1
|
The Application of Adeno-Associated Viral Vector Gene Therapy to the Treatment of Fragile X Syndrome. Brain Sci 2019; 9:brainsci9020032. [PMID: 30717399 PMCID: PMC6406794 DOI: 10.3390/brainsci9020032] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 01/18/2023] Open
Abstract
Viral vector-mediated gene therapy has grown by leaps and bounds over the past several years. Although the reasons for this progress are varied, a deeper understanding of the basic biology of the viruses, the identification of new and improved versions of viral vectors, and simply the vast experience gained by extensive testing in both animal models of disease and in clinical trials, have been key factors. Several studies have investigated the efficacy of adeno-associated viral (AAV) vectors in the mouse model of fragile X syndrome where AAVs have been used to express fragile X mental retardation protein (FMRP), which is missing or highly reduced in the disorder. These studies have demonstrated a range of efficacies in different tests from full correction, to partial rescue, to no effect. Here we provide a backdrop of recent advances in AAV gene therapy as applied to central nervous system disorders, outline the salient features of the fragile X studies, and discuss several key issues for moving forward. Collectively, the findings to date from the mouse studies on fragile X syndrome, and data from clinical trials testing AAVs in other neurological conditions, indicate that AAV-mediated gene therapy could be a viable strategy for treating fragile X syndrome.
Collapse
|
2
|
Alterations in the Sp1 binding and Fmr-1 gene expression in the cortex of the brain during maturation and aging of mouse. Mol Biol Rep 2014; 41:6855-63. [DOI: 10.1007/s11033-014-3571-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 06/26/2014] [Indexed: 11/25/2022]
|
3
|
Budworth H, McMurray CT. Bidirectional transcription of trinucleotide repeats: roles for excision repair. DNA Repair (Amst) 2013; 12:672-84. [PMID: 23669397 DOI: 10.1016/j.dnarep.2013.04.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Genomic instability at repetitive DNA regions in cells of the nervous system leads to a number of neurodegenerative and neuromuscular diseases, including those with an expanded trinucleotide repeat (TNR) tract at or nearby an expressed gene. Expansion causes disease when a particular base sequence is repeated beyond the normal range, interfering with the expression or properties of a gene product. Disease severity and onset depend on the number of repeats. As the length of the repeat tract grows, so does the size of the successive expansions and the likelihood of another unstable event. In fragile X syndrome, for example, CGG repeat instability and pathogenesis are not typically observed below tracts of roughly 50 repeats, but occur frequently at or above 55 repeats, and are virtually certain above 100-300 repeats. Recent evidence points to bidirectional transcription as a new aspect of TNR instability and pathophysiology. Bidirectional transcription of TNR genes produces novel proteins and/or regulatory RNAs that influence both toxicity and epigenetic changes in TNR promoters. Bidirectional transcription of the TNR tract appears to influence aspects of its stability, gene processing, splicing, gene silencing, and chemical modification of DNAs. Paradoxically, however, some of the same effects are observed on both the expanded TNR gene and on its normal gene counterpart. In this review, we discuss the possible normal and abnormal effects of bidirectional transcription on trinucleotide repeat instability, the role of DNA repair in causing, preventing, or maintaining methylation, and chromatin environment of TNR genes.
