histological changes in the inner retina when combined with elevated pressure. PK11195, a TSPO ligand that facilitates AlloP synthesis by itself, remarkably diminished pressure-mediated retinal degeneration. These results suggest that AlloP synthesis is induced by sequential activation of TSPO and 5aRD in an ex vivo glaucoma model, and that TSPO agonists may serve as potential therapeutic agents for the prevention of pressure-induced retinal damage.
Collapse
Affiliation(s)
- Makoto Ishikawa
- Department of Ophthalmology, Akita Graduate University School of Medicine, Akita, Japan.
| | - Takeshi Yoshitomi
- Department of Ophthalmology, Akita Graduate University School of Medicine, Akita, Japan
| | - Douglas F Covey
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, M.O, USA; The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, M.O, USA
| | - Charles F Zorumski
- The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, M.O, USA; Center for Brain Research in Mood Disorders, Washington University School of Medicine, St. Louis, M.O, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, M.O, USA
| | - Yukitoshi Izumi
- The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, M.O, USA; Center for Brain Research in Mood Disorders, Washington University School of Medicine, St. Louis, M.O, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, M.O, USA
| |
Collapse
|
17
|
The hGFAP-driven conditional TSPO knockout is protective in a mouse model of multiple sclerosis. Sci Rep 2016; 6:22556. [PMID: 26925573 PMCID: PMC4772008 DOI: 10.1038/srep22556] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 02/17/2016] [Indexed: 01/04/2023] Open
Abstract
The mitochondrial translocator protein (TSPO) has been implicated in CNS diseases. Here, we sought to determine the specific role of TSPO in experimental autoimmune encephalomyelitis (EAE), the most studied animal model of multiple sclerosis (MS). To fundamentally elucidate the functions of TSPO, we first developed a viable TSPO knockout mouse. A conditional TSPO knockout mouse was generated by utilizing the Cre-Lox system. We generated a TSPO floxed mouse, and then crossed this mouse with a Cre recombinase expressing mouse driven by the human glial fibrillary acidic protein (hGFAP) promoter. The resultant mouse was a neural linage line specific TSPO knockout. The loss of TSPO in the CNS did not result in overt developmental defects or phenotypes. The TSPO−/− mouse showed a decrease in GFAP expression, correlating with a decrease in astrogliosis in response to neural injury during EAE. This decrease in astrogliosis was also witnessed in the lessening of severity of EAE clinical scoring, indicating an in vivo functional role for TSPO in suppressing EAE. The TSPO−/− mouse could be a useful tool in better understanding the role of TSPO in CNS disease, and our results implicate TSPO as a potential therapeutic target in MS.
Collapse
|
18
|
Michell-Robinson MA, Touil H, Healy LM, Owen DR, Durafourt BA, Bar-Or A, Antel JP, Moore CS. Roles of microglia in brain development, tissue maintenance and repair. Brain 2015; 138:1138-59. [PMID: 25823474 DOI: 10.1093/brain/awv066] [Citation(s) in RCA: 298] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 02/01/2015] [Indexed: 12/23/2022] Open
Abstract
The emerging roles of microglia are currently being investigated in the healthy and diseased brain with a growing interest in their diverse functions. In recent years, it has been demonstrated that microglia are not only immunocentric, but also neurobiological and can impact neural development and the maintenance of neuronal cell function in both healthy and pathological contexts. In the disease context, there is widespread consensus that microglia are dynamic cells with a potential to contribute to both central nervous system damage and repair. Indeed, a number of studies have found that microenvironmental conditions can selectively modify unique microglia phenotypes and functions. One novel mechanism that has garnered interest involves the regulation of microglial function by microRNAs, which has therapeutic implications such as enhancing microglia-mediated suppression of brain injury and promoting repair following inflammatory injury. Furthermore, recently published articles have identified molecular signatures of myeloid cells, suggesting that microglia are a distinct cell population compared to other cells of myeloid lineage that access the central nervous system under pathological conditions. Thus, new opportunities exist to help distinguish microglia in the brain and permit the study of their unique functions in health and disease.
Collapse
Affiliation(s)
- Mackenzie A Michell-Robinson
- 1 Neuroimmunology Unit, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Hanane Touil
- 1 Neuroimmunology Unit, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Luke M Healy
- 1 Neuroimmunology Unit, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - David R Owen
- 2 Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Bryce A Durafourt
- 1 Neuroimmunology Unit, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Amit Bar-Or
- 1 Neuroimmunology Unit, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Jack P Antel
- 1 Neuroimmunology Unit, Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Craig S Moore
- 3 Division of BioMedical Sciences, Faculty of Medicine, Memorial University, St. John's, Newfoundland, Canada
| |
Collapse
|
19
|
Vicidomini C, Panico M, Greco A, Gargiulo S, Coda ARD, Zannetti A, Gramanzini M, Roviello GN, Quarantelli M, Alfano B, Tavitian B, Dollé F, Salvatore M, Brunetti A, Pappatà S. In vivo imaging and characterization of [(18)F]DPA-714, a potential new TSPO ligand, in mouse brain and peripheral tissues using small-animal PET. Nucl Med Biol 2014; 42:309-16. [PMID: 25537727 DOI: 10.1016/j.nucmedbio.2014.11.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 11/18/2014] [Accepted: 11/19/2014] [Indexed: 02/05/2023]
Abstract
INTRODUCTION The translocator protein 18 kDa (TSPO), a biochemical marker of neuroinflammation, is highly expressed in the brain activated microglia and it is also expressed by peripheral inflammatory cells and normal peripheral tissues. Thus, development of radioligands for the TSPO may contribute to further understanding the in vivo TSPO function in central and peripheral inflammatory processes and other pathologies. Here, we report the biodistribution, the specific binding and the radiometabolites of [(18)F]DPA-714, a promising fluorinated PET radiotracer, in normal mice using a microPET/CT scanner. METHODS The in vivo biodistribution and kinetics of [(18)F]DPA-714 were measured in mice brain and peripheral tissues. Specific binding to TSPO sites was assessed using pharmacological competitive studies by means of saturation experiments performed by i.v. injection of 1mg/kg of unlabeled DPA-714 or 3mg/kg of unlabeled PK11195. A region of interest analysis was performed to generate time-activity curves in the brain, heart, lung, kidney, spleen and liver. Metabolites assay was performed in the plasma and peripheral organs by radio-HPLC. RESULTS [(18)F]DPA-714 reached high concentration in lung, heart, kidney and spleen, tissues well known to be rich in TSPO sites. [(18)F]DPA-714 kinetics were faster in the lung and slower in the kidney. Pre-injection of unlabeled DPA-714 or PK11195 inhibited about 80% of [(18)F]DPA-714 uptake in the lung and heart (p<0.0005). The percentage of inhibition in the kidney was lower and achieved at later times only with DPA-714 (p<0.05) but not with PK11195. Sixty minutes after radiotracer injection only unmetabolized radioligand was found in the brain, lung, heart and spleen. CONCLUSION These results suggest that [(18)F]DPA-714 is a suitable PET ligand for imaging in mice brain and peripheral tissues since it binds with high specificity TSPO binding sites and it is almost unchanged at 60 minutes after radiotracer injection in the brain and TSPO-rich regions.
