1
|
Pereira-Silva R, Neto FL, Martins I. Diffuse Noxious Inhibitory Controls in Chronic Pain States: Insights from Pre-Clinical Studies. Int J Mol Sci 2025; 26:402. [PMID: 39796255 PMCID: PMC11722076 DOI: 10.3390/ijms26010402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/19/2024] [Accepted: 12/22/2024] [Indexed: 01/13/2025] Open
Abstract
Diffuse noxious inhibitory control (DNIC), also known as conditioned pain modulation (CPM) in humans, is a paradigm wherein the heterotopic application of a noxious stimulus results in the attenuation of another spatially distant noxious input. The pre-clinical and clinical studies show the involvement of several neurochemical systems in DNIC/CPM and point to a major contribution of the noradrenergic, serotonergic, and opioidergic systems. Here, we thoroughly review the latest data on the monoaminergic and opioidergic studies, focusing particularly on pre-clinical models of chronic pain. We also conduct an in-depth analysis of these systems by integrating the available data with the descending pain modulatory circuits and the neurochemical systems therein to bring light to the mechanisms involved in the regulation of DNIC. The most recent data suggest that DNIC may have a dual outcome encompassing not only analgesic effects but also hyperalgesic effects. This duality might be explained by the underlying circuitry and the receptor subtypes involved therein. Acknowledging this duality might contribute to validating the prognostic nature of the paradigm. Additionally, DNIC/CPM may serve as a robust paradigm with predictive value for guiding pain treatment through more effective targeting of descending pain modulation.
Collapse
Affiliation(s)
- Raquel Pereira-Silva
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto–i3S, R. Alfredo Allen 208, 4200-135 Porto, Portugal;
- Instituto de Biologia Molecular e Celular (IMBC), Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
- Departamento de Biomedicina, Unidade de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, Al. Prof Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Fani L. Neto
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto–i3S, R. Alfredo Allen 208, 4200-135 Porto, Portugal;
- Instituto de Biologia Molecular e Celular (IMBC), Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
- Departamento de Biomedicina, Unidade de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, Al. Prof Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Isabel Martins
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto–i3S, R. Alfredo Allen 208, 4200-135 Porto, Portugal;
- Instituto de Biologia Molecular e Celular (IMBC), Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
- Departamento de Biomedicina, Unidade de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, Al. Prof Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
2
|
Chiang M, Back H, Lee JB, Oh S, Guo T, Girgis S, Park C, Haroutounian S, Kagan L. Pharmacokinetic Modeling of the Effect of Tariquidar on Ondansetron Disposition into the Central Nervous System. Pharm Res 2024; 41:1401-1411. [PMID: 38981901 PMCID: PMC11263240 DOI: 10.1007/s11095-024-03739-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/25/2024] [Indexed: 07/11/2024]
Abstract
PURPOSE Serotonin (5-HT3) receptor antagonists are promising agents for treatment of neuropathic pain. However, insufficient drug exposure at the central nervous system (CNS) might result in lack of efficacy. The goal of this study was to evaluate the impact of administration of a Pgp inhibitor (tariquidar) on ondansetron exposure in the brain, spinal cord, and cerebrospinal fluid in a wild-type rat model. METHODS Ondansetron (10 mg/kg) and tariquidar (7.5 mg/kg) were administered intravenously, plasma and tissue samples were collected and analyzed by HPLC. A mathematical model with brain, spinal cord, cerebrospinal fluid and two systemic disposition compartments was developed to describe the data. RESULTS The results demonstrate that tariquidar at 7.5 mg/kg resulted in a complete inhibition of Pgp efflux of ondansetron in the brain and spinal cord. The compartmental model successfully captured pharmacokinetics of ondansetron in wild type and Pgp knockout (KO) animals receiving the drug alone or in wild type animals receiving the ondansetron and tariquidar combination. CONCLUSIONS The study provided important quantitative information on enhancement of CNS exposure to ondansetron using co-administration of Pgp Inhibitor in a rat model, which will be further utilized in conducting a clinical study. Tariquidar co-administration resulted in ondansetron CNS exposure comparable to observed in Pgp KO rats. Results also highlighted the effect of tariquidar on plasma disposition of ondansetron, which may not be dependent on Pgp inhibition, and should be evaluated in future studies.
Collapse
Affiliation(s)
- Manting Chiang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Hyunmoon Back
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Jong Bong Lee
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Sarah Oh
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Tiffany Guo
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Simone Girgis
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Celine Park
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Simon Haroutounian
- Division of Clinical and Translational Research and Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, St Louis, MO, USA
| | - Leonid Kagan
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA.
