1
|
Hopp SC. Targeting microglia L-type voltage-dependent calcium channels for the treatment of central nervous system disorders. J Neurosci Res 2021; 99:141-162. [PMID: 31997405 PMCID: PMC9394523 DOI: 10.1002/jnr.24585] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/03/2020] [Accepted: 01/08/2020] [Indexed: 12/14/2022]
Abstract
Calcium (Ca2+ ) is a ubiquitous mediator of a multitude of cellular functions in the central nervous system (CNS). Intracellular Ca2+ is tightly regulated by cells, including entry via plasma membrane Ca2+ permeable channels. Of specific interest for this review are L-type voltage-dependent Ca2+ channels (L-VDCCs), due to their pleiotropic role in several CNS disorders. Currently, there are numerous approved drugs that target L-VDCCs, including dihydropyridines. These drugs are safe and effective for the treatment of humans with cardiovascular disease and may also confer neuroprotection. Here, we review the potential of L-VDCCs as a target for the treatment of CNS disorders with a focus on microglia L-VDCCs. Microglia, the resident immune cells of the brain, have attracted recent attention for their emerging inflammatory role in several CNS diseases. Intracellular Ca2+ regulates microglia transition from a resting quiescent state to an "activated" immune-effector state and is thus a valuable target for manipulation of microglia phenotype. We will review the literature on L-VDCC expression and function in the CNS and on microglia in vitro and in vivo and explore the therapeutic landscape of L-VDCC-targeting agents at present and future challenges in the context of Alzheimer's disease, Parkinson's disease, Huntington's disease, neuropsychiatric diseases, and other CNS disorders.
Collapse
Affiliation(s)
- Sarah C. Hopp
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
- Department of Pharmacology, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| |
Collapse
|
2
|
Gattlen C, Deftu AF, Tonello R, Ling Y, Berta T, Ristoiu V, Suter MR. The inhibition of Kir2.1 potassium channels depolarizes spinal microglial cells, reduces their proliferation, and attenuates neuropathic pain. Glia 2020; 68:2119-2135. [PMID: 32220118 DOI: 10.1002/glia.23831] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 11/11/2022]
Abstract
Spinal microglia change their phenotype and proliferate after nerve injury, contributing to neuropathic pain. For the first time, we have characterized the electrophysiological properties of microglia and the potential role of microglial potassium channels in the spared nerve injury (SNI) model of neuropathic pain. We observed a strong increase of inward currents restricted at 2 days after injury associated with hyperpolarization of the resting membrane potential (RMP) in microglial cells compared to later time-points and naive animals. We identified pharmacologically and genetically the current as being mediated by Kir2.1 ion channels whose expression at the cell membrane is increased 2 days after SNI. The inhibition of Kir2.1 with ML133 and siRNA reversed the RMP hyperpolarization and strongly reduced the currents of microglial cells 2 days after SNI. These electrophysiological changes occurred coincidentally to the peak of microglial proliferation following nerve injury. In vitro, ML133 drastically reduced the proliferation of BV2 microglial cell line after both 2 and 4 days in culture. In vivo, the intrathecal injection of ML133 significantly attenuated the proliferation of microglia and neuropathic pain behaviors after nerve injury. In summary, our data implicate Kir2.1-mediated microglial proliferation as an important therapeutic target in neuropathic pain.
