1
|
Ringuet MT, Koo A, Furness SGB, McDougall SJ, Furness JB. Sites and mechanisms of action of colokinetics at dopamine, ghrelin and serotonin receptors in the rodent lumbosacral defecation centre. J Physiol 2023; 601:5195-5211. [PMID: 37772438 PMCID: PMC10952827 DOI: 10.1113/jp285217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/13/2023] [Indexed: 09/30/2023] Open
Abstract
Agonists of dopamine D2 receptors (D2R), 5-hydroxytryptamine (5-HT, serotonin) receptors (5-HTR) and ghrelin receptors (GHSR) activate neurons in the lumbosacral defecation centre, and act as 'colokinetics', leading to increased propulsive colonic motility, in vivo. In the present study, we investigated which neurons in the lumbosacral defecation centre express the receptors and whether dopamine, serotonin and ghrelin receptor agonists act on the same lumbosacral preganglionic neurons (PGNs). We used whole cell electrophysiology to record responses from neurons in the lumbosacral defecation centre, following colokinetic application, and investigated their expression profiles and the chemistries of their neural inputs. Fluorescence in situ hybridisation revealed Drd2, Ghsr and Htr2C transcripts were colocalised in lumbosacral PGNs of mice, and immunohistochemistry showed that these neurons have closely associated tyrosine hydroxylase and 5-HT boutons. Previous studies showed that they do not receive ghrelin inputs. Whole cell electrophysiology in adult mice spinal cord revealed that dopamine, serotonin, α-methylserotonin and capromorelin each caused inward, excitatory currents in overlapping populations of lumbosacral PGNs. Furthermore, dopamine caused increased frequency of both IPSCs and EPSCs in a cohort of D2R neurons. Tetrodotoxin blocked the IPSCs and EPSCs, revealing a post-synaptic excitatory action of dopamine. In lumbosacral PGNs of postnatal day 7-14 rats, only dopamine's postsynaptic effects were observed. Furthermore, inward, excitatory currents evoked by dopamine were reduced by the GHSR antagonist, YIL781. We conclude that lumbosacral PGNs are the site where the action of endogenous ligands of D2R and 5-HT2R converge, and that GHSR act as a cis-modulator of D2R expressed by the same neurons. KEY POINTS: Dopamine, 5-hydroxytryptamine (5-HT, serotonin) and ghrelin (GHSR) receptor agonists increase colorectal motility and have been postulated to act at receptors on parasympathetic preganglionic neurons (PGNs) in the lumbosacral spinal cord. We aimed to determine which neurons in the lumbosacral spinal cord express dopamine, serotonin and GHSR receptors, their neural inputs, and whether agonists at these receptors excite them. We show that dopamine, serotonin and ghrelin receptor transcripts are contained in the same PGNs and that these neurons have closely associated tyrosine hydroxylase and serotonin boutons. Whole cell electrophysiology revealed that dopamine, serotonin and GHSR receptor agonists induce an inward excitatory current in overlapping populations of lumbosacral PGNs. Dopamine-induced excitation was reversed by GHSR antagonism. The present study demonstrates that lumbosacral PGNs are the site at which actions of endogenous ligands of dopamine D2 receptors and 5-HT type 2 receptors converge. Ghrelin receptors are functional, but their role appears to be as modulators of dopamine effects at D2 receptors.