- Center of Excellence for Pharmaceutical Translational Research and Education, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
| |
Collapse
|
3
|
Zhang YF, Yu D, Gong XR, Meng C, Lv J, Li Q. Tropisetron attenuates neuroinflammation and chronic neuropathic pain via α7nAChR activation in the spinal cord in rats. J Spinal Cord Med 2024; 47:277-285. [PMID: 35353023 PMCID: PMC10885756 DOI: 10.1080/10790268.2022.2046923] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Tropisetron is an alpha 7 nicotinic acetylcholine receptor (α7nAChR) agonist and is a commonly used antiemetic clinically. α7nAChRs activation modulating nociception transmissions and cholinergic anti-inflammation may decrease neuropathic pain. This study was set to investigate the effects of tropisetron on neuropathic pain and neuroinflammation as well as the underlying mechanisms in rats. METHODS Neuropathic pain behavior was assessed in rats using the paw mechanical withdrawal threshold and paw thermal withdrawal latency before and after the establishment of a spared nerve injury (SNI) pain model in rats treated with tropisetron treatment in the presence or absence of the α7nAChR antagonist methyllycaconitine (MLA) through intrathecal injection. Their spinal cords were then harvested for inflammatory cytokines, the α7nAChR, p38 mitogen-activated protein kinase (p-p38MAPK) and cAMP-response element binding protein (CREB) measurement. RESULTS Tropisetron effectively alleviated mechanical allodynia and thermal hyperalgesia; decreased IL-6, IL-1ß and TNF-a; and down-regulated the phosphorylation of p38MAPK and CREB. Pre-treatment with MLA abolished these effects of tropisetron. CONCLUSION Our data indicate that tropisetron alleviates neuropathic pain may through inhibition of the p38MAPK-CREB pathway via α7nAChR activation. Thus, tropisetron may be a potential new therapeutic strategy for chronic neuropathic pain.
Collapse
Affiliation(s)
- Yu-fei Zhang
- Department of Anesthesiology, Taihe Hospital, Jinzhou Medical University Union Training Base, Shiyan, People’s Republic of China
- Department of Anesthesiology, Institute of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, People’s Republic of China
| | - Di Yu
- Department of Anesthesiology, Taihe Hospital, Jinzhou Medical University Union Training Base, Shiyan, People’s Republic of China
- Department of Anesthesiology, Hubei No. 3 People’s Hospital of Jianghan University, Hubei University of Medicine, Wuhan, People’s Republic of China
| | - Xing-rui Gong
- Department of Anesthesiology, Xiangyang Central Hospital, Hubei University of Arts and Science, Xiangyang, People’s Republic of China
| | - Chen Meng
- Department of Anesthesiology, Institute of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, People’s Republic of China
| | - Jing Lv
- Department of Anesthesiology, Institute of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, People’s Republic of China
| | - Qing Li
- Department of Anesthesiology, Taihe Hospital, Jinzhou Medical University Union Training Base, Shiyan, People’s Republic of China
- Department of Anesthesiology, Institute of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, People’s Republic of China
| |
Collapse
|
4
|
Munawar N, Bitar MS, Masocha W. Activation of 5-HT1A Receptors Normalizes the Overexpression of Presynaptic 5-HT1A Receptors and Alleviates Diabetic Neuropathic Pain. Int J Mol Sci 2023; 24:14334. [PMID: 37762636 PMCID: PMC10532078 DOI: 10.3390/ijms241814334] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/11/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Neuropathic pain is a well-documented phenomenon in experimental and clinical diabetes; however, current treatment is unsatisfactory. Serotoninergic-containing neurons are key components of the descending autoinhibitory pathway, and a decrease in their activity may contribute at least in part to diabetic neuropathic pain (DNP). A streptozotocin (STZ)-treated rat was used as a model for type 1 diabetes mellitus (T1DM). Pain transmission was evaluated using well-established nociceptive-based techniques, including the Hargreaves apparatus, cold plate and dynamic plantar aesthesiometer. Using qRT-PCR, Western blotting, immunohistochemistry, and HPLC-based techniques, we also measured in the central nervous system and peripheral nervous system of diabetic animals the expression and localization of 5-HT1A receptors (5-HT1AR), levels of key enzymes involved in the synthesis and degradation of tryptophan and 5-HT, including tryptophan hydroxylase-2 (Tph-2), tryptophan 2,3-dioxygenase (Tdo), indoleamine 2,3-dioxygenase 1 (Ido1) and Ido2. Moreover, spinal concentrations of 5-HT, 5-hydroxyindoleacetic acid (5-HIAA, a metabolite of 5-HT) and quinolinic acid (QA, a metabolite of tryptophan) were also quantified. Diabetic rats developed thermal hyperalgesia and cold/mechanical allodynia, and these behavioral abnormalities appear to be associated with the upregulation in the levels of expression of critical molecules related to the serotoninergic nervous system, including presynaptic 5-HT1AR and the enzymes Tph-2, Tdo, Ido1 and Ido2. Interestingly, the level of postsynaptic 5-HT1AR remains unaltered in STZ-induced T1DM. Chronic treatment of diabetic animals with 8-hydroxy-2-(dipropylamino)tetralin (8-OH-DPAT), a selective 5-HT1AR agonist, downregulated the upregulation of neuronal presynaptic 5-HT1AR, increased spinal release of 5-HT (↑ 5-HIAA/5-HT) and reduced the concentration of QA, decreased mRNA expression of Tdo, Ido1 and Ido2, arrested neuronal degeneration and ameliorated pain-related behavior as exemplified by thermal hyperalgesia and cold/mechanical allodynia. These data show that 8-OH-DPAT alleviates DNP and other components of the serotoninergic system, including the ratio of 5-HIAA/5-HT and 5-HT1AR, and could be a useful therapeutic agent for managing DNP.