Collapse
Affiliation(s)
- Christophe Gattlen
- Pain Center, Department of Anesthesiology, Lausanne University Hospital and University of Lausanne (CHUV), Lausanne, Switzerland.,Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Alexandru-Florian Deftu
- Pain Center, Department of Anesthesiology, Lausanne University Hospital and University of Lausanne (CHUV), Lausanne, Switzerland.,Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland.,Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Raquel Tonello
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, Ohio, USA
| | - Yuejuan Ling
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, Ohio, USA.,Pain Research Laboratory, Institute of Nautical Medicine, Jiangsu Key Laboratory of Neurodegeneration, University of Nantong, Nantong, Jiangsu, China
| | - Temugin Berta
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, Ohio, USA
| | - Violeta Ristoiu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Marc René Suter
- Pain Center, Department of Anesthesiology, Lausanne University Hospital and University of Lausanne (CHUV), Lausanne, Switzerland.,Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland.,Department of Fundamental Neurosciences, Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland
| |
Collapse
|
3
|
Lively S, Lam D, Wong R, Schlichter LC. Comparing Effects of Transforming Growth Factor β1 on Microglia From Rat and Mouse: Transcriptional Profiles and Potassium Channels. Front Cell Neurosci 2018; 12:115. [PMID: 29780305 PMCID: PMC5946019 DOI: 10.3389/fncel.2018.00115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/11/2018] [Indexed: 12/02/2022] Open
Abstract
The cytokine, transforming growth factor β1 (TGFβ1), is up-regulated after central nervous system (CNS) injuries or diseases involving microglial activation, and it has been proposed as a therapeutic agent for treating neuroinflammation. Microglia can produce and respond to TGFβ1. While rats and mice are commonly used for studying neuroinflammation, very few reports directly compare them. Such studies are important for improving pre-clinical studies and furthering translational progress in developing therapeutic interventions. After intracerebral hemorrhage (ICH) in the rat striatum, the TGFβ1 receptor was highly expressed on microglia/macrophages within the hematoma. We recently found species similarities and differences in response to either a pro-inflammatory (interferon-γ, IFN-γ, +tumor necrosis factor, TNF-α) or anti-inflammatory interleukin-4 (IL-4) stimulus. Here, we assessed whether rat and mouse microglia differ in their responses to TGFβ1. Microglia were isolated from Sprague-Dawley rats and C57BL/6 mice and treated with TGFβ1. We quantified changes in expression of >50 genes, in their morphology, proliferation, apoptosis and in three potassium channels that are considered therapeutic targets. Many inflammatory mediators, immune receptors and modulators showed species similarities, but notable differences included that, for some genes, only one species responded (e.g., Il4r, Il10, Tgfbr2, colony-stimulating factor receptor (Csf1r), Itgam, suppressor of cytokine signaling 1 (Socs1), toll-like receptors 4 (Tlr4), P2rx7, P2ry12), and opposite responses were seen for others (Tgfb1, Myc, Ifngr1). In rat only, TGFβ1 affected microglial morphology and proliferation, but there was no apoptosis in either species. In both species, TGFβ1 dramatically increased Kv1.3 channel expression and current (no effects on Kir2.1). KCa3.1 showed opposite species responses: the current was low in unstimulated rat microglia and greatly increased by TGFβ1 but higher in control mouse cells and decreased by TGFβ1. Finally, we compared TGFβ1 and IL10 (often considered similar anti-inflammatory stimuli) and found many different responses in both species. Overall, the numerous species differences should be considered when characterizing neuroinflammation and microglial activation in vitro and in vivo, and when targeting potassium channels.