Collapse
Affiliation(s)
- Helen Budworth
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | |
Collapse
|
4
|
Maloney B, Ge YW, Petersen RC, Hardy J, Rogers JT, Pérez-Tur J, Lahiri DK. Functional characterization of three single-nucleotide polymorphisms present in the human APOE promoter sequence: Differential effects in neuronal cells and on DNA-protein interactions. Am J Med Genet B Neuropsychiatr Genet 2010; 153B:185-201. [PMID: 19504470 PMCID: PMC5875733 DOI: 10.1002/ajmg.b.30973] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Variations in levels of apolipoprotein E (ApoE) have been tied to the risk and progression of Alzheimer's disease (AD). Our group has previously compared and contrasted the promoters of the mouse and human ApoE gene (APOE) promoter sequences and found notable similarities and significant differences that suggest the importance of the APOE promoter's role in the human disease. We examine here three specific single-nucleotide polymorphisms within the human APOE promoter region, specifically at -491 (A/T), -427 (T/C), and at -219 (G/T) upstream from the +1 transcription start site. The -219 and -491 polymorphic variations have significant association with instance of AD, and -491AA has significant risk even when stratified for the APOEepsilon4 allele. We also show significant effects on reporter gene expression in neuronal cell cultures, and, notably, these effects are modified by species origin of the cells. The -491 and -219 polymorphisms may have an interactive effect in addition to any independent activity. DNA-protein interactions differ between each polymorphic state. We propose SP1 and GATA as candidates for regulatory control of the -491 and -219 polymorphic sites. This work's significance lies in drawing connection among APOE promoter polymorphisms' associations with AD to functional promoter activity differences and specific changes in DNA-protein interactions in cell culture-based assays. Taken together, these results suggest that APOE expression levels are a risk factor for AD irrespective of APOEepsilon4 allele status.
Collapse
Affiliation(s)
- Bryan Maloney
- Department of Psychiatry, Institute of Psychiatric Research, Laboratory of Molecular Neurogenetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Yuan-Wen Ge
- Department of Psychiatry, Institute of Psychiatric Research, Laboratory of Molecular Neurogenetics, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - John Hardy
- Department of Molecular Neuroscience and Reta Lila Weston Laboratories, Institute of Neurology, UCL, Queen Square, London, UK
| | - Jack T. Rogers
- Department of Psychiatry, MGH, Harvard Medical School, Charlestown, Massachusetts
| | - Jordi Pérez-Tur
- Unitat de Genètica Molecular and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Institut de Biomedicina de València-CSIC, València, Spain
| | - Debomoy K. Lahiri
- Department of Psychiatry, Institute of Psychiatric Research, Laboratory of Molecular Neurogenetics, Indiana University School of Medicine, Indianapolis, Indiana,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana,Correspondence to: Dr. Debomoy K. Lahiri, Department of Psychiatry, Institute of Psychiatric, Research, Indiana University School of Medicine, 791 Union Drive, Indianapolis, IN 46202.
| |
Collapse
|
5
|
Prasad S, Singh K. Interaction of USF1/USF2 and alpha-Pal/Nrf1 to Fmr-1 promoter increases in mouse brain during aging. Biochem Biophys Res Commun 2008; 376:347-51. [PMID: 18782566 DOI: 10.1016/j.bbrc.2008.08.155] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Accepted: 08/27/2008] [Indexed: 11/26/2022]
Abstract
Fragile X syndrome is caused due to silencing of FMR-1 gene transcription leading to loss of fragile X mental retardation protein (FMRP). To investigate whether the transcriptional mechanism is linked to aging, we have studied interaction of the transcription factors USF1/USF2 and alpha-Pal/Nrf1 to E-box and GC-box, respectively, in Fmr-1 promoter in the brain of young, adult, and old mouse using electrophoretic mobility shift assay (EMSA). Our data reveal that the interaction of these transcription factors to their respective promoter sequences increases in mouse brain as a function of age. The finding on the interaction of the above transcription factors to their cognate sequences is novel as the current investigation has been carried out in intact and aging mouse. The present finding is important in respect to age- and FMRP-dependent brain function.
Collapse
Affiliation(s)
- S Prasad
- Biochemistry & Molecular Biology Lab, CAS in Zoology, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India.
| | | |
Collapse
|
6
|
Prasad S, Singh K. Age- and sex-dependent differential interaction of nuclear trans-acting factors with Fmr-1 promoter in mice brain. Neurochem Res 2007; 33:1028-35. [PMID: 18080753 DOI: 10.1007/s11064-007-9545-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Accepted: 11/07/2007] [Indexed: 11/25/2022]
Abstract
We have investigated relation between interaction of the trans-acting factors with Fmr-1 promoter and expression of FMRP isoforms in intact mouse brain as a function of age and sex. Our EMSA data reveal that among the three complexes formed with 136 bp Fmr-1 promoter fragment, the level of complex C1 significantly increases in adult brain but decreases in old brain in comparison to that in young. The level of total FMRP significantly decreases from young to old in the brain of both the sexes, however, among the three isoforms, expression of the 80-kDa isoform significantly decreases in the brain of both the sexes where as the level of 70 kDa isoform decreases in females during aging. The present finding on relation between age- and sex-dependent interaction of trans-acting factors and expression of FMRP isoforms is novel and may be relevant for regulation of Fmr-1 gene in brain function during aging.