Collapse
Affiliation(s)
- Caterina Vicidomini
- Institute of Biostructure and Bioimaging, CNR, Naples, Italy; CEINGE, Biotecnologie Avanzate, s.c.a.r.l., Naples, Italy
| | - Mariarosaria Panico
- Institute of Biostructure and Bioimaging, CNR, Naples, Italy; CEINGE, Biotecnologie Avanzate, s.c.a.r.l., Naples, Italy
| | - Adelaide Greco
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy; CEINGE, Biotecnologie Avanzate, s.c.a.r.l., Naples, Italy
| | - Sara Gargiulo
- Institute of Biostructure and Bioimaging, CNR, Naples, Italy; CEINGE, Biotecnologie Avanzate, s.c.a.r.l., Naples, Italy
| | - Anna Rita Daniela Coda
- Institute of Biostructure and Bioimaging, CNR, Naples, Italy; CEINGE, Biotecnologie Avanzate, s.c.a.r.l., Naples, Italy
| | - Antonella Zannetti
- Institute of Biostructure and Bioimaging, CNR, Naples, Italy; CEINGE, Biotecnologie Avanzate, s.c.a.r.l., Naples, Italy
| | - Matteo Gramanzini
- Institute of Biostructure and Bioimaging, CNR, Naples, Italy; CEINGE, Biotecnologie Avanzate, s.c.a.r.l., Naples, Italy
| | | | | | - Bruno Alfano
- Institute of Biostructure and Bioimaging, CNR, Naples, Italy
| | - Bertrand Tavitian
- Inserm U970, PARCC, Université Paris Descartes, Hôpital Européen Georges Pompidou, Paris, France; CEA, I2BM, Service Hospitalier Frédéric Joliot, Orsay, France
| | - Frederic Dollé
- CEA, I2BM, Service Hospitalier Frédéric Joliot, Orsay, France
| | - Marco Salvatore
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy; CEINGE, Biotecnologie Avanzate, s.c.a.r.l., Naples, Italy
| | - Sabina Pappatà
- Institute of Biostructure and Bioimaging, CNR, Naples, Italy.
| |
Collapse
|
20
|
Bourdier T, Henderson D, Fookes CJ, Lam P, Mattner F, Fulham M, Katsifis A. Synthesis of [11C]PBR170, a novel imidazopyridine, for imaging the translocator protein with PET. Appl Radiat Isot 2014; 90:46-52. [DOI: 10.1016/j.apradiso.2014.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 02/26/2014] [Accepted: 03/08/2014] [Indexed: 10/25/2022]
|
21
|
Abstract
Huntington’s disease (HD) is a progressive and fatal neurodegenerative disorder caused by an expanded trinucleotide CAG sequence in huntingtin gene (HTT) on chromosome 4. HD manifests with chorea, cognitive and psychiatric symptoms. Although advances in genetics allow identification of individuals carrying the HD gene, much is still unknown about the mechanisms underlying the development of overt clinical symptoms and the transitional period between premanifestation and manifestation of the disease. HD has no cure and patients rely only in symptomatic treatment. There is an urgent need to identify biomarkers that are able to monitor disease progression and assess the development and efficacy of novel disease modifying drugs. Over the past years, neuroimaging techniques such as magnetic resonance imaging (MRI) and positron emission tomography (PET) have provided important advances in our understanding of HD. MRI provides information about structural and functional organization of the brain, while PET can detect molecular changes in the brain. MRI and PET are able to detect changes in the brains of HD gene carriers years ahead of the manifestation of the disease and have also proved to be powerful in assessing disease progression. However, no single technique has been validated as an optimal biomarker. An integrative multimodal imaging approach, which combines different MRI and PET techniques, could be recommended for monitoring potential neuroprotective and preventive therapies in HD. In this article we review the current neuroimaging literature in HD.
Collapse
|
22
|
Moon BS, Kim BS, Park C, Jung JH, Lee YW, Lee HY, Chi DY, Lee BC, Kim SE. [18F]Fluoromethyl-PBR28 as a Potential Radiotracer for TSPO: Preclinical Comparison with [11C]PBR28 in a Rat Model of Neuroinflammation. Bioconjug Chem 2014; 25:442-50. [DOI: 10.1021/bc400556h] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Byung Seok Moon
- Department
of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Bom Sahn Kim
- Department
of Nuclear Medicine, Ewha Womans University Medical Center, Seoul, Korea
| | - Chansoo Park
- Department
of Chemistry, Sogang University, Seoul, Korea
| | - Jae Ho Jung
- Department
of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Youn Woo Lee
- Department
of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Ho-Young Lee
- Department
of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Dae Yoon Chi
- Department
of Chemistry, Sogang University, Seoul, Korea
| | - Byung Chul Lee
- Department
of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, Korea
- Advanced Institutes of Convergence Technology, Suwon, Korea
| | - Sang Eun Kim
- Department
of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, Korea
- Advanced Institutes of Convergence Technology, Suwon, Korea
- Department
of Transdisciplinary Studies, Graduate School of Convergence Science
and Technology, Seoul National University, Seoul, Korea
| |
Collapse
|
23
|
Daugherty DJ, Selvaraj V, Chechneva OV, Liu XB, Pleasure DE, Deng W. A TSPO ligand is protective in a mouse model of multiple sclerosis. EMBO Mol Med 2013; 5:891-903. [PMID: 23681668 PMCID: PMC3779450 DOI: 10.1002/emmm.201202124] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 03/15/2013] [Accepted: 03/18/2013] [Indexed: 12/18/2022] Open
Abstract
Local production of neurosteroids such as progesterone and allopregnanolone confers neuroprotection in central nervous system (CNS) inflammatory diseases. The mitochondrial translocator protein (TSPO) performs a rate-limiting step in the conversion of cholesterol to pregnenolone and its steroid derivatives. Previous studies have shown that TSPO is upregulated in microglia and astroglia during neural inflammation, and radiolabelled TSPO ligands such as PK11195 have been used to image and localize injury in the CNS. Recent studies have shown that modulating TSPO activity with pharmacological ligands such as etifoxine can initiate the production of neurosteroids locally in the injured CNS. In this study, we examined the effects of etifoxine, a clinically available anxiolytic drug, in the development and progression of mouse experimental autoimmune encephalomyelitis (EAE), an experimental model for multiple sclerosis (MS). Our results showed that etifoxine attenuated EAE severity when administered before the development of clinical signs and also improved symptomatic recovery when administered at the peak of the disease. In both cases, recovery was correlated with diminished inflammatory pathology in the lumbar spinal cord. Modulation of TSPO activity by etifoxine led to less peripheral immune cell infiltration of the spinal cord, and increased oligodendroglial regeneration after inflammatory demyelination in EAE. Our results suggest that a TSPO ligand, e.g. etifoxine, could be a potential new therapeutic option for MS with benefits that could be comparable to the administration of systemic steroids but potentially avoiding the detrimental side effects of long-term direct use of steroids.