Collapse
Affiliation(s)
- Starlee Lively
- Krembil Research Institute, Genes and Development Division, University Health Network, Toronto, ON, Canada
| | - Doris Lam
- Krembil Research Institute, Genes and Development Division, University Health Network, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Raymond Wong
- Krembil Research Institute, Genes and Development Division, University Health Network, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Lyanne C Schlichter
- Krembil Research Institute, Genes and Development Division, University Health Network, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Suma T, Koshinaga M, Fukushima M, Kano T, Katayama Y. Effects ofin situadministration of excitatory amino acid antagonists on rapid microglial and astroglial reactions in rat hippocampus following traumatic brain injury. Neurol Res 2013; 30:420-9. [DOI: 10.1179/016164107x251745] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
5
|
Kaindl AM, Degos V, Peineau S, Gouadon E, Chhor V, Loron G, Le Charpentier T, Josserand J, Ali C, Vivien D, Collingridge GL, Lombet A, Issa L, Rene F, Loeffler JP, Kavelaars A, Verney C, Mantz J, Gressens P. Activation of microglial N-methyl-D-aspartate receptors triggers inflammation and neuronal cell death in the developing and mature brain. Ann Neurol 2013; 72:536-49. [PMID: 23109148 DOI: 10.1002/ana.23626] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Activated microglia play a central role in the inflammatory and excitotoxic component of various acute and chronic neurological disorders. However, the mechanisms leading to their activation in the latter context are poorly understood, particularly the involvement of N-methyl-D-aspartate receptors (NMDARs), which are critical for excitotoxicity in neurons. We hypothesized that microglia express functional NMDARs and that their activation would trigger neuronal cell death in the brain by modulating inflammation. METHODS AND RESULTS We demonstrate that microglia express NMDARs in the murine and human central nervous system and that these receptors are functional in vitro. We show that NMDAR stimulation triggers microglia activation in vitro and secretion of factors that induce cell death of cortical neurons. These damaged neurons are further shown to activate microglial NMDARs and trigger a release of neurotoxic factors from microglia in vitro, indicating that microglia can signal back to neurons and possibly induce, aggravate, and/or maintain neurologic disease. Neuronal cell death was significantly reduced through pharmacological inhibition or genetically induced loss of function of the microglial NMDARs. We generated Nr1 LoxP(+/+) LysM Cre(+/-) mice lacking the NMDAR subunit NR1 in cells of the myeloid lineage. In this model, we further demonstrate that a loss of function of the essential NMDAR subunit NR1 protects from excitotoxic neuronal cell death in vivo and from traumatic brain injury. INTERPRETATION Our findings link inflammation and excitotoxicity in a potential vicious circle and indicate that an activation of the microglial NMDARs plays a pivotal role in neuronal cell death in the perinatal and adult brain.
Collapse
Affiliation(s)
- Angela M Kaindl
- French Institute of Health and Medical Research U676, Robert Debré Hospital, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Stimulation of transient receptor potential vanilloid 4 channel suppresses abnormal activation of microglia induced by lipopolysaccharide. Glia 2012; 60:761-70. [DOI: 10.1002/glia.22306] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 01/18/2012] [Accepted: 01/20/2012] [Indexed: 12/13/2022]
|
7
|
Wang W, Xiao J, Adachi M, Liu Z, Zhou J. 4-aminopyridine induces apoptosis of human acute myeloid leukemia cells via increasing [Ca2+]i through P2X7 receptor pathway. Cell Physiol Biochem 2011; 28:199-208. [PMID: 21865727 DOI: 10.1159/000331731] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2011] [Indexed: 11/19/2022] Open
Abstract
4-AP, a voltage-gated potassium channel blocker, was identified to exert critical pro-apoptotic properties in various types of cancer cells. The present study aims to explore the effect of 4-AP on the apoptosis of human AML cells and the underlying mechanism. We found 4-AP inhibited the proliferation and induces apoptosis in both AML cell lines and primary cultured human AML cells. The apoptosis of AML cells after 4-AP treatment was further confirmed by the disruption of mitochondrial membrane potential (MMP) and activation of caspase 3 and 9. 4-AP inhibited Kv currents in NB(4), HL-60 and THP-1 cells. Furthermore, 4-AP induced significant increment in [Ca(2+)](i), which were inhibited by KN-62, a specific blocker of P(2)X(7) receptors. KN-62 also abrogated 4-AP induced apoptosis. Knockdown of P(2)X(7) receptor by small interfering RNA blocked the effect of 4-AP. Conclusively, this study indicated that 4-AP promotes apoptosis in human AML cells via increasing [Ca(2+)](i) through P(2)X(7) receptor.