Collapse
Affiliation(s)
- S Prasad
- Biochemistry & Molecular Biology Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, UP, India.
| | | |
Collapse
|
7
|
Singh K, Prasad S. Differential expression of Fmr-1 mRNA and FMRP in female mice brain during aging. Mol Biol Rep 2007; 35:677-84. [PMID: 17899445 DOI: 10.1007/s11033-007-9140-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2007] [Accepted: 08/29/2007] [Indexed: 10/22/2022]
Abstract
Fragile X syndrome is caused by silencing of FMR-1 gene due to unusual expansion of CGG repeats (>200 repeats) and their hypermethylation in 5'-UTR. As a consequence, the expression of the RNA binding protein FMRP is stopped. Absence of this protein leads to several morphological and neurological symptoms. The symptoms of the syndrome in males are different than that in the females. We have previously reported that the Fmr1 gene is down regulated in males as a function of age. In the present communication, we have investigated expression of Fmr-1 mRNA, FMRP and analysis of interaction of trans-acting factors with E- and GC boxes in Fmr-1 promoter in female mouse brain as a function of age. Our Northern and Western blots data reveal that the level of Fmr-1 transcript decreases in adult as compared to young mouse but significantly increases in old age and that of FMRP decreases in brain of female old mouse as compared to young and adult age. The immunohistochemical analysis supported the results obtained from Western blot studies. Our EMSA data reveal that the intensity of USF1/USF2-E Box complex gradually increases during aging having significantly highest intensity in old age mouse whereas the intensity of alpha-Pal/Nrf1- GC-Box complex gradually decreases as a function of age. The increased intensity of the complex in old age mouse is correlated to higher level of Fmr-1 transcript in old age. The elevated level of Fmr-1 transcript in old mouse brain may be attributed to USF1/USF2 dependent increased transcription of Fmr-1 gene in old age and decrease in FMRP to altered translation of the transcript or high turn over of FMRP during aging. The present finding indicates age and sex as factors affecting the expression of Fmr-1 gene in mouse brain.
Collapse
Affiliation(s)
- Kanchan Singh
- Biochemistry & Molecular Biology laboratory, CAS in Zoology, Banaras Hindu University, Varanasi, 221005, India
| | | |
Collapse
|
8
|
Abstract
Fragile X syndrome, the most common heritable form of mental retardation, is caused by silencing of the FMR1 (fragile X mental retardation-1 gene). The protein product of this gene, FMRP (fragile X mental retardation protein), is thought to be involved in the translational regulation of mRNAs important for learning and memory. In mammals, there are two homologues of FMRP, namely FXR1P (fragile X-related protein 1) and FXR2P. Disruption of Fxr2 in mice produces learning and memory deficits, and Fmr1 and Fxr2 double-knockout mice have exaggerated impairments in certain neurobehavioral phenotypes relative to the single gene knockouts. This has led to the suggestion that FMR1 and FXR2 functionally overlap and that increasing the expression of FXR2P may ameliorate the symptoms of an FMRP deficiency. Interestingly, the region upstream of the FXR2 translation start site acts as a bidirectional promoter in rodents, driving transcription of an alternative transcript encoding the ABP (androgen-binding protein) [aABP (alternative ABP promoter)]. To understand the regulation of the human FXR2 gene, we cloned the evolutionarily conserved region upstream of the FXR2 translation start site and showed that it also has bidirectional promoter activity in both neuronal and muscle cells as evidenced by luciferase reporter assay studies. Alignment of the human, mouse, rat, rabbit and dog promoters reveals several highly conserved transcription factor-binding sites. Gel electrophoretic mobility-shift assays, chromatin immunoprecipitation studies and co-transfection experiments with plasmids expressing these transcription factors or dominant-negative versions of these factors showed that NF-YA (nuclear transcription factor Yalpha), AP2 (activator protein 2), Nrf1 (nuclear respiratory factor/alpha-Pal) and Sp1 (specificity protein 1) all bind to the FXR2 promoter both in vitro and in vivo and positively regulate the FXR2 promoter.