Collapse
Affiliation(s)
- Mitchell T. Ringuet
- Department of Anatomy & PhysiologyUniversity of MelbourneMelbourneVICAustralia
| | - Ada Koo
- Department of Anatomy & PhysiologyUniversity of MelbourneMelbourneVICAustralia
| | - Sebastian G. B. Furness
- School of Biomedical SciencesUniversity of QueenslandBrisbaneQLDAustralia
- Monash Institute of Pharmaceutical SciencesMelbourneVICAustralia
| | - Stuart J. McDougall
- Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneMelbourneVICAustralia
| | - John B. Furness
- Department of Anatomy & PhysiologyUniversity of MelbourneMelbourneVICAustralia
- Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneMelbourneVICAustralia
| |
Collapse
|
2
|
Savić B, Murphy D, Japundžić-Žigon N. The Paraventricular Nucleus of the Hypothalamus in Control of Blood Pressure and Blood Pressure Variability. Front Physiol 2022; 13:858941. [PMID: 35370790 PMCID: PMC8966844 DOI: 10.3389/fphys.2022.858941] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/15/2022] [Indexed: 12/26/2022] Open
Abstract
The paraventricular nucleus (PVN) is a highly organized structure of the hypothalamus that has a key role in regulating cardiovascular and osmotic homeostasis. Functionally, the PVN is divided into autonomic and neuroendocrine (neurosecretory) compartments, both equally important for maintaining blood pressure (BP) and body fluids in the physiological range. Neurosecretory magnocellular neurons (MCNs) of the PVN are the main source of the hormones vasopressin (VP), responsible for water conservation and hydromineral balance, and oxytocin (OT), involved in parturition and milk ejection during lactation. Further, neurosecretory parvocellular neurons (PCNs) take part in modulation of the hypothalamic–pituitary–adrenal axis and stress responses. Additionally, the PVN takes central place in autonomic adjustment of BP to environmental challenges and contributes to its variability (BPV), underpinning the PVN as an autonomic master controller of cardiovascular function. Autonomic PCNs of the PVN modulate sympathetic outflow toward heart, blood vessels and kidneys. These pre-autonomic neurons send projections to the vasomotor nucleus of rostral ventrolateral medulla and to intermediolateral column of the spinal cord, where postganglionic fibers toward target organs arise. Also, PVN PCNs synapse with NTS neurons which are the end-point of baroreceptor primary afferents, thus, enabling the PVN to modify the function of baroreflex. Neuroendocrine and autonomic parts of the PVN are segregated morphologically but they work in concert when the organism is exposed to environmental challenges via somatodendritically released VP and OT by MCNs. The purpose of this overview is to address both neuroendocrine and autonomic PVN roles in BP and BPV regulation.
Collapse
Affiliation(s)
- Bojana Savić
- Laboratory for Cardiovascular Pharmacology and Toxicology, Faculty of Medicine, Institute of Pharmacology, Clinical Pharmacology and Toxicology, University of Belgrade, Belgrade, Serbia
| | - David Murphy
- Molecular Neuroendocrinology Research Group, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Nina Japundžić-Žigon
- Laboratory for Cardiovascular Pharmacology and Toxicology, Faculty of Medicine, Institute of Pharmacology, Clinical Pharmacology and Toxicology, University of Belgrade, Belgrade, Serbia
- *Correspondence: Nina Japundžić-Žigon,
| |
Collapse
|
3
|
Differential dopamine modulation of spinal reflex amplitudes is associated with the presence or absence of the autonomic nervous system. Neurosci Lett 2020; 742:135514. [PMID: 33227368 DOI: 10.1016/j.neulet.2020.135514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 11/22/2022]
Abstract
The spinal cord contains a highly collateralized network of descending dopamine (DA) fibers that stem from the dorso-posterior hypothalamic A11 region in the brain, however, the modulatory actions of DA have generally only been assessed in lumbar segments L2-L5. In contrast to these exclusively sensorimotor segments, spinal cords segments T1-L2 and, in mouse, L6-S2, additionally contain the intermediolateral (IML) nucleus, the origin of autonomic nervous system (ANS). Here, we tested if the different spinal circuits in sensorimotor and IML-containing segments react differently to the modulation of the monosynaptic reflex (MSR) by DA. Bath-application of DA (1 μM) led to a decrease of MSR amplitude in L3-L5 segments; however, in IML-containing segments (T10-L2, and S1/2) the MSR response was facilitated. We did not observe any difference in the response between thoracic (sympathetic) and lumbosacral (parasympathetic) segments. Application of the D2-receptor agonists bromocriptine or quinpirole mimicked the effects of DA, while blocking D2 receptor pathways with raclopride or application with the D1-receptor agonist SKF 38393 led to an increase of the MSR in L3-L5 segments and a decrease of the MSR in IML-containing segments. In contrast, in the presence of the gap-junction blockers, carbenoloxone and quinine, DA modulatory actions in IML-containing segments were similar to those of sensorimotor L3-L5 segments. We suggest that DA modulates MSR amplitudes in the spinal cord in a segment-specific manner, and that the differential outcome observed in ANS segments may be a result of gap junctions in the IML.
Collapse
|
4
|
Effects of corticotropin-releasing factor on intermediolateral cell column neurons of newborn rats. Auton Neurosci 2012; 171:36-40. [PMID: 23151516 DOI: 10.1016/j.autneu.2012.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 10/12/2012] [Accepted: 10/16/2012] [Indexed: 10/27/2022]
Abstract
Corticotropin-releasing factor (CRF) is a neuropeptide that mediates neuroendocrine, autonomic, and behavioral processes associated with the stress response. CRF-containing fibers and receptors are found in various regions of the central nervous system including the spinal cord. Here, we report excitatory effects of CRF on sympathetic preganglionic neurons in the intermediolateral cell column (IML) of in vitro spinal cord preparations from newborn rats. We also examine the receptor subtypes that are involved in the CRF effects. Application of CRF significantly depolarized the IML neurons and increased the frequency of excitatory postsynaptic potentials (EPSPs) in the IML neurons. These effects were blocked by the CRF receptor 1 antagonist, antalarmin. Menthol, a transient receptor potential channel M8 agonist, depressed EPSPs enhanced by CRF. Our findings suggested that CRF depolarized the IML neurons via direct postsynaptic action and CRF-affected interneurons located in the spinal cord send EPSPs to IML neurons. These excitatory effects of CRF may be caused through CRF1 receptors but not CRF2 receptors.