Collapse
Affiliation(s)
- Daniel J Daugherty
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA, USA
| | | | | | | | | | | |
Collapse
|
24
|
Samaraweera SE, O'Keefe LV, Price GR, Venter DJ, Richards RI. Distinct roles for Toll and autophagy pathways in double-stranded RNA toxicity in a Drosophila model of expanded repeat neurodegenerative diseases. Hum Mol Genet 2013; 22:2811-9. [PMID: 23525903 DOI: 10.1093/hmg/ddt130] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Dominantly inherited expanded repeat neurodegenerative diseases are caused by the expansion of variable copy number tandem repeat sequences in otherwise unrelated genes. Some repeats encode polyglutamine that is thought to be toxic; however, other repeats do not encode polyglutamine indicating either multiple pathogenic pathways or an alternative common toxic agent. As these diseases share numerous clinical features and expanded repeat RNA is a common intermediary, RNA-based pathogenesis has been proposed, based on its toxicity in animal models. In Drosophila, double-stranded (rCAG.rCUG∼100) RNA toxicity is Dicer dependent and generates single-stranded (rCAG)7, an entity also detected in affected Huntington's Disease (HD) brains. We demonstrate that Drosophila rCAG.rCUG∼100 RNA toxicity perturbs several pathways including innate immunity, consistent with the observation in HD that immune activation precedes neuronal toxicity. Our results show that Drosophila rCAG.rCUG∼100 RNA toxicity is dependent upon Toll signaling and sensitive to autophagy, further implicating innate immune activation. In exhibiting molecular and cellular hallmarks of HD, double-stranded RNA-mediated activation of innate immunity is, therefore, a candidate pathway for this group of human genetic diseases.
Collapse
Affiliation(s)
- Saumya E Samaraweera
- Discipline of Genetics, School of Molecular & Biomedical Science and ARC Special Research Centre for the Molecular Genetics of Development, The University of Adelaide, Adelaide SA 5005, Australia
| | | | | | | | | |
Collapse
|
25
|
Politis M, Su P, Piccini P. Imaging of microglia in patients with neurodegenerative disorders. Front Pharmacol 2012; 3:96. [PMID: 22661951 PMCID: PMC3361961 DOI: 10.3389/fphar.2012.00096] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 05/01/2012] [Indexed: 01/13/2023] Open
Abstract
Microglia constitute the main immune defense in the central nervous system. In response to neuronal injury, microglia become activated, acquire phagocytic properties, and release a wide range of pro-inflammatory mediators that are essential for the annihilation of the neuronal insult. Although the role of microglial activation in acute neuronal damage is well defined, the pathophysiological processes underlying destructive or protective role to neurons following chronic exposure to microglial activation is still a subject of debate. It is likely that chronic exposure induces detrimental effects by promoting neuronal death through the release of neurotoxic factors. Positron emission tomography (PET) imaging with the use of translocator protein (TSPO) radioligands provides an in vivo tool for tracking the progression and severity of neuroinflammation in neurodegenerative disease. TSPO expression is correlated to the extent of microglial activation and the measurement of TSPO uptake in vivo with PET is a useful indicator of active disease. Although understanding of the interaction between radioligands and TSPO is not completely clear, there is a wide interest in application of TSPO imaging in neurodegenerative disease. In this article, we aim to review the applications of in vivo microglia imaging in neurodegenerative disorders such as Parkinson's disease, Huntington's disease, Dementias, and Multiple Sclerosis.
Collapse
Affiliation(s)
- Marios Politis
- Division of Experimental Medicine, Faculty of Medicine, Centre for Neuroscience, Hammersmith Hospital, Imperial College London London, UK
| | | | | |
Collapse
|
26
|
Tang D, Hight MR, McKinley ET, Fu A, Buck JR, Smith RA, Tantawy MN, Peterson TE, Colvin DC, Ansari MS, Nickels M, Manning HC. Quantitative preclinical imaging of TSPO expression in glioma using N,N-diethyl-2-(2-(4-(2-18F-fluoroethoxy)phenyl)-5,7-dimethylpyrazolo[1,5-a]pyrimidin-3-yl)acetamide. J Nucl Med 2012; 53:287-94. [PMID: 22251555 DOI: 10.2967/jnumed.111.095653] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
UNLABELLED There is a critical need to develop and rigorously validate molecular imaging biomarkers to aid diagnosis and characterization of primary brain tumors. Elevated expression of translocator protein (TSPO) has been shown to predict disease progression and aggressive, invasive behavior in a variety of solid tumors. Thus, noninvasive molecular imaging of TSPO expression could form the basis of a novel, predictive cancer imaging biomarker. In quantitative preclinical PET studies, we evaluated a high-affinity pyrazolopyrimidinyl-based TSPO imaging ligand, N,N-diethyl-2-(2-(4-(2-(18)F-fluoroethoxy)phenyl)-5,7-dimethylpyrazolo[1,5-a]pyrimidin-3-yl)acetamide ((18)F-DPA-714), as a translational probe for quantification of TSPO levels in glioma. METHODS Glioma-bearing rats were imaged with (18)F-DPA-714 in a small-animal PET system. Dynamic images were acquired simultaneously on injection of (18)F-DPA-714 (130-200 MBq/0.2 mL). Blood was collected to derive the arterial input function (AIF), with high-performance liquid chromatography radiometabolite analysis performed on selected samples for AIF correction. Compartmental modeling was performed using the corrected AIF. Specific tumor cell binding of DPA-714 was evaluated by radioligand displacement of (3)H-PK 11195 with DPA-714 in vitro and displacement of (18)F-DPA-714 with an excess of DPA-714 in vivo. Immediately after imaging, tumor and healthy brain tissues were harvested for validation by Western blotting and immunohistochemistry. RESULTS (18)F-DPA-714 was found to preferentially accumulate in tumors, with modest uptake in the contralateral brain. Infusion with DPA-714 (10 mg/kg) displaced (18)F-DPA-714 binding by greater than 60% on average. Tumor uptake of (18)F-DPA-714 was similar to another high-affinity TSPO imaging ligand, (18)F-N-fluoroacetyl-N-(2,5-dimethoxybenzyl)-2-phenoxyaniline, and agreed with ex vivo assay of TSPO levels in tumor and healthy brain. CONCLUSION These studies illustrate the feasibility of using (18)F-DPA-714 for visualization of TSPO-expressing brain tumors. Importantly, (18)F-DPA-714 appears suitable for quantitative assay of tumor TSPO levels in vivo. Given the relationship between elevated TSPO levels and poor outcome in oncology, these studies suggest the potential of (18)F-DPA-714 PET to serve as a novel predictive cancer imaging modality.