Collapse
Affiliation(s)
- Wei Wang
- Department of Hematology, the First Affiliated Hospital of Harbin Medical University, Harbin, P.R. China
| | | | | | | | | |
Collapse
|
8
|
Abstract
Microglial cells are the resident macrophages in the central nervous system. These cells of mesodermal/mesenchymal origin migrate into all regions of the central nervous system, disseminate through the brain parenchyma, and acquire a specific ramified morphological phenotype termed "resting microglia." Recent studies indicate that even in the normal brain, microglia have highly motile processes by which they scan their territorial domains. By a large number of signaling pathways they can communicate with macroglial cells and neurons and with cells of the immune system. Likewise, microglial cells express receptors classically described for brain-specific communication such as neurotransmitter receptors and those first discovered as immune cell-specific such as for cytokines. Microglial cells are considered the most susceptible sensors of brain pathology. Upon any detection of signs for brain lesions or nervous system dysfunction, microglial cells undergo a complex, multistage activation process that converts them into the "activated microglial cell." This cell form has the capacity to release a large number of substances that can act detrimental or beneficial for the surrounding cells. Activated microglial cells can migrate to the site of injury, proliferate, and phagocytose cells and cellular compartments.
Collapse
|
9
|
Hu D, Liu J, Keblesh J, Xiong H. Involvement of the 4-aminopyridine-sensitive transient A-type K+ current in macrophage-induced neuronal injury. Eur J Neurosci 2010; 31:214-22. [PMID: 20074219 DOI: 10.1111/j.1460-9568.2009.07063.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Through their capacity to secrete, upon activation, a variety of bioactive molecules, brain macrophages (and resident microglia) play an important role in brain immune and inflammatory responses. To test our hypothesis that activated macrophages induce neuronal injury by enhancing neuronal outward K(+) current, we studied the effects of lipopolysaccharide (LPS)-stimulated human monocyte-derived macrophage (MDM) on neuronal transient A-type K(+) current (I(A)) and resultant neuronal injury in primary rat hippocampal neuronal cultures. Bath application of LPS-stimulated MDM-conditioned media (MCM+) enhanced neuronal I(A) in a concentration-dependent manner. Non-stimulated MCM (MCM-) failed to alter I(A). The enhancement of neuronal I(A) was recapitulated in neurons co-cultured with macrophages. The link of MCM(+)-induced enhancement of I(A) to MCM(+)-associated neuronal injury, as detected by propidium iodide and 4'',6-diamidino-2-phenylindol staining (DAPI) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, was demonstrated by experimental results showing that addition of I(A) blocker 4-aminopyridine to the cultures protected hippocampal neurons from MCM(+)-induced neuronal injury. Further investigation revealed that glutamate was involved in MCM(+)-induced enhancement of neuronal I(A). These results suggest that during brain inflammation macrophages (and microglia) might mediate neuronal injury via enhancement of neuronal I(A), and that neuronal K(v) channel might be a potential target for the development of therapeutic strategies for some neurodegenerative disorders by which immune and inflammatory responses are believed to be involved in the pathogenesis.
Collapse
Affiliation(s)
- Dehui Hu
- Center for Neurovirology and Neurodegenerative Disorders, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | | | | | | |
Collapse
|
10
|
|
11
|
Feng JJ, Morest DK. Development of synapses and expression of a voltage-gated potassium channel in chick embryonic auditory nuclei. Hear Res 2006; 216-217:116-26. [PMID: 16530363 DOI: 10.1016/j.heares.2006.01.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 01/12/2006] [Accepted: 01/12/2006] [Indexed: 11/30/2022]
Abstract
The potassium channel protein, Kv3.1, is abundantly expressed in the chick auditory pathway. Its b-isoform is found in nucleus magnocellularis, which receives the cochlear input, both before and after the establishment of synaptic connections. It is also present in cell cultures in the absence of any peripheral input. However, the expression of this isoform in the embryo has been shown to increase with development. Here, we address the question of the correlation between maturation of synapses in the auditory pathway and the pattern of expression of the b-isoform in a series of embryos prepared for immunohistochemistry at Hamburger-Hamilton stages equivalent to E10, E12, E14, and E17. We show here that this subunit translocates from the perinuclear cytoplasm to the cell membrane domain in nucleus magnocellularis at the time that cochlear nerve endings emerge as endbulbs of Held (E17). In nucleus laminaris, by this time, while abundant Kv3.1b occurs in the perinuclear cytoplasm, a translocation to the cell membrane domain has not yet occurred, and the mature peri-synaptic localization is delayed to a later stage. This difference suggests a hierarchy in the developmental expression of Kv3.1. An unexpected finding is the expression of the a-isoform of Kv3.1 in astrocytes, especially those which surround the developing nuclei and their connecting fibers. We also report here for the first time the presence of Kv3.1b in the initial segments of axons at the times when they begin to form. Our observations suggest that the Kv3.1 channel protein is regulated through mechanisms linked to the development of synaptic activity.