Collapse
Affiliation(s)
- Neha Munawar
- Department of Pharmacology and Toxicology, College of Medicine, Kuwait University, Al-Jabriya 046302, Kuwait;
| | - Milad S. Bitar
- Department of Pharmacology and Toxicology, College of Medicine, Kuwait University, Al-Jabriya 046302, Kuwait;
| | - Willias Masocha
- Department of Pharmacology and Therapeutics, College of Pharmacy, Kuwait University, Al-Jabriya 046302, Kuwait;
| |
Collapse
|
5
|
de Kort AR, Joosten EAJ, Patijn J, Tibboel D, van den Hoogen NJ. The development of descending serotonergic modulation of the spinal nociceptive network: a life span perspective. Pediatr Res 2022; 91:1361-1369. [PMID: 34257402 DOI: 10.1038/s41390-021-01638-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/10/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023]
Abstract
The nociceptive network, responsible for transmission of nociceptive signals that generate the pain experience, is not fully developed at birth. Descending serotonergic modulation of spinal nociception, an important part of the pain network, undergoes substantial postnatal maturation and is suggested to be involved in the altered pain response observed in human newborns. This review summarizes preclinical data of the development of descending serotonergic modulation of the spinal nociceptive network across the life span, providing a comprehensive background to understand human newborn pain experience and treatment. Sprouting of descending serotonergic axons, originating from the rostroventral medulla, as well as changes in receptor function and expression take place in the first postnatal weeks of rodents, corresponding to human neonates in early infancy. Descending serotonergic modulation switches from facilitation in early life to bimodal control in adulthood, masking an already functional 5-HT inhibitory system at early ages. Specifically the 5-HT3 and 5-HT7 receptors seem distinctly important for pain facilitation at neonatal and early infancy, while the 5-HT1a, 5-HT1b, and 5-HT2 receptors mediate inhibitory effects at all ages. Analgesic therapy that considers the neurodevelopmental phase is likely to result in a more targeted treatment of neonatal pain and may improve both short- and long-term effects. IMPACT: The descending serotonergic system undergoes anatomical changes from birth to early infancy, as its sprouts and descending projections increase and the dorsal horn innervation pattern changes. Descending serotonergic modulation from the rostral ventral medulla switches from facilitation in early life via the 5-HT3 and 5-HT7 receptors to bimodal control in adulthood. A functional inhibitory serotonergic system mainly via 5-HT1a, 5-HT1b, and 5-HT2a receptors at the spinal level exists already at the neonatal phase but is masked by descending facilitation.
Collapse
Affiliation(s)
- Anne R de Kort
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre+, Maastricht, the Netherlands. .,Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.
| | - Elbert A J Joosten
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre+, Maastricht, the Netherlands.,Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Jacob Patijn
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre+, Maastricht, the Netherlands.,Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Dick Tibboel
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Nynke J van den Hoogen
- Department of Anesthesiology and Pain Management, Maastricht University Medical Centre+, Maastricht, the Netherlands.,Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.,Department of Comparative Biology and Experimental Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
6
|
Bouali-Benazzouz R, Landry M, Benazzouz A, Fossat P. Neuropathic pain modeling: Focus on synaptic and ion channel mechanisms. Prog Neurobiol 2021; 201:102030. [PMID: 33711402 DOI: 10.1016/j.pneurobio.2021.102030] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 02/22/2021] [Indexed: 12/28/2022]
Abstract
Animal models of pain consist of modeling a pain-like state and measuring the consequent behavior. The first animal models of neuropathic pain (NP) were developed in rodents with a total lesion of the sciatic nerve. Later, other models targeting central or peripheral branches of nerves were developed to identify novel mechanisms that contribute to persistent pain conditions in NP. Objective assessment of pain in these different animal models represents a significant challenge for pre-clinical research. Multiple behavioral approaches are used to investigate and to validate pain phenotypes including withdrawal reflex to evoked stimuli, vocalizations, spontaneous pain, but also emotional and affective behaviors. Furthermore, animal models were very useful in investigating the mechanisms of NP. This review will focus on a detailed description of rodent models of NP and provide an overview of the assessment of the sensory and emotional components of pain. A detailed inventory will be made to examine spinal mechanisms involved in NP-induced hyperexcitability and underlying the current pharmacological approaches used in clinics with the possibility to present new avenues for future treatment. The success of pre-clinical studies in this area of research depends on the choice of the relevant model and the appropriate test based on the objectives of the study.