Collapse
Affiliation(s)
- Lata Mahishi
- Gene Structure and Disease Section, NIDDK (National Institute of Diabetes and Digestive and Kidney Diseases), NIH (National Institutes of Health), Bethesda, MD 20892-0830, U.S.A
| | - Karen Usdin
- Gene Structure and Disease Section, NIDDK (National Institute of Diabetes and Digestive and Kidney Diseases), NIH (National Institutes of Health), Bethesda, MD 20892-0830, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
9
|
Garber K, Smith KT, Reines D, Warren ST. Transcription, translation and fragile X syndrome. Curr Opin Genet Dev 2006; 16:270-5. [PMID: 16647847 DOI: 10.1016/j.gde.2006.04.010] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Accepted: 04/18/2006] [Indexed: 10/24/2022]
Abstract
The fragile X mental retardation protein (FMRP) plays a role in the control of local protein synthesis in the dendrites. Loss of its production in fragile X syndrome is associated with transcriptional dysregulation of the gene. Recent work demonstrates that Sp1 and NRF1 transcriptionally control this gene. Other studies reveal how the microRNA pathway and signaling are related to FMRP function through the metabotropic glutamate receptor. These studies provide new insights through which we can better understand the inactivation of the FMR1 gene and, in turn, the consequence of FMRP loss.
Collapse
Affiliation(s)
- Kathryn Garber
- Department of Human Genetics, 615 Michael Street, Room 300, Emory University, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
10
|
Smith KT, Nicholls RD, Reines D. The gene encoding the fragile X RNA-binding protein is controlled by nuclear respiratory factor 2 and the CREB family of transcription factors. Nucleic Acids Res 2006; 34:1205-15. [PMID: 16500891 PMCID: PMC1383620 DOI: 10.1093/nar/gkj521] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
FMR1 encodes an RNA-binding protein whose absence results in fragile X mental retardation. In most patients, the FMR1 gene is cytosine-methylated and transcriptionally inactive. NRF-1 and Sp1 are known to bind and stimulate the active, but not the methylated/silenced, FMR1 promoter. Prior analysis has implicated a CRE site in regulation of FMR1 in neural cells but the role of this site is controversial. We now show that a phospho-CREB/ATF family member is bound to this site in vivo. We also find that the histone acetyltransferases CBP and p300 are associated with active FMR1 but are lost at the hypoacetylated fragile X allele. Surprisingly, FMR1 is not cAMP-inducible and resides in a newly recognized subclass of CREB-regulated genes. We have also elucidated a role for NRF-2 as a regulator of FMR1 in vivo through a previously unrecognized and highly conserved recognition site in FMR1. NRF-1 and NRF-2 act additively while NRF-2 synergizes with CREB/ATF at FMR1's promoter. These data add FMR1 to the collection of genes controlled by both NRF-1 and NRF-2 and disfavor its membership in the immediate early response group of genes.