Collapse
Affiliation(s)
- Jane J Feng
- Department of Biology, Southern Connecticut State University, New Haven, CT 06515, USA
| | | |
Collapse
|
12
|
Yi HA, Yi SD, Jang BC, Song DK, Shin DH, Mun KC, Kim SP, Suh SI, Bae JH. Inhibitory effects of glucosamine on lipopolysaccharide‐induced activation in microglial cells. Clin Exp Pharmacol Physiol 2006; 32:1097-103. [PMID: 16445576 DOI: 10.1111/j.1440-1681.2005.04305.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The aim of the present study was to investigate the effects of glucosamine on lipopolysaccharide (LPS)-induced cellular activation in microglia and to evaluate the inhibitory mechanisms involved. Lipopolysaccharide (100 ng/mL) was used for the activation of primary cultured rat microglial or BV2 microglial cells. Changes in intracellular Ca2+ levels and outward K+ currents were measured using fura-2/AM and whole-cell patch-clamp methods, respectively. Lipopolysaccharide-induced expression of tumour necrosis factor (TNF)-alpha mRNA was analysed by reverse transcription-polymerase chain reaction. Lipopolysaccharide transformed cell morphology into an amoeboid shape in vitro and induced microglial activation in vivo, as measured by immunohistochemical staining, but glucosamine inhibited this activation. Glucosamine also inhibited LPS-induced Ca2+ influx, outward K+ currents and TNF-alpha mRNA expression, which are typically representative of microglial activation. 4. The results suggest that the inhibitory mechanisms of glucosamine on LPS-induced microglial activation include inhibition of Ca2+ influx and outward K+ currents, as well as downregulation of the microglial activator gene TNF-alpha.
Collapse
Affiliation(s)
- Hyon-Ah Yi
- Department of Neurology, Keimyung University School of Medicine, Keimyung University, Choong-Gu, Daegu, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Newell EW, Schlichter LC. Integration of K+ and Cl- currents regulate steady-state and dynamic membrane potentials in cultured rat microglia. J Physiol 2005; 567:869-90. [PMID: 16020460 PMCID: PMC1474215 DOI: 10.1113/jphysiol.2005.092056] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The role of ion channels and membrane potential (V(m)) in non-excitable cells has recently come under increased scrutiny. Microglia, the brain's resident immune cells, express voltage-gated Kv1.3 channels, a Kir2.1-like inward rectifier, a swelling-activated Cl(-) current and several other channels. We previously showed that Kv1.3 and Cl(-) currents are needed for microglial cell proliferation and that Kv1.3 is important for the respiratory burst. Although their mechanisms of action are unknown, one general role for these channels is to maintain a negative V(m). An impediment to measuring V(m) in non-excitable cells is that many have a very high electrical resistance, which makes them extremely susceptible to leak-induced depolarization. Using non-invasive V(m)-sensitive dyes, we show for the first time that the membrane resistance of microglial cells is several gigaohms; much higher than the seal resistance during patch-clamp recordings. Surprisingly, we observed that small current injections can evoke large V(m) oscillations in some microglial cells, and that injection of sinusoidal currents of varying frequency exposes a strong intrinsic electrical resonance in the 5- to 20-Hz frequency range in all microglial cells tested. Using a dynamic current clamp that we developed to actively compensate for the damage done by the patch-clamp electrode, we found that the V(m) oscillations and resonance were more prevalent and larger. Both types of electrical behaviour required Kv1.3 channels, as they were eliminated by the Kv1.3 blocker, agitoxin-2. To further determine how the ion currents integrate in these cells, voltage-clamp recordings from microglial cells displaying these behaviours were used to analyse the biophysical properties of the Kv1.3, Kir and Cl(-) currents. A mathematical model that incorporated only these three currents reproduced the observed V(m) oscillations and electrical resonance. Thus, the electrical behaviour of this 'non-excitable' cell type is much more complex than previously suspected, and might reflect a more common oversight in high resistance cells.