Collapse
|
5
|
Nunn N, Womack M, Dart C, Barrett-Jolley R. Function and pharmacology of spinally-projecting sympathetic pre-autonomic neurones in the paraventricular nucleus of the hypothalamus. Curr Neuropharmacol 2011; 9:262-77. [PMID: 22131936 PMCID: PMC3131718 DOI: 10.2174/157015911795596531] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 09/01/2010] [Accepted: 09/14/2010] [Indexed: 12/16/2022] Open
Abstract
The paraventricular nucleus (PVN) of the hypothalamus has been described as the "autonomic master controller". It co-ordinates critical physiological responses through control of the hypothalamic-pituitary-adrenal (HPA)-axis, and by modulation of the sympathetic and parasympathetic branches of the central nervous system. The PVN comprises several anatomical subdivisions, including the parvocellular/ mediocellular subdivision, which contains neurones projecting to the medulla and spinal cord. Consensus indicates that output from spinally-projecting sympathetic pre-autonomic neurones (SPANs) increases blood pressure and heart rate, and dysfunction of these neurones has been directly linked to elevated sympathetic activity during heart failure. The influence of spinally-projecting SPANs on cardiovascular function high-lights their potential as targets for future therapeutic drug development. Recent studies have demonstrated pharmacological control of these spinally-projecting SPANs with glutamate, GABA, nitric oxide, neuroactive steroids and a number of neuropeptides (including angiotensin, substance P, and corticotrophin-releasing factor). The underlying mechanism of control appears to be a state of tonic inhibition by GABA, which is then strengthened or relieved by the action of other modulators. The physiological function of spinally-projecting SPANs has been subject to some debate, and they may be involved in physiological stress responses, blood volume regulation, glucose regulation, thermoregulation and/or circadian rhythms. This review describes the pharmacology of PVN spinally-projecting SPANs and discusses their likely roles in cardiovascular control.
Collapse
Affiliation(s)
| | | | | | - Richard Barrett-Jolley
- Centre for Integrative Mammalian Biology, University of Liverpool, Brownlow Hill & Crown St. Liverpool, L69 7ZJ, UK
| |
Collapse
|
6
|
Zhao H, Zhu W, Pan T, Xie W, Zhang A, Ondo WG, Le W. Spinal cord dopamine receptor expression and function in mice with 6-OHDA lesion of the A11 nucleus and dietary iron deprivation. J Neurosci Res 2007; 85:1065-76. [PMID: 17342757 DOI: 10.1002/jnr.21207] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
It is suggested that dysfunction of the diencephalospinal dopaminergic (DAergic) pathway may cause restless legs syndrome. We examined the mRNA and protein levels as well as DA receptor subtypes function within the lumbar spinal cord of an RLS animal model. C57BL/6 male mice with or without iron deprivation were lesioned with 6-hydroxydopamine (6-OHDA) in the bilateral A11 nuclei. Locomotor behaviors were observed. DA concentration, mRNA, and protein levels of D1, D2, and D3 receptors in the lumbar spinal cords were analyzed, and the specific binding of D1, D2, and D3 receptors was determined using [(3)H]SCH23390, [(3)H]Spiperone, and [(3)H]PD128907 radioligands respectively. The behavioral tests showed that the locomotor activities were increased significantly in the mice treated with iron-deficiency (ID) diet and 6-OHDA lesions, which were reversed by the D2/D3 agonist ropinirole. DA in the spinal cord was decreased significantly by 6-OHDA lesioning in A11. D2/D3 mRNA and protein levels as well as their binding capacity in the spinal cord were decreased significantly by 6-OHDA lesions. ID with 6-OHDA lesions produced a synergistic greater decrease of D2 binding. Although ID increased D1 mRNA and protein expression in the spinal cord, it did not significantly change D1 receptor binding. The present study suggests that ID and 6-OHDA lesions in A11 nuclei differentially altered the D1, D2, and D3 receptors expression and binding capacity in the lumbar spinal cord of RLS animal model, which was accompanied by changes in locomotor activities.