Collapse
Affiliation(s)
| | - Robert D. Nicholls
- Birth Defects Laboratories and Division of Medical Genetics, Department of Pediatrics, Children's Hospital of Pittsburgh3705 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Daniel Reines
- To whom correspondence should be addressed. Tel: +1 404 727 3361; Fax: +1 404 727 3452;
| |
Collapse
|
11
|
Lim JH, Booker AB, Luo T, Williams T, Furuta Y, Lagutin O, Oliver G, Sargent TD, Fallon JR. AP-2alpha selectively regulates fragile X mental retardation-1 gene transcription during embryonic development. Hum Mol Genet 2005; 14:2027-34. [PMID: 15930016 DOI: 10.1093/hmg/ddi207] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Fragile X syndrome (FXS) is almost always caused by silencing of the FMR1 gene. The defects observed in FXS indicate that the normal FMR1 gene has a range of functions and plays a particularly prominent role during development. However, the mechanisms regulating FMR1 expression in vivo are not known. Here, we have tested the role of the transcription factor AP-2alpha in regulating Fmr1 expression. Chromatin immunoprecipitation showed that AP-2alpha associates with the Fmr1 promoter in vivo. Furthermore, Fmr1 transcript levels are reduced >4-fold in homozygous null AP-2alpha mutant mice at embryonic day 18.5 when compared with normal littermates. Notably, AP-2alpha exhibits a strong gene dosage effect, with heterozygous mice showing approximately 2-fold reduction in Fmr1 levels. Examination of conditional AP-2alpha mutant mice indicates that this transcription factor plays a major role in regulating Fmr1 expression in embryos, but not in adults. We further investigated the role of AP-2alpha in the developmental regulation of Fmr1 expression using the Xenopus animal cap assay. Over-expression of a dominant-negative AP-2alpha in Xenopus embryos led to reduced Fmr1 levels. Moreover, exogenous wild-type AP-2alpha rescued Fmr1 expression in embryos where endogenous AP-2alpha had been suppressed. We conclude that AP-2alpha associates with the Fmr1 promoter in vivo and selectively regulates Fmr1 transcription during embryonic development.
Collapse
Affiliation(s)
- Jae H Lim
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Lim JH, Booker AB, Fallon JR. Regulating fragile X gene transcription in the brain and beyond. J Cell Physiol 2005; 205:170-5. [PMID: 15895397 DOI: 10.1002/jcp.20401] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The past several years have seen remarkable growth in our understanding of the molecular processes underlying fragile X syndrome (FXS). Many studies have provided new insights into the regulation of Fmr1 gene expression and the potential function of its protein product. It is now known that the promoter elements modulating Fmr1 transcription involve a complex array of both cis and trans factors. Moreover, recent studies of epigenetic modification of chromatin have provided novel clues to unlocking the mysteries behind the regulation of Fmr1 expression. Here, we review the latest findings on the regulation of Fmr1 transcription.
Collapse
Affiliation(s)
- Jae H Lim
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912, USA
| | | | | |
Collapse
|
13
|
Kumari D, Usdin K. Interaction of the transcription factors USF1, USF2, and alpha -Pal/Nrf-1 with the FMR1 promoter. Implications for Fragile X mental retardation syndrome. J Biol Chem 2001; 276:4357-64. [PMID: 11058604 DOI: 10.1074/jbc.m009629200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hypermethylation of the FMR1 promoter reduces its transcriptional activity, resulting in the mental retardation and macroorchidism characteristic of Fragile X syndrome. How exactly methylation causes transcriptional silencing is not known but is relevant if current attempts to reactivate the gene are to be successful. Understanding the effect of methylation requires a better understanding of the factors responsible for FMR1 gene expression. To this end we have identified five evolutionarily conserved transcription factor binding sites in this promoter and shown that four of them are important for transcriptional activity in neuronally derived cells. We have also shown that USF1, USF2, and alpha-Pal/Nrf-1 are the major transcription factors that bind the promoter in brain and testis extracts and suggest that elevated levels of these factors account in part for elevated FMR1 expression in these organs. We also show that methylation abolishes alpha-Pal/Nrf-1 binding to the promoter and affects binding of USF1 and USF2 to a lesser degree. Methylation may therefore inhibit FMR1 transcription not only by recruiting histone deacetylases but also by blocking transcription factor binding. This suggests that for efficient reactivation of the FMR1 promoter, significant demethylation must occur and that current approaches to gene reactivation using histone deacetylase inhibitors alone may therefore have limited effect.
Collapse
Affiliation(s)
- D Kumari
- Section on Genomic Structure and Function, Laboratory of Molecular and Cellular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-0830, USA
| | | |
Collapse
|