Collapse
Affiliation(s)
- Dewei Tang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Bourdier T, Pham TQ, Henderson D, Jackson T, Lam P, Izard M, Katsifis A. Automated radiosynthesis of [18F]PBR111 and [18F]PBR102 using the Tracerlab FXFN and Tracerlab MXFDG module for imaging the peripheral benzodiazepine receptor with PET. Appl Radiat Isot 2012; 70:176-83. [DOI: 10.1016/j.apradiso.2011.07.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 07/20/2011] [Accepted: 07/21/2011] [Indexed: 10/17/2022]
|
28
|
Initial evaluation in healthy humans of [18F]DPA-714, a potential PET biomarker for neuroinflammation. Nucl Med Biol 2011; 39:570-8. [PMID: 22172392 DOI: 10.1016/j.nucmedbio.2011.10.012] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 10/04/2011] [Accepted: 10/17/2011] [Indexed: 11/22/2022]
Abstract
INTRODUCTION The translocator protein 18 kDa (TSPO), although minimally expressed in healthy brain, is up-regulated in pathological conditions, coinciding with microglial activation. It is thereby a suitable in vivo biomarker of neuroinflammation for detection, evaluation and therapeutic monitoring of brain diseases. We aimed to estimate the radiation dosimetry of the positron emission tomography (PET) TSPO radioligand [(18)F]DPA-714, and we evaluated in healthy volunteers its whole-body uptake and cerebral kinetics. METHODS Biodistribution data from mice were used for the prediction of radiation dosimetry. In human studies, a 90-min dynamic PET scan was performed in seven healthy volunteers after injection of [(18)F]DPA-714 (245±45 MBq). Arterial and venous samples were collected from two subjects, and two additional subjects were submitted to whole-body acquisition. Regions of interest were defined over cerebral structures to obtain mean time-activity curves and to estimate the distribution volume ratios by Logan graphical analysis, and over peripheral organs to obtain standard uptake values. RESULTS The effective dose estimated from biodistribution in mice was 17.2 μSv/MBq. Modeling of regional brain and plasma data showed good in vivo stability of [(18)F]DPA-714 in humans, with only 20% of blood metabolites 20 min postinjection (p.i.). Maximum cerebral uptake was observed 5 min p.i., followed by two decreasing phases: a rapid washout (5-30 min) followed by a slower phase for the remainder of PET acquisition. Whole-body images demonstrate high activity in the gallbladder, heart, spleen and kidneys. CONCLUSIONS This initial study in humans shows that [(18)F]DPA-714 is a promising PET radioligand with excellent in vivo stability and biodistribution, and acceptable effective dose estimation. Therefore, [(18)F]DPA-714 could provide a sensitive measure of neuroinflammatory changes in subsequent clinical investigations.
Collapse
|
29
|
Mattner F, Bandin DL, Staykova M, Berghofer P, Gregoire MC, Ballantyne P, Quinlivan M, Fordham S, Pham T, Willenborg DO, Katsifis A. Evaluation of [¹²³I]-CLINDE as a potent SPECT radiotracer to assess the degree of astroglia activation in cuprizone-induced neuroinflammation. Eur J Nucl Med Mol Imaging 2011; 38:1516-28. [PMID: 21484375 DOI: 10.1007/s00259-011-1784-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 03/01/2011] [Indexed: 10/18/2022]
Abstract
PURPOSE The purpose of this study was to assess the feasibility and sensitivity of the high-affinity translocator protein (TSPO) ligand [(123)I]-CLINDE in imaging TSPO changes in vivo and characterise and compare astroglial and TSPO changes in the cuprizone model of demyelination and remyelination in C57BL/6 mice. METHODS C57BL/6 mice were fed with cuprizone for 4 weeks to induce demyelination followed by 2-4 weeks of standard diet (remyelination). Groups of mice were followed by in vivo single photon emission computed tomography (SPECT)/CT imaging using [(123)I]-CLINDE and uptake correlated with biodistribution, autoradiography, immunohistochemistry, immunofluorescence and real-time polymerase chain reaction (RT-PCR). RESULTS The uptake of [(123)I]-CLINDE in the brain as measured by SPECT imaging over the course of treatment reflects the extent of the physiological response, with significant increases observed during demyelination followed by a decrease in uptake during remyelination. This was confirmed by autoradiography and biodistribution studies. A positive correlation between TSPO expression and astrogliosis was found and both activated astrocytes and microglial cells expressed TSPO. [(123)I]-CLINDE uptake reflects astrogliosis in brain structures such as corpus callosum, caudate putamen, medium septum and olfactory tubercle as confirmed by both in vitro and in vivo results. CONCLUSION The dynamics in the cuprizone-induced astroglial and TSPO changes, observed by SPECT imaging, were confirmed by immunofluorescence, RT-PCR and autoradiography. The highly specific TSPO radioiodinated ligand CLINDE can be used as an in vivo marker for early detection and monitoring of a variety of neuropathological conditions using noninvasive brain imaging techniques.
Collapse
Affiliation(s)
- Filomena Mattner
- ANSTO LifeSciences, Australian Nuclear Science and Technology Organisation, New Illawarra Rd, Lucas Heights, Sydney, NSW 2234, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Evaluation of prion deposits and microglial activation in scrapie-infected mice using molecular imaging probes. Mol Imaging Biol 2011; 12:576-82. [PMID: 20376566 DOI: 10.1007/s11307-010-0321-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE A characteristic of prion diseases which affect both animals and humans is the aggregation of PrP amyloid fibrils in the brain, associated with a chronic inflammatory response dominated by microglial activation. In this study, we hypothesised that specific ligands of the 18-kDa translocator protein (TSPO) would be effective in the evaluation of microglial activation related to PrP(sc) deposits in prion disease. PROCEDURES Chronological studies using in vitro autoradiography were carried out with [(3)H]-PK11195 and [(125)I]-IMPY on frozen cerebral sections from scrapie-infected mice and controls. Accumulation of prion deposits was confirmed by histoblot staining with prion protein-specific monoclonal antibody. Ex vivo autoradiographic studies were carried out with [(125)I]-CLINDE and [(125)I]-IMPY at the terminal stage of infection. RESULTS Chronological studies using in vitro autoradiography showed that PrP(sc) deposits were co-localised with activated microglia as early as 60 days post-inoculation. Progressive levels of PrP(sc) and TSPO staining were successively observed in the hippocampus, cortex and left thalamus of infected mouse brain sections in the course of the disease and were correlated with the signals obtained by histoblot staining. Significant TSPO labelling was also observed ex vivo in the cortex, hippocampus and thalamus of scrapie-infected mice. In parallel, [(125)I]-IMPY showed labelling in the same cerebral regions but with high background staining. CONCLUSIONS These findings indicate the ability of [(125)I]-IMPY and [(125)I]-CLINDE to evaluate prion deposits and microglial activation in vitro and ex vivo in scrapie-infected mice at different stages of the disease.
Collapse
|
31
|
Imaging Brain Microglial Activation Using Positron Emission Tomography and Translocator Protein-Specific Radioligands. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 101:19-39. [DOI: 10.1016/b978-0-12-387718-5.00002-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
32
|
Denora N, Laquintana V, Trapani A, Lopedota A, Latrofa A, Gallo JM, Trapani G. Translocator protein (TSPO) ligand-Ara-C (cytarabine) conjugates as a strategy to deliver antineoplastic drugs and to enhance drug clinical potential. Mol Pharm 2010; 7:2255-69. [PMID: 20958082 DOI: 10.1021/mp100235w] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aim of this work was to evaluate TSPO ligand-Ara-C conjugation as an approach for the selective delivery of the antineoplastic agent to brain tumors as well as for overcome P-gp resistance induction observed for the majority of cytotoxic agents, enhancing the drug clinical potential. To this end, the novel N-imidazopyridinacetyl-Ara-C conjugates 3a-c, 10 and 15 have been prepared and evaluated for their cytotoxicity against glioma cell lines. In contrast to that observed for 3a-c and 10, the conjugate 15 resulted stable in both phosphate buffer and physiological medium. In all cases, the release of free Ara-C from hydrolyzed conjugates was checked by HPLC and ESI-MS analysis. Conjugates 10 and 15 displayed very high in vitro TSPO affinity and selectivity, and, hence, they may possess potential for targeted brain delivery. Due to the favorable features displayed by the conjugate 15, it was further evaluated on glioma cell lines, expressing high levels of TSPO, in the presence and in the absence of specific nucleoside transport (NT) inhibitors. In contrast to that observed for the free Ara-C, the presence of NT inhibitors did not reduce the cytotoxic activity of 15. Moreover, conjugate 15, as N(4)-acyl derivative of Ara-C, should be resistant to inactivation by cytidine deaminase, and it may possess enhanced propensity to target brain tumor cells characterized by a reduced expression of NTs. In addition, this conjugate behaves as a clear P-gp modulator and thereby may be useful to reverse MDR. Transport studies across the MDCKII-MDR1 monolayer indicated that conjugate 15 should overcome the BBB by transcellular pathway. All these features may be useful for enhancing the clinical potential of the nucleoside drug Ara-C.