Collapse
Affiliation(s)
- Rabia Bouali-Benazzouz
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.
| | - Marc Landry
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Abdelhamid Benazzouz
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Pascal Fossat
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| |
Collapse
|
7
|
Sasaki M, Kamiya Y, Bamba K, Onishi T, Matsuda K, Kohno T, Kurabe M, Furutani K, Yanagimura H. Serotonin Plays a Key Role in the Development of Opioid-Induced Hyperalgesia in Mice. THE JOURNAL OF PAIN 2021; 22:715-729. [PMID: 33465503 DOI: 10.1016/j.jpain.2020.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 01/02/2023]
Abstract
Opioid usage for pain therapy is limited by its undesirable clinical effects, including paradoxical hyperalgesia, also known as opioid-induced hyperalgesia (OIH). However, the mechanisms associated with the development and maintenance of OIH remain unclear. Here, we investigated the effect of serotonin inhibition by the 5-HT3 receptor antagonist, ondansetron (OND), as well as serotonin deprivation via its synthesis inhibitor para-chlorophenylalanine, on mouse OIH models, with particular focus on astrocyte activation. Co-administering of OND and morphine, in combination with serotonin depletion, inhibited mechanical hyperalgesia and astrocyte activation in the spinal dorsal horn of mouse OIH models. Although previous studies have suggested that activation of astrocytes in the spinal dorsal horn is essential for the development and maintenance of OIH, herein, treatment with carbenoxolone (CBX), a gap junction inhibitor that suppresses astrocyte activation, did not ameliorate mechanical hyperalgesia in mouse OIH models. These results indicate that serotonin in the spinal dorsal horn, and activation of the 5-HT3 receptor play essential roles in OIH induced by chronic morphine, while astrocyte activation in the spinal dorsal horn serves as a secondary effect of OIH. Our findings further suggest that serotonergic regulation in the spinal dorsal horn may be a therapeutic target of OIH. PERSPECTIVE: The current study revealed that the descending serotonergic pain-facilitatory system in the spinal dorsal horn is crucial in OIH, and that activation of astrocytes is a secondary phenotype of OIH. Our study offers new therapeutic targets for OIH and may help reduce inappropriate opioid use.
Collapse
Affiliation(s)
- Mika Sasaki
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Japan
| | - Yoshinori Kamiya
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Japan.
| | - Keiko Bamba
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Japan
| | - Takeshi Onishi
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Japan
| | - Keiichiro Matsuda
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Japan
| | - Tatsuro Kohno
- Department of Anesthesiology, International University of Health and Welfare, Narita City, Japan
| | - Miyuki Kurabe
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Japan
| | - Kenta Furutani
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Japan
| | - Harue Yanagimura
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata City, Japan
| |
Collapse
|
8
|
Roldan CJ, Chung M, Mc C, Cata J, B H. High-flow oxygen and pro-serotonin agents for non-interventional treatment of post-dural-puncture headache. Am J Emerg Med 2020; 38:2625-2628. [PMID: 33041133 DOI: 10.1016/j.ajem.2020.07.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/07/2020] [Accepted: 07/28/2020] [Indexed: 10/23/2022] Open
Abstract
OBJECTIVE Post dural puncture headache (PDPH) is a common complication in patients following diagnostic or therapeutic lumbar puncture, procedures requiring epidural access, and spinal surgery. Epidural blood patch (EBP), the gold standard for the treatment of this pathology requires training not provided to emergency physicians. In addition, the presence of concomitant pathology and abnormal laboratory values are contraindications to perform EBP. In presence of these limitations, we sought for a non-interventional management of PDPH utilizing high-flow oxygen and pro-serotonin agents. We reviewed the mechanism of action of this therapy METHODS: To illustrate our proposal, we report a series of twelve consecutive patients with PDPH treated with high-flow oxygen therapy at 12 L/min via a non-rebreathing mask and intravenous metoclopramide. RESULTS All patients were treated with this conservative therapy, no adverse reactions were observed. After the intervention, the headache resolved without further indications for PDPH. CONCLUSION Our series suggests that combining high-flow oxygen and pro-serotonin agents such metoclopramide in the ED might be a feasible option as effective as the invasive methods used in treating PDPH. This therapy appears to be efficient and to minimize risk, cost and side effects. It presents an easily accessible alternative that should be considered when PDPH is not a viable option.