Collapse
Affiliation(s)
- Hongru Zhao
- Department of Neurology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Clemens S, Hochman S. Conversion of the modulatory actions of dopamine on spinal reflexes from depression to facilitation in D3 receptor knock-out mice. J Neurosci 2005; 24:11337-45. [PMID: 15601940 PMCID: PMC2731231 DOI: 10.1523/jneurosci.3698-04.2004] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Descending monoaminergic systems modulate spinal cord function, yet spinal dopaminergic actions are poorly understood. Using the in vitro lumbar cord, we studied the effects of dopamine and D2-like receptor ligands on spinal reflexes in wild-type (WT) and D3-receptor knock-out mice (D3KO). Low dopamine levels (1 microM) decreased the monosynaptic "stretch" reflex (MSR) amplitude in WT animals and increased it in D3KO animals. Higher dopamine concentrations (10-100 microM) decreased MSR amplitudes in both groups, but always more strongly in WT. Like low dopamine, the D3 receptor agonists pergolide and PD 128907 reduced MSR amplitude in WT but not D3KO mice. Conversely, D3 receptor antagonists (GR 103691 and nafadotride) increased the MSR in WT but not in D3KO mice. In comparison, D2-preferring agonists bromocriptine and quinpirole depressed the MSR in both groups. Low dopamine (1-5 microM) also depressed longer-latency (presumably polysynaptic) reflexes in WT but facilitated responses in D3KO mice. Additionally, in some experiments (e.g., during 10 microM dopamine or pergolide in WT), polysynaptic reflexes were facilitated in parallel to MSR depression, demonstrating differential modulatory control of these reflex circuits. Thus, low dopamine activates D3 receptors to limit reflex excitability. Moreover, in D3 ligand-insensitive mice, excitatory actions are unmasked, functionally converting the modulatory action of dopamine from depression to facilitation. Restless legs syndrome (RLS) is a CNS disorder involving abnormal limb sensations. Because RLS symptoms peak at night when dopamine levels are lowest, are relieved by D3 agonists, and likely involve increased reflex excitability, the D3KO mouse putatively explains how impaired D3 activity could contribute to this sleep disorder.
Collapse
Affiliation(s)
- Stefan Clemens
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
8
|
Acerbo MJ, Hellmann B, Güntürkün O. Catecholaminergic and dopamine-containing neurons in the spinal cord of pigeons: an immunohistochemical study. J Chem Neuroanat 2003; 25:19-27. [PMID: 12573456 DOI: 10.1016/s0891-0618(02)00072-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Within the different species belonging to the vertebrate radiation, catecholaminergic elements of the spinal cord present a partly conservative, partly variable pattern. Unfortunately, the overall picture is far from clear since the situation for birds is largely obscure. Therefore, we examined the distribution of dopamine (DA)- and tyrosine hydroxylase (TH)-positive cells and fibers in the spinal cord of the adult pigeon by immunohistochemistry. TH-immunoreactive cells were located within two restricted areas. One group of cells with multipolar shape was located in laminae VI and VII, close to the white-gray border. These cells were more frequently found at rostral and caudal levels while being scarce at cervical-thoracic levels. The second group of cells was located in lamina VIII surrounding the central canal. These cells were bipolar in shape and were found ventrally and laterally to the central canal, with most of them contacting the lumen of the canal through a separate process. The TH-immunoreactive fibers were distributed in both the gray and the white matter. In the gray matter, they were mainly distributed around the central canal (lamina VIII), in the ventral horn close to the border of laminae VII-IX and in the lateral part of the dorsal horn in laminae II-VI. In the white matter the fibers were present in the lateral columns running longitudinal to the main axis. DA-immunoreactive cells were also located within two restricted areas, closely matching the distribution of TH-immunopositive ones. Additionally, the DA-immunoreactive cells had the same shape as the TH-immunoreactive cells, as bipolar neurons contacted the central canal and multipolar ones were located in the laminae VI and VII. Also the distribution of DA- and TH-immunoreactive fibers roughly matched. Both, DA-immunoreactive cells and fibers were scarcer than TH-immunoreactive ones. This finding suggests that the catecholaminergic system in the spinal cord consists of DA-immunoreactive cells as well as other catecholaminergic cells.
Collapse
Affiliation(s)
- M J Acerbo
- Allgemeine Psychologie, Mathematisch-Naturwissenschaftliche Sektion, Universität Konstanz, 78457 Konstanz, Germany.
| | | | | |
Collapse
|