Collapse
Affiliation(s)
- Evan W Newell
- Division of Cellular and Molecular Biology, Toronto Western Research Institute, Ontario, Canada
| | | |
Collapse
|
14
|
Anderová M, Antonova T, Petrík D, Neprasová H, Chvátal A, Syková E. Voltage-dependent potassium currents in hypertrophied rat astrocytes after a cortical stab wound. Glia 2005; 48:311-26. [PMID: 15390116 DOI: 10.1002/glia.20076] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Changes in the membrane properties of reactive astrocytes in gliotic cortex induced by a stab wound were studied in brain slices of 21-28-day-old rats, using the patch-clamp technique and were correlated with changes in resting extracellular K+ concentration ([K+]e) measured in vivo using K+-selective microelectrodes. Based on K+ current expression, three types of astrocytes were identified in gliotic cortex: A1 astrocytes expressing a time- and voltage-independent K+ current component and additional inwardly rectifying K+ currents (K(IR)); A2 astrocytes expressing a time- and voltage-independent K+ current component and additional delayed outwardly rectifying K+ currents (K(DR)); and complex astrocytes expressing K(DR), K(IR), and A-type K+ (K(A)) currents and Na+ currents (I(Na)). Nestin/bromodeoxyuridine (BrdU)-negative A1 astrocytes were found further than approximately 100 microm from the stab wound and showed an upregulation of K(IR) currents within the first day post-injury (PI), correlating with an increased resting [K+]e. Their number declined from 62% of total astrocytes in control rats to 41% in rats at 7 days PI. Nestin/BrdU-positive A2 astrocytes were found only within a distance of approximately 100 microm from the stab wound and, in comparison to those in control rats, showed an upregulation of K(DR) currents. Their number increased from 8% of the total number of astrocytes in control rats to 39% 7 days PI. Both A1 and A2 astrocytes showed hypertrophied processes and increased GFAP staining, but an examination of cell morphology revealed greater changes in the surface/volume ratio in A2 astrocytes than in A1 astrocytes. Complex astrocytes did not display a hypertophied morphology; K(IR) currents in these cells were upregulated within 1 day PI, while the K(DR), K(A), and I(Na) currents were increased only 6 h PI. We conclude that two electrophysiologically, immunohistochemically, and morphologically distinct types of hypertrophied astrocytes are present at the site of a stab wound, depending on the distance from the lesion, and may have different functions in ionic homeostasis and/or regeneration.
Collapse
Affiliation(s)
- Miroslava Anderová
- Department of Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | | | | | | | | | | |
Collapse
|
15
|
Chung S, Lee J, Joe EH, Uhm DY. Beta-amyloid peptide induces the expression of voltage dependent outward rectifying K+ channels in rat microglia. Neurosci Lett 2001; 300:67-70. [PMID: 11207376 DOI: 10.1016/s0304-3940(01)01516-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Upregulation of voltage-dependent outward rectifying K+ (Kv) channels has been reported in activated microglia. Since beta-amyloid peptide (A beta) is known to activate microglia, we tested whether the exposure of cultured rat microglia to A beta fragment 25-35 (A beta 25-35) induced the Kv current. A beta 25-35 in 5-200 nM concentration range significantly increased Kv current density, while there was small change in inward rectifying K+ current density. The full length A beta peptide (A beta 1-42) also increased Kv current. However, the control peptide, A beta 35-25, did not induce Kv current. Most of the Kv current induced by A beta was specifically blocked by the presence of antisense deoxyoligonucleotides against Kv1.3, and Kv1.5. Thus, it is concluded that we have identified Kv1.3 and Kv1.5 as the channel types expressed in A beta-treated microglia.