Collapse
Affiliation(s)
- Carlos J Roldan
- Department of Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America; Department of Emergency Medicine, The University of Texas Health Science Center at Houston, Houston, TX, South America.
| | - Matthew Chung
- Department of Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Correa Mc
- CES Medical School, Medellin, Colombia, South America
| | - J Cata
- Department of Anesthesia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Huh B
- Department of Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| |
Collapse
|
9
|
Costa‐Pereira JT, Serrão P, Martins I, Tavares I. Serotoninergic pain modulation from the rostral ventromedial medulla (RVM) in chemotherapy‐induced neuropathy: The role of spinal 5‐HT3 receptors. Eur J Neurosci 2019; 51:1756-1769. [DOI: 10.1111/ejn.14614] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/03/2019] [Accepted: 10/30/2019] [Indexed: 01/31/2023]
Affiliation(s)
- José Tiago Costa‐Pereira
- Department of Biomedicine Unit of Experimental Biology Faculty of Medicine University of Porto Porto Portugal
- IBMC‐Institute of Molecular and Cell Biology University of Porto Porto Portugal
- I3S‐ Institute of Investigation and Innovation in Health University of Porto Porto Portugal
| | - Paula Serrão
- Department of Biomedicine Unit of Pharmacology and Therapeutics Faculty of Medicine University of Porto Porto Portugal
- MedInUP ‐ Center for Drug Discovery and Innovative Medicines University of Porto Porto Portugal
| | - Isabel Martins
- Department of Biomedicine Unit of Experimental Biology Faculty of Medicine University of Porto Porto Portugal
- IBMC‐Institute of Molecular and Cell Biology University of Porto Porto Portugal
- I3S‐ Institute of Investigation and Innovation in Health University of Porto Porto Portugal
| | - Isaura Tavares
- Department of Biomedicine Unit of Experimental Biology Faculty of Medicine University of Porto Porto Portugal
- IBMC‐Institute of Molecular and Cell Biology University of Porto Porto Portugal
- I3S‐ Institute of Investigation and Innovation in Health University of Porto Porto Portugal
| |
Collapse
|
10
|
Enhanced descending pain facilitation in acute traumatic brain injury. Exp Neurol 2019; 320:112976. [PMID: 31185197 DOI: 10.1016/j.expneurol.2019.112976] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/25/2019] [Accepted: 06/06/2019] [Indexed: 01/23/2023]
Abstract
Acute and persistent pain are recognized consequences of TBI that can enhance suffering and significantly impair rehabilitative efforts. Both experimental models and clinical studies suggest that TBI may result in an imbalance between descending pain facilitatory and inhibitory pathways. The aim of this study was to assess the role of enhanced descending serotonin-mediated pain facilitation in a rat TBI model using selective spinal serotonergic fiber depletion with 5, 7-dihydroxytryptamine (DHT). We observed significant hindpaw allodynia in TBI rats that was reduced after DHT but not vehicle treatment. Immunohistochemical studies demonstrated profound spinal serotonin depletion in DHT-treated rats. Furthermore, lumbar intrathecal administration of the 5-HT3 receptor antagonist ondansetron at 7 days post-injury (DPI), when hindpaw allodynia was maximal, also attenuated nociceptive sensitization. Additional immunohistochemical analyses of the lumbar spinal cord at 7 DPI revealed a robust bilateral microglial response in the superficial dorsal horns that was significantly reduced with DHT treatment. Furthermore, serotonin depletion also prevented the TBI-induced bilateral increase in c-Fos positive cells within the Rexed laminae I and II of the dorsal horns. These results indicate that in the weeks following TBI, pain may be responsive to 5-HT3 receptor antagonists or other measures which rebalance descending pain modulation.
Collapse
|
11
|
Owen-Smith AA, Ahmedani BK, Peterson E, Simon GE, Rossom RC, Lynch FL, Lu CY, Waitzfelder BE, Beck A, DeBar LL, Sanon V, Maaz Y, Khan S, Miller-Matero LR, Prabhakar D, Frank C, Drake CL, Braciszewski JM. The Mediating Effect of Sleep Disturbance on the Relationship Between Nonmalignant Chronic Pain and Suicide Death. Pain Pract 2019; 19:382-389. [PMID: 30462885 DOI: 10.1111/papr.12750] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/08/2018] [Accepted: 11/14/2018] [Indexed: 11/30/2022]
Abstract
IMPORTANCE Few studies have examined the relationship between nonmalignant chronic pain (NMCP) and suicide death, and even fewer have specifically explored what role sleep disturbance might play in the association between NMCP and suicide death. OBJECTIVE To assess whether sleep disturbance mediates the relationship between NMCP and suicide death. DESIGN This case-control study included 2,674 individuals who died by suicide between 2000 and 2013 (cases) and 267,400 matched individuals (controls). SETTING Eight Mental Health Research Network (MHRN)-affiliated healthcare systems. PARTICIPANTS All cases and matched controls were health plan members for at least 10 months during the year prior to the index date. MAIN OUTCOMES AND MEASURES Sociodemographic data and diagnosis codes for NMCP and sleep disorders were extracted from the MHRN's Virtual Data Warehouse. Suicide mortality was identified using International Statistical Classification of Diseases and Related Health Problems (ICD)-10 codes from official government mortality records matched to health system records. RESULTS After accounting for covariates, there was a significant relationship between NMCP and sleep disturbance; those who were diagnosed with NMCP were more likely to develop subsequent sleep disturbance. Similarly, sleep disturbance was significantly associated with suicide death. Finally, a significant indirect effect of NMCP on suicide death, through sleep disturbance, and a nonsignificant direct effect of NMCP on suicide death provide support for a fully mediated model. CONCLUSIONS AND RELEVANCE There is a need for clinicians to screen for both sleep disturbance and suicidal ideation in NMCP patients and for health systems to implement more widespread behavioral treatments that address comorbid sleep problems and NMCP.