Collapse
Affiliation(s)
- Nunzio Denora
- Dipartimento Farmaco-Chimico, Facoltà di Farmacia, Università degli Studi di Bari, Via Orabona 4, 70125 Bari, Italy
| | | | | | | | | | | | | |
Collapse
|
33
|
Binding of NIR-conPK and NIR-6T to astrocytomas and microglial cells: evidence for a protein related to TSPO. PLoS One 2009; 4:e8271. [PMID: 20020060 PMCID: PMC2792720 DOI: 10.1371/journal.pone.0008271] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 11/12/2009] [Indexed: 12/02/2022] Open
Abstract
PK 11195 and DAA1106 bind with high-affinity to the translocator protein (TSPO, formerly known as the peripheral benzodiazepine receptor). TSPO expression in glial cells increases in response to cytokines and pathological stimuli. Accordingly, [11C]-PK 11195 and [11C]-DAA1106 are recognized molecular imaging (MI) agents capable of monitoring changes in TSPO expression occurring in vivo and in response to various neuropathologies. Here we tested the pharmacological characteristics and TSPO-monitoring potential of two novel MI agents: NIR-conPK and NIR-6T. NIR-conPK is an analogue of PK 11195 conjugated to the near-infrared (NIR) emitting fluorophore: IRDye 800CW. NIR-6T is a DAA1106 analogue also conjugated to IRDye 800CW. We found that NIR-6T competed for [3H]-PK 11195 binding in astrocytoma cell homogenates with nanomolar affinity, but did not exhibit specific binding in intact astrocytoma cells in culture, indicating that NIR-6T is unlikely to constitute a useful MI agent for monitoring TSPO expression in intact cells. Conversely, we found that NIR-conPK did not compete for [3H]-PK 11195 binding in astrocytoma cell homogenate, but exhibited specific binding in intact astrocytoma cells in culture with nanomolar affinity, suggesting that NIR-conPK binds to a protein distinct, but related to, TSPO. Accordingly, treating intact astrocytoma cells and microglia in culture with cytokines led to significant changes in the amount of NIR-conPK specific binding without corresponding change in TSPO expression. Remarkably, the cytokine-induced changes in the protein targeted by NIR-conPK in intact microglia were selective, since IFN-γ (but not TNFα and TGFβ) increased the amount of NIR-conPK specific binding in these cells. Together these results suggest that NIR-conPK binds to a protein that is related to TSPO, and expressed by astrocytomas and microglia. Our results also suggest that the expression of this protein is increased by specific cytokines, and thus allows for the monitoring of a particular subtype of microglia activation.
Collapse
|
34
|
Schwab C, Klegeris A, McGeer PL. Inflammation in transgenic mouse models of neurodegenerative disorders. Biochim Biophys Acta Mol Basis Dis 2009; 1802:889-902. [PMID: 19883753 DOI: 10.1016/j.bbadis.2009.10.013] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 10/09/2009] [Accepted: 10/23/2009] [Indexed: 12/31/2022]
Abstract
Much evidence is available that inflammation contributes to the development of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease and Huntington's disease. Our review investigates how well current mouse models reflect this aspect of the pathogenesis. Transgenic models of AD have been available for several years and are the most extensively studied. Modulation of cytokine levels, activation of microglia and, to a lesser extent, activation of the complement system have been reported. Mouse models of PD and HD so far show less evidence for the involvement of inflammation. An increasing number of transgenic mouse strains is being created to model human neurodegenerative diseases. A perfect model should reflect all aspects of a disease. It is important to evaluate continuously the models for their match with the human disease and reevaluate them in light of new findings in human patients. Although none of the transgenic mouse models recapitulates all aspects of the human disorder they represent, all models have provided valuable information on basic molecular pathways. In particular, the mouse models of Alzheimer disease have also led to the development of new therapeutic strategies such as vaccination and modulation of microglial activity.
Collapse
Affiliation(s)
- Claudia Schwab
- Department of Psychiatry, Kinsmen Laboratory of Neurological Research, University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T1Z3, Canada.
| | | | | |
Collapse
|
35
|
Katsifis A, Barlin G, Mattner F, Dikic B. Synthesis of [123I]iodine labelled imidazo[1,2-b] pyridazines as potential probes for the study of peripheral benzodiazepine receptors using SPECT. RADIOCHIM ACTA 2009. [DOI: 10.1524/ract.92.4.305.35581] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Abstract
The pyridazines 3-acetamidomethyl-6-chloro-2-(4´-iodophenyl)imidazo[1,2-b]pyridazine 1 (IC50=1.6 nM) and 3-benzamidomethyl-6-iodo-2-(4´-t-butylphenyl)imidazo[1,2-b] pyridazine 2 (IC50=4.2 nM), are high affinity and selective ligands for the Peripheral Benzodiazepine Receptors (PBR) compared to the Central Benzodiazepine counterparts. The [123I] 1 and [123I] 2 labelled analogues of these compounds were subsequently synthesised for the potential study of the PBR in vivo using SPECT. Radioiodination of [123I] 1 was achieved by iododestannylation of the corresponding tributyl tin precursor with Na[ 123I] in the presence of peracetic acid or chloramine-T and the product isolated by C-18 RP HPLC. Radioiodination of [123I] 2 was achieved by copper assisted bromine [123I]iodine exchange of the corresponding bromo precursor in the presence of acetic acid and sodium bisulfate as reducing agent at 200 °C. Purification of the crude products were achieved by semi-preparative C-18 RP HPLC to give the products in radiochemical yields >90%. The products were obtained in >97% chemical and radiochemical purity and with specific activities >180 GBq/μmol.
Collapse
|
36
|
Kannan S, Balakrishnan B, Muzik O, Romero R, Chugani D. Positron emission tomography imaging of neuroinflammation. J Child Neurol 2009; 24:1190-9. [PMID: 19745091 PMCID: PMC3840908 DOI: 10.1177/0883073809338063] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Injury to the central nervous system is characterized by localization of activated microglia at the site of injury. The peripheral benzodiazepine receptor expressed on the outer mitochondrial membrane of the activated microglia is a sensitive biomarker for the detection of this neuroinflammatory response to an insult. PK11195, an isoquinoline ligand that specifically binds peripheral benzodiazepine receptor, can be tagged with a positron emitter and used as a tracer for molecular imaging of this receptor in vivo by positron emission tomography (PET). [(11)C](R)PK11195 has been used in the imaging of various neuroinflammatory disorders, such as Alzheimer disease and multiple sclerosis. On the basis of our small-animal PET imaging studies using a neonatal rabbit model of maternal inflammation-induced cerebral palsy, we propose that PET imaging using [(11)C](R)PK11195 may be a valuable tool for detecting neuroinflammation in the brain of newborns born to mothers with chorioamnionitis.