Collapse
Affiliation(s)
- S Chung
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, South Korea.
| | | | | | | |
Collapse
|
16
|
Pannicke T, Faude F, Reichenbach A, Reichelt W. A function of delayed rectifier potassium channels in glial cells: maintenance of an auxiliary membrane potential under pathological conditions. Brain Res 2000; 862:187-93. [PMID: 10799684 DOI: 10.1016/s0006-8993(00)02144-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Müller glial cells from human and guinea-pig retinae were investigated using the whole-cell patch-clamp technique. Human Müller cells from eyes with different diseases were characterized by diminished inwardly-rectifying K(+) currents. A comparable reduction of these currents was achieved in guinea pig Müller cells by treatment with iodoacetate to generate ischemia-like conditions. Consequently, the membrane potentials were reduced significantly in both diseased human and iodoacetate-treated guinea-pig Müller cells as compared to normal controls. However, the potentials were still clearly negative. Delayed rectifier currents could still be recorded under these conditions. Application of quinine blocked the delayed rectifier K(+) channels, and resulted in a total breakdown of the membrane potentials. Thus, it becomes apparent that the glial delayed rectifier K(+) channels are necessary to maintain an 'auxiliary' membrane potential under certain pathological conditions that are characterized by an almost total loss of inward rectifier conductance. Therefore, the delayed rectifier K(+) channels of glial cells may become crucial for the support of basic glial functions.
Collapse
Affiliation(s)
- T Pannicke
- Paul-Flechsig-Institute for Brain Research, Department of Neurophysiology, University of Leipzig, Jahnallee 59, D-04109, Leipzig, Germany.
| | | | | | | |
Collapse
|
17
|
Chung S, Jung W, Lee MY. Inward and outward rectifying potassium currents set membrane potentials in activated rat microglia. Neurosci Lett 1999; 262:121-4. [PMID: 10203246 DOI: 10.1016/s0304-3940(99)00053-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Activation of cultured rat microglial cells with lipopolysaccharide (LPS), induced outward rectifying K+ (K(V)) current in addition to already existing inward rectifying K+ current (K(IR)). By measuring zero-current membrane-potentials using whole-cell patch-clamp method, we showed that K(V) current plays a direct role in setting membrane potential to near -45 mV. Since the membrane potentials of microglia show two prominent peaks at -45 and -70 mV, we hypothesize that K(IR) current might set the membrane potential to near -70 mV. We observed that cells with larger K(IR) current had a zero-current membrane-potential at around -70 mV, and that blocking of K(IR) current with Ba2+ depolarized membrane potentials to near -45 mV. These results indicate that the amounts of K(IR), and K(V) current determine the zero-current membrane-potentials in LPS-activated microglia.
Collapse
Affiliation(s)
- S Chung
- Department of Physiology, Chung-Ang University College of Medicine, Seoul, South Korea.
| | | | | |
Collapse
|
18
|
Chung S, Lee MY, Soh H, Jung W, Joe E. Modulation of membrane potential by extracellular pH in activated microglia in rats. Neurosci Lett 1998; 249:139-42. [PMID: 9682836 DOI: 10.1016/s0304-3940(98)00409-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Activation of cultured rat microglial cells by lipopolysaccharide (LPS) induced delayed rectifying outward K+ (I(K)) current. I(K) current was reported to have 'window current', playing a direct role in setting the membrane potential in activated microglia. We used whole-cell patch clamp method to measure the effect of extracellular pH on I(K) current. When pH was changed from 7.4 to 6.4, the activation curve of I(K) current shifted to the right by about 13 mV. Thus, extracellular acidification reduced the window current, resulting in membrane depolarization. These results suggest that extracellular pH regulate the membrane potential in activated microglia.
Collapse
Affiliation(s)
- S Chung
- Department of Physiology, Chung-Ang University College of Medicine, Seoul, South Korea.
| | | | | | | | | |
Collapse
|