Collapse
Affiliation(s)
- Ashli A Owen-Smith
- School of Public Health, Georgia State University, Atlanta, Georgia, U.S.A.,Kaiser Permanente Georgia, Center for Research and Evaluation, Atlanta, Georgia
| | - Brian K Ahmedani
- Center for Health Policy and Health Services Research, Henry Ford Health System, Detroit, Michigan, U.S.A.,Behavioral Health Services, Henry Ford Health System, Detroit, Michigan, U.S.A
| | - Ed Peterson
- Department of Public Health Sciences, Henry Ford Health System, Detroit, Michigan, U.S.A
| | - Gregory E Simon
- Kaiser Permanente Washington, Health Research Institute, Seattle, Washington, U.S.A
| | | | - Frances L Lynch
- Kaiser Permanente Northwest, Center for Health Research, Portland, Oregon, U.S.A
| | - Christine Y Lu
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, Massachusetts, U.S.A
| | - Beth E Waitzfelder
- Kaiser Permanente Hawaii, Center for Health Research, Honolulu, Hawaii, U.S.A
| | - Arne Beck
- Kaiser Permanente Colorado, Institute for Health Research, Aurora, Colorado, U.S.A
| | - Lynn L DeBar
- Kaiser Permanente Washington, Health Research Institute, Seattle, Washington, U.S.A
| | - Victoria Sanon
- School of Public Health, Georgia State University, Atlanta, Georgia, U.S.A
| | - Yousef Maaz
- Behavioral Health Services, Henry Ford Health System, Detroit, Michigan, U.S.A
| | - Shehryar Khan
- Behavioral Health Services, Henry Ford Health System, Detroit, Michigan, U.S.A
| | - Lisa R Miller-Matero
- Center for Health Policy and Health Services Research, Henry Ford Health System, Detroit, Michigan, U.S.A.,Behavioral Health Services, Henry Ford Health System, Detroit, Michigan, U.S.A
| | - Deepak Prabhakar
- Behavioral Health Services, Henry Ford Health System, Detroit, Michigan, U.S.A
| | - Cathy Frank
- Behavioral Health Services, Henry Ford Health System, Detroit, Michigan, U.S.A
| | - Christopher L Drake
- Sleep Disorders and Research Center, Henry Ford Health System, Detroit, Michigan, U.S.A
| | - Jordan M Braciszewski
- Center for Health Policy and Health Services Research, Henry Ford Health System, Detroit, Michigan, U.S.A
| |
Collapse
|
12
|
Bravo L, Llorca-Torralba M, Berrocoso E, Micó JA. Monoamines as Drug Targets in Chronic Pain: Focusing on Neuropathic Pain. Front Neurosci 2019; 13:1268. [PMID: 31942167 PMCID: PMC6951279 DOI: 10.3389/fnins.2019.01268] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/08/2019] [Indexed: 12/11/2022] Open
Abstract
Monoamines are involved in regulating the endogenous pain system and indeed, peripheral and central monoaminergic dysfunction has been demonstrated in certain types of pain, particularly in neuropathic pain. Accordingly, drugs that modulate the monaminergic system and that were originally designed to treat depression are now considered to be first line treatments for certain types of neuropathic pain (e.g., serotonin and noradrenaline (and also dopamine) reuptake inhibitors). The analgesia induced by these drugs seems to be mediated by inhibiting the reuptake of these monoamines, thereby reinforcing the descending inhibitory pain pathways. Hence, it is of particular interest to study the monoaminergic mechanisms involved in the development and maintenance of chronic pain. Other analgesic drugs may also be used in combination with monoamines to facilitate descending pain inhibition (e.g., gabapentinoids and opioids) and such combinations are often also used to alleviate certain types of chronic pain. By contrast, while NSAIDs are thought to influence the monoaminergic system, they just produce consistent analgesia in inflammatory pain. Thus, in this review we will provide preclinical and clinical evidence of the role of monoamines in the modulation of chronic pain, reviewing how this system is implicated in the analgesic mechanism of action of antidepressants, gabapentinoids, atypical opioids, NSAIDs and histaminergic drugs.