Collapse
Affiliation(s)
- Sujatha Kannan
- Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | - Bindu Balakrishnan
- Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan
| | - Otto Muzik
- Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan,Department of Radiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Roberto Romero
- Department of Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan,Perinatology Research Branch, NICHD, NIH, DHHS
| | - Diane Chugani
- Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan,Department of Radiology, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
37
|
Scarf AM, Ittner LM, Kassiou M. The Translocator Protein (18 kDa): Central Nervous System Disease and Drug Design. J Med Chem 2009; 52:581-92. [DOI: 10.1021/jm8011678] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alana M. Scarf
- Brain and Mind Research Institute, 100 Mallett Street, Camperdown, NSW 2050, Australia, and Department of Pharmacology, School of Medical Sciences, Discipline of Medical Radiation Sciences, and School of Chemistry, University of Sydney, NSW 2006, Australia
| | - Lars M. Ittner
- Brain and Mind Research Institute, 100 Mallett Street, Camperdown, NSW 2050, Australia, and Department of Pharmacology, School of Medical Sciences, Discipline of Medical Radiation Sciences, and School of Chemistry, University of Sydney, NSW 2006, Australia
| | - Michael Kassiou
- Brain and Mind Research Institute, 100 Mallett Street, Camperdown, NSW 2050, Australia, and Department of Pharmacology, School of Medical Sciences, Discipline of Medical Radiation Sciences, and School of Chemistry, University of Sydney, NSW 2006, Australia
| |
Collapse
|
38
|
Hadjiivanova C. Peripheral Benzodiazepine Receptors in Health and Disease. BIOTECHNOL BIOTEC EQ 2009. [DOI: 10.1080/13102818.2009.10818473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
39
|
Wiley CA, Lopresti BJ, Venneti S, Price J, Klunk WE, DeKosky ST, Mathis CA. Carbon 11-labeled Pittsburgh Compound B and carbon 11-labeled (R)-PK11195 positron emission tomographic imaging in Alzheimer disease. ARCHIVES OF NEUROLOGY 2009; 66:60-7. [PMID: 19139300 PMCID: PMC2666881 DOI: 10.1001/archneurol.2008.511] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
BACKGROUND Alzheimer disease (AD) is defined neuropathologically by the presence of neurofibrillary tangles and plaques associated with tau and beta-amyloid protein deposition. The colocalization of microglia and beta-amyloid plaques has been widely reported in pathological examination of AD and suggests that neuroinflammation may play a role in pathogenesis and/or progression. Because postmortem histopathological analyses are limited to single end-stage assessment, the time course and nature of this relationship are not well understood. OBJECTIVE To image microglial activation and beta-amyloid deposition in the brains of subjects with and without AD. DESIGN, SETTING, AND PARTICIPANTS Using two carbon 11 ([11C])-labeled positron emission tomographic imaging agents, Pittsburgh Compound B (PiB) and (R)-PK11195, we examined the relationship between amyloid deposition and microglial activation in different stages of AD using 5 control subjects, 6 subjects diagnosed with mild cognitive impairment, and 6 patients with mild to moderate AD. RESULTS Consistent with prior reports, subjects with a clinical diagnosis of probable AD showed significantly greater levels of [11C]PiB retention than control subjects, whereas patients with mild cognitive impairment spanned a range from control-like to AD-like levels of [11C]PiB retention. Additionally, 2 asymptomatic control subjects also exhibited evidence of elevated PiB retention in regions associated with the early emergence of plaques in AD and may represent prodromal cases of AD. We observed no differences in brain [11C](R)-PK11195 retention when subjects were grouped by clinical diagnosis or the presence or absence of beta-amyloid pathological findings as indicated by analyses of [11C]PiB retention. CONCLUSIONS These findings suggest that either microglial activation is limited to later stages of severe AD or [11C](R)-PK11195 is too insensitive to detect the level of microglial activation associated with mild to moderate AD.
Collapse
Affiliation(s)
- Clayton A Wiley
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Mills C, Makwana M, Wallace A, Benn S, Schmidt H, Tegeder I, Costigan M, Brown RH, Raivich G, Woolf CJ. Ro5-4864 promotes neonatal motor neuron survival and nerve regeneration in adult rats. Eur J Neurosci 2008; 27:937-46. [PMID: 18333964 DOI: 10.1111/j.1460-9568.2008.06065.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The translocator protein (18 kDa; TSPO), formerly known as the peripheral benzodiazepine receptor, is an outer mitochondrial membrane protein that associates with the mitochondrial permeability transition pore to regulate both steroidogenesis and apoptosis. TSPO expression is induced in adult dorsal root ganglion (DRG) sensory neurons after peripheral nerve injury and a TSPO receptor ligand, Ro5-4864, enhances DRG neurite growth in vitro and axonal regeneration in vivo. We have now found that TSPO is induced in neonatal motor neurons after peripheral nerve injury and have evaluated its involvement in neonatal and adult sensory and motor neuron survival, and in adult motor neuron regeneration. The TSPO ligand Ro5-4864 rescued cultured neonatal DRG neurons from nerve growth factor withdrawal-induced apoptosis and protected neonatal spinal cord motor neurons from death due to sciatic nerve axotomy. However, Ro5-4864 had only a small neuroprotective effect on adult facial motor neurons after axotomy, did not delay onset or prolong survival in SOD1 mutant mice, and failed to protect adult DRG neurons from sciatic nerve injury-induced death. In contrast, Ro5-4864 substantially enhanced adult facial motor neuron nerve regeneration and restoration of function after facial nerve axotomy. These data indicate a selective sensitivity of neonatal sensory and motor neurons to survival in response to Ro5-4864, which highlights that survival in injured immature neurons cannot necessarily predict success in adults. Furthermore, although Ro5-4864 is only a very weak promoter of survival in adult neurons, it significantly enhances regeneration and functional recovery in adults.
Collapse
Affiliation(s)
- Charles Mills
- Neural Plasticity Research Group, Department of Anesthesia and Critical Care, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Arlicot N, Katsifis A, Garreau L, Mattner F, Vergote J, Duval S, Kousignian I, Bodard S, Guilloteau D, Chalon S. Evaluation of CLINDE as potent translocator protein (18 kDa) SPECT radiotracer reflecting the degree of neuroinflammation in a rat model of microglial activation. Eur J Nucl Med Mol Imaging 2008; 35:2203-11. [PMID: 18536913 DOI: 10.1007/s00259-008-0834-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Accepted: 05/02/2008] [Indexed: 10/22/2022]
Abstract
BACKGROUND The translocator protein (TSPO; 18 kDa), the new name of the peripheral-type benzodiazepine receptor, is localised in mitochondria of glial cells and expressed in very low concentrations in normal brain. Their expression rises after microglial activation following brain injury. Accordingly, TSPO are potential targets to evaluate neuroinflammatory changes in a variety of CNS disorders. PURPOSE To date, only a few effective tools are available to explore TSPO by SPECT. We characterised here 6-chloro-2-(4'iodophenyl)-3-(N,N-diethyl)-imidazo[1,2-a]pyridine-3-acetamide or CLINDE in a rat model with different stages of excitotoxic lesion. METHODS Excitotoxicity was induced in male Wistar rats by unilateral intrastriatal injection of different amounts of quinolinic acid (75, 150 or 300 nmol). Six days later, two groups of rats (n = 5-6/group) were i.v. injected with [(125)I]-CLINDE (0.4 MBq); one group being pre-injected with PK11195 (5 mg/kg). Brains were removed 30 min after tracer injection and the radioactivity of cerebral areas measured. Complementary ex vivo autoradiography, in vitro autoradiography ([(3)H]-PK11195) and immunohistochemical studies (OX-42) were performed on brain sections. RESULTS In the control group, [(125)I]-CLINDE binding was significantly higher (p < 0.001) in lesioned than that in intact side. This binding disappeared in rats pre-treated with PK11195 (p < 0.001), showing specific binding of CLINDE to TSPO. Ex vivo and in vitro autoradiographic studies and immunohistochemistry were consistent with this, revealing a spatial correspondence between radioactivity signal and activated microglia. Regression analysis yielded a positive relation between the ligand binding and the degree of neuroinflammation. CONCLUSION These results demonstrate that CLINDE is suitable for TSPO in vivo SPECT imaging to explore their involvement in neurodegenerative disorders associated with microglial activation.