Collapse
Affiliation(s)
- Lidia Bravo
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Meritxell Llorca-Torralba
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Esther Berrocoso
- Instituto de Investigación e Innovación Biomédica de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, University of Cádiz, Cádiz, Spain
| | - Juan Antonio Micó
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Juan Antonio Micó,
| |
Collapse
|
13
|
Cortes-Altamirano JL, Olmos-Hernandez A, Jaime HB, Carrillo-Mora P, Bandala C, Reyes-Long S, Alfaro-Rodríguez A. Review: 5-HT1, 5-HT2, 5-HT3 and 5-HT7 Receptors and their Role in the Modulation of Pain Response in the Central Nervous System. Curr Neuropharmacol 2018; 16:210-221. [PMID: 28901281 PMCID: PMC5883380 DOI: 10.2174/1570159x15666170911121027] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 08/24/2017] [Accepted: 09/01/2017] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The aim of this review was to identify the mechanisms by which serotonin receptors involved at the central level are able to modulate the nociceptive response. Pain is a defense mechanism of the body that entails physiological, anatomical, neurochemical, and psychological changes, and is defined as an unpleasant sensory and emotional experience with potential risk of tissue damage, comprising the leading cause of appointments with Physicians worldwide. Treatment for this symptom has generated several neuropharmacological lines of research, due to the different types of pain and the various drugs employed to treat this condition. Serotonin [5- HydroxyTryptamine (5-HT)] is a neurotransmitter with seven families (5-HT1-5-HT7) and approximately 15 receptor subtypes. Serotonin modulates neuronal activity; however, this neurotransmitter is related with a number of physiological processes, such as cardiovascular function, gastric motility, renal function, etc. On the other hand, several researches reported that serotonin modulates nociceptive response through 5-HT1, 5-HT2, 5-HT3, and 5-HT7 receptors in the Central Nervous System (CNS). METHOD In this review, a search was conducted on PubMed, ProQuest, EBSCO, and the Science Citation Index for studies evaluating the effects of 5-HT1, 5-HT2, 5-HT3, and 5-HT7 receptors in the CNS on the modulation of different types of pain. CONCLUSION We concluded that 5-HT1, 5-HT2, 5-HT3, and 5-HT7 receptors in the CNS modulate the pain, but this depends on the distribution of the receptors, dose of agonists or antagonists, administration route, pain type and duration in order to inhibit, excite, or even maintain the nociceptive response.
Collapse
Affiliation(s)
- Jose Luis Cortes-Altamirano
- PhD Program in Biological and Health Sciences, Universidad Autonoma Metropolitana Iztapalapa-Xochimilco- Cuajimalpa, Mexico, Calzada del Hueso 1100, Col. Villa Quietud, Mexico, D.F. 04960, Mexico
| | - Adriana Olmos-Hernandez
- Departament of Neurosciences, Instituto Nacional de Rehabilitacion, "Luis Guillermo Ibarra Ibarra", Secretaria de Salud, Col. Arenal de Guadalupe, Mexico, D.F. 14389, Mexico
| | - Herlinda Bonilla Jaime
- Departament of Reproductive Biology, Universidad Autonoma Metropolitana Campus Iztapalapa, Mexico, D.F. 09340, Mexico
| | - Paul Carrillo-Mora
- Departament of Neurosciences, Instituto Nacional de Rehabilitacion, "Luis Guillermo Ibarra Ibarra", Secretaria de Salud, Col. Arenal de Guadalupe, Mexico, D.F. 14389, Mexico
| | - Cindy Bandala
- Departament of Neurosciences, Instituto Nacional de Rehabilitacion, "Luis Guillermo Ibarra Ibarra", Secretaria de Salud, Col. Arenal de Guadalupe, Mexico, D.F. 14389, Mexico
| | - Samuel Reyes-Long
- Departament of Neurosciences, Instituto Nacional de Rehabilitacion, "Luis Guillermo Ibarra Ibarra", Secretaria de Salud, Col. Arenal de Guadalupe, Mexico, D.F. 14389, Mexico
| | - Alfonso Alfaro-Rodríguez
- Departament of Neurosciences, Instituto Nacional de Rehabilitacion, "Luis Guillermo Ibarra Ibarra", Secretaria de Salud, Col. Arenal de Guadalupe, Mexico, D.F. 14389, Mexico
| |
Collapse
|
14
|
Ferland CE, Teles AR, Ingelmo P, Saran N, Marchand S, Ouellet JA. Blood monoamines as potential biomarkers for conditioned pain modulation efficacy: An exploratory study in paediatrics. Eur J Pain 2018; 23:327-340. [DOI: 10.1002/ejp.1307] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/04/2018] [Accepted: 08/12/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Catherine E. Ferland
- McGill Scoliosis and Spine Group; Montreal Québec Canada