Collapse
|
42
|
Amitani M, Ohashi A, Hatazawa J, Gee A, Inoue O. Effect of PK11195 on attenuating the enhancement of glucose utilization induced by quinolinic acid infusion in the rat brain. Synapse 2008; 62:253-8. [PMID: 18236472 DOI: 10.1002/syn.20485] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
PK11195, a selective PBR ligand, has been reported to exert a protective effect against the neuronal damage induced by the intrastriatal infusion of quinolinic acid, an excitatory amino acid. The neuroprotective effect of PK11195 observed at 48 h after the infusion was mediated by the inhibition of microglial activation. The aim of this study is to search the mechanism for the effect of PK11195 other than the inhibition of activation of microglia. In this study, the effect of PK11195 on glucose metabolism as well as neuroprotection in the early phase (2 h) after the injection of quinolinic acid was examined. Intrastriatal injection of quinolinic acid (60 nmol/microL) alone caused a significant enhancement of [(14)C]DG utilization in the infused striatum (about 160% vs. the contralateral side). This enhancement of glucose utilization might be due to an increase in phosphorylation rate of [(14)C]DG rather than delivery process from the plasma into the brain, since the initial uptake of [(14)C]DG (1 min) was not changed by quinolinic acid. Coinjection of PK11195 (10 nmol/microL) completely blocked the enhancement of [(14)C]DG uptake induced by quinolinic acid. The attenuating effect of PK11195 on glucose metabolic disturbance induced by quinolinic acid seemed to be related to voltage-dependent anion channels (VDAC), which are component of the PBR complex and associated with the regulation of hexokinase activity. PK11195 also showed neuroprotective effect at 2 h after the infusion of quinolinic acid, despite no significant activation of microglia was observed at this time-point. Thus, the neuroprotection of PK11195 might be related to normalization of the metabolic disturbance by the excitatory amino acid.
Collapse
Affiliation(s)
- Misato Amitani
- Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka, Japan.
| | | | | | | | | |
Collapse
|
43
|
Chen MK, Guilarte TR. Translocator protein 18 kDa (TSPO): molecular sensor of brain injury and repair. Pharmacol Ther 2008; 118:1-17. [PMID: 18374421 DOI: 10.1016/j.pharmthera.2007.12.004] [Citation(s) in RCA: 408] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 12/21/2007] [Indexed: 11/25/2022]
Abstract
For over 15 years, the peripheral benzodiazepine receptor (PBR), recently named translocator protein 18 kDa (TSPO) has been studied as a biomarker of reactive gliosis and inflammation associated with a variety of neuropathological conditions. Early studies documented that in the brain parenchyma, TSPO is exclusively localized in glial cells. Under normal physiological conditions, TSPO levels are low in the brain neuropil but they markedly increase at sites of brain injury and inflammation making it uniquely suited for assessing active gliosis. This research has generated significant efforts from multiple research groups throughout the world to apply TSPO as a marker of "active" brain pathology using in vivo imaging modalities such as Positron Emission Tomography (PET) in experimental animals and humans. Further, in the last few years, there has been an increased interest in understanding the molecular and cellular function(s) of TSPO in glial cells. The latest evidence suggests that TSPO may not only serve as a biomarker of active brain disease but also the use of TSPO-specific ligands may have therapeutic implications in brain injury and repair. This review presents an overview of the history and function of TSPO focusing on studies related to its use as a sensor of active brain disease in experimental animals and in human studies.
Collapse
Affiliation(s)
- Ming-Kai Chen
- Neurotoxicology & Molecular Imaging Laboratory, Department of Environmental Health Sciences, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
44
|
|
45
|
Laquintana V, Denora N, Lopedota A, Suzuki H, Sawada M, Serra M, Biggio G, Latrofa A, Trapani G, Liso G. N-Benzyl-2-(6,8-dichloro-2-(4-chlorophenyl)imidazo[1,2-a]pyridin-3-yl)-N-(6- (7-nitrobenzo[c][1,2,5]oxadiazol-4-ylamino)hexyl)acetamide as a New Fluorescent Probe for Peripheral Benzodiazepine Receptor and Microglial Cell Visualization. Bioconjug Chem 2007; 18:1397-407. [PMID: 17722875 DOI: 10.1021/bc060393c] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aim of this work was to develop new fluorescent probes for the localization and function of the peripheral benzodiazepine receptor (PBR). This receptor is primarily expressed on the mitochondria, and it is overexpressed in a variety of different states including glioma, breast cancer, Alzeheimer's disease, and activated microglia. For the mentioned purpose, imidazopyridine and imidazopyrimidine compounds 5-20 were synthesized, and their affinity for PBR was determined. Although some intrinsically fluorescent imidazopyrimidine compounds 12-20 possess good binding affinity, they cannot be used for visualizing PBR due to their unfavorable fluorescence characteristics. Among the imidazopyridine-7-nitrofurazan conjugates 5-11, compound 10 was the most active, and it was found to stain live Ra2 microglial cells effectively. An in vivo biodistribution study carried out on compound 10 showed that this imidazopyridine derivative, injected in the carotid artery, is able to penetrate to liver parenchyma, whereas fluorescein isothiocyanate labeled dextran (FITC-dextran), used as a control dye, hardly penetrated from blood vessels to tissues. On the other hand, as for the distribution to brain, the patterns of staining with 10 and FITC-dextran are similar, indicating that both of them hardly penetrate into the brain because of the existence of the blood-brain barrier. The obtained results indicate that compound 10 represents a new useful fluorescent probe for visualization of activated microglia and PBR.
Collapse
Affiliation(s)
- Valentino Laquintana
- Dipartimento Farmaco-Chimico, Facoltà di Farmacia, Università degli Studi di Bari, Via Orabona 4, 70125 Bari, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Giatzakis C, Batarseh A, Dettin L, Papadopoulos V. The role of Ets transcription factors in the basal transcription of the translocator protein (18 kDa). Biochemistry 2007; 46:4763-74. [PMID: 17402746 PMCID: PMC2529463 DOI: 10.1021/bi062208o] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The translocator protein (18 kDa; TSPO), previously known as peripheral-type benzodiazepine receptor, is a high-affinity cholesterol- and drug-binding mitochondrial protein involved in various cell functions including steroidogenesis, apoptosis, and proliferation. TSPO is highly expressed in secretory and glandular tissues, especially in steroidogenic cells, and its expression is altered in certain pathological conditions such as cancer and neurological diseases. In this study, we characterized the regulatory elements present in the region of the TPSO promoter extending from 515 to 805 bp upstream of the transcription start site, an area previously identified as being important for transcription. Promoter fragments extending 2.7 kb and 805 bp upstream of the transcription start site were able to direct enhanced green fluorescent protein expression to Leydig cells of the testis, theca cells of the ovary, and cells of the adrenal cortex in transgenic animals. This expression pattern perfectly mimicked endogenous TSPO expression. Functional characterization of the 515-805 bp region revealed the presence of one specificity protein 1/specificity protein 3 (Sp1/Sp3) and two v-ets erythroblastosis virus E26 oncogene homologue (Ets) binding sites that are important for transcriptional activity in both MA-10 mouse Leydig tumor cells and NIH/3T3 whole mouse embryo fibroblasts. GA-binding protein alpha (GABPalpha), a member of the Ets family of transcription factors, was found to be associated with the endogenous TSPO promoter. We conclude that Sp1/Sp3 and members of the Ets family of transcription factors bind to specific binding sites in the TSPO promoter to drive basal TSPO gene transcription.
Collapse
Affiliation(s)
| | | | | | - Vassilios Papadopoulos
- Address all correspondence and requests for reprints to: Dr. Vassilios Papadopoulos, Department of Biochemistry & Molecular and Cellular Biology, Georgetown University Medical Center, 3900 Reservoir Road NW, Washington, DC 20057. Tel: (202) 687-8991; Fax: (202) 687-7855; e-mail:
| |
Collapse
|
47
|
Tai YF, Pavese N, Gerhard A, Tabrizi SJ, Barker RA, Brooks DJ, Piccini P. Imaging microglial activation in Huntington's disease. Brain Res Bull 2006; 72:148-51. [PMID: 17352938 DOI: 10.1016/j.brainresbull.2006.10.029] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Activated microglia have been proposed to play a major role in the pathogenesis of Huntington's Disease (HD). PK11195 is a ligand which binds selectively to peripheral benzodiazepine binding sites, a type of receptor selectively expressed by activated microglia in the central nervous system. Using (11)C-(R)-PK11195 positron emission tomography (PET), we have recently shown in vivo evidence of increased microglial activation in both symptomatic and presymptomatic HD gene carriers and that the degree of microglial activation in the striatum correlates with the severity of striatal dopamine D2 receptor dysfunction measured with (11)C-raclopride PET. Our findings indicate that microglial activation is an early process in the HD pathology, occurring before the onset of symptoms. The close spatial and temporal relationship between microglial activation and neuronal dysfunction lends further support to the pathogenic link between the two processes in HD. Further longitudinal studies are needed to fully elucidate this link.
Collapse
Affiliation(s)
- Yen F Tai
- Division of Neuroscience and Psychological Medicine, Hammersmith Hospital, Imperial College London, UK
| | | | | | | | | | | | | |
Collapse
|
48
|
Bazzichi L, Giannaccini G, Betti L, Italiani P, Fabbrini L, Defeo F, Giacomelli C, Giuliano T, Rossi A, Uccelli A, Giusti L, Mascia G, Lucacchini A, Bombardieri S. Peripheral benzodiazepine receptors on platelets of fibromyalgic patients. Clin Biochem 2006; 39:867-72. [PMID: 16919618 DOI: 10.1016/j.clinbiochem.2006.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Revised: 05/25/2006] [Accepted: 06/02/2006] [Indexed: 11/17/2022]
Abstract
OBJECTIVE The aim of the present study was to analyze if alterations of peripheral-type benzodiazepine receptor (PBR) characteristics occurred in platelet membranes of patients affected by primary fibromyalgia (FM). DESIGN AND METHODS Platelets were obtained from 30 patients with FM. Evaluation of kinetic parameters of PBR was performed using [(3)H] PK11195 as specific radioligand compared with 16 healthy volunteers. RESULTS The results showed a significant increase of PBR binding sites value in platelet membranes from FM patients (B(max) was 5366+/-188 fmol/mg vs. controls, 4193+/-341 fmol/mg, mean+/-SEM) (**p<0.01) but not for affinity value (K(d) was 4.90+/-0.39 nM vs. controls, 4.74+/-0.39 nM, mean+/-SEM) (p>0.05). Symptom severity scores (pain and tiredness) were positively correlated with B(max). CONCLUSIONS Our results showed an up-regulation of PBR in platelets of FM patients, and this seems to be related to the severity of fibromyalgic symptoms.
Collapse
Affiliation(s)
- L Bazzichi
- Department of Internal Medicine, U.O of Rheumatology, University of Pisa, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Manning HC, Smith SM, Sexton M, Haviland S, Bai M, Cederquist K, Stella N, Bornhop DJ. A peripheral benzodiazepine receptor targeted agent for in vitro imaging and screening. Bioconjug Chem 2006; 17:735-40. [PMID: 16704212 DOI: 10.1021/bc060020b] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We developed a molecular imaging agent (MIA), a conjugable form of PK11195 (conPK11195) coupled to a lissamine dye (Liss-ConPK11195), which targets the peripheral benzodiazepine receptor (PBR). To determine that our compound specifically binds to this 18 kDa protein, primarily expressed on the mitochondria, we performed classic binding studies on live MDA-MB-231 breast cancer cells and measured fluorescence in cell fractions of C6 glioma cells. We found that conPK11195 conjugated to the fluorophore retained significant binding to its target. Here we demonstrate the utility of the agent for in vitro imaging of live cells by specific binding to the protein of interest.
Collapse
Affiliation(s)
- H Charles Manning
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Ryu JK, Choi HB, McLarnon JG. Peripheral benzodiazepine receptor ligand PK11195 reduces microglial activation and neuronal death in quinolinic acid-injected rat striatum. Neurobiol Dis 2006; 20:550-61. [PMID: 15916899 DOI: 10.1016/j.nbd.2005.04.010] [Citation(s) in RCA: 265] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2005] [Revised: 03/18/2005] [Accepted: 04/08/2005] [Indexed: 11/24/2022] Open
Abstract
The effects of the peripheral benzodiazepine receptor (PBR) ligand, PK11195, were investigated in the rat striatum following the administration of quinolinic acid (QUIN). Intrastriatal QUIN injection caused an increase of PBR expression in the lesioned striatum as demonstrated by immunohistochemical analysis. Double immunofluorescent staining indicated PBR was primarily expressed in ED1-immunoreactive microglia but not in GFAP-immunoreactive astrocytes or NeuN-immunoreactive neurons. PK11195 treatment significantly reduced the level of microglial activation and the expression of pro-inflammatory cytokines and iNOS in QUIN-injected striatum. Oxidative-mediated striatal QUIN damage, characterized by increased expression of markers for lipid peroxidation (4-HNE) and oxidative DNA damage (8-OHdG), was significantly diminished by PK11195 administration. Furthermore, intrastriatal injection of PK11195 with QUIN significantly reduced striatal lesions induced by the excitatory amino acid and diminished QUIN-mediated caspase-3 activation in striatal neurons. These results suggest that inflammatory responses from activated microglia are damaging to striatal neurons and pharmacological targeting of PBR in microglia may be an effective strategy in protecting neurons in neurological disorders such as Huntington's disease.
Collapse
Affiliation(s)
- Jae K Ryu
- Department of Pharmacology and Therapeutics, Faculty of Medicine, 2176 Health Sciences Mall, The University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | | | | |
Collapse
|