- Shriners Hospitals for Children-Canada; Montreal Québec Canada
- McGill University Health Centre; Montreal Québec Canada
- Alan Edwards Centre for Research on Pain; Montreal Québec Canada
- Department of Anesthesia; McGill University; Montreal Québec Canada
| | - Alisson R. Teles
- McGill Scoliosis and Spine Group; Montreal Québec Canada
- Shriners Hospitals for Children-Canada; Montreal Québec Canada
- McGill University Health Centre; Montreal Québec Canada
- Alan Edwards Centre for Research on Pain; Montreal Québec Canada
- Division of Pediatric Orthopaedics; McGill University; Montreal Québec Canada
| | - Pablo Ingelmo
- McGill University Health Centre; Montreal Québec Canada
- Alan Edwards Centre for Research on Pain; Montreal Québec Canada
- Department of Anesthesia; McGill University; Montreal Québec Canada
| | - Neil Saran
- McGill Scoliosis and Spine Group; Montreal Québec Canada
- Shriners Hospitals for Children-Canada; Montreal Québec Canada
- McGill University Health Centre; Montreal Québec Canada
- Division of Pediatric Orthopaedics; McGill University; Montreal Québec Canada
| | - Serge Marchand
- Department of Surgery; Université de Sherbrooke; Sherbrooke Québec Canada
| | - Jean A. Ouellet
- McGill Scoliosis and Spine Group; Montreal Québec Canada
- Shriners Hospitals for Children-Canada; Montreal Québec Canada
- McGill University Health Centre; Montreal Québec Canada
- Alan Edwards Centre for Research on Pain; Montreal Québec Canada
- Division of Pediatric Orthopaedics; McGill University; Montreal Québec Canada
| |
Collapse
|
15
|
The developmental emergence of differential brainstem serotonergic control of the sensory spinal cord. Sci Rep 2017; 7:2215. [PMID: 28533557 PMCID: PMC5440407 DOI: 10.1038/s41598-017-02509-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/12/2017] [Indexed: 12/29/2022] Open
Abstract
Descending connections from brainstem nuclei are known to exert powerful control of spinal nociception and pain behaviours in adult mammals. Here we present evidence that descending serotonergic fibres not only inhibit nociceptive activity, but also facilitate non-noxious tactile activity in the healthy adult rat spinal dorsal horn via activation of spinal 5-HT3 receptors (5-HT3Rs). We further show that this differential serotonergic control in the adult emerges from a non-modality selective system in young rats. Serotonergic fibres exert background 5-HT3R mediated facilitation of both tactile and nociceptive spinal activity in the first three postnatal weeks. Thus, differential descending serotonergic control of spinal touch and pain processing emerges in late postnatal life to allow flexible and context-dependent brain control of somatosensation.
Collapse
|
16
|
Gautier A, El Ouaraki H, Bazin N, Salam S, Vodjdani G, Bourgoin S, Pezet S, Bernard JF, Hamon M. Lentiviral vector-driven inhibition of 5-HT synthesis in B3 bulbo-spinal serotonergic projections – Consequences on nociception, inflammatory and neuropathic pain in rats. Exp Neurol 2017; 288:11-24. [DOI: 10.1016/j.expneurol.2016.10.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/24/2016] [Accepted: 10/27/2016] [Indexed: 01/19/2023]
|
17
|
Kilinc E, Guerrero-Toro C, Zakharov A, Vitale C, Gubert-Olive M, Koroleva K, Timonina A, Luz LL, Shelukhina I, Giniatullina R, Tore F, Safronov BV, Giniatullin R. Serotonergic mechanisms of trigeminal meningeal nociception: Implications for migraine pain. Neuropharmacology 2016; 116:160-173. [PMID: 28025094 DOI: 10.1016/j.neuropharm.2016.12.024] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 12/02/2016] [Accepted: 12/22/2016] [Indexed: 10/20/2022]
Abstract
Serotonergic mechanisms play a central role in migraine pathology. However, the region-specific effects of serotonin (5-HT) mediated via multiple types of receptors in the nociceptive system are poorly understood. Using extracellular and patch-clamp recordings, we studied the action of 5-HT on the excitability of peripheral and central terminals of trigeminal afferents. 5-HT evoked long-lasting TTX-sensitive firing in the peripheral terminals of meningeal afferents, the origin site of migraine pain. Cluster analysis revealed that in majority of nociceptive fibers 5-HT induced either transient or persistent spiking activity with prevailing delta and theta rhythms. The 5-HT3-receptor antagonist MDL-72222 or 5-HT1B/D-receptor antagonist GR127935 largely reduced, but their combination completely prevented the excitatory pro-nociceptive action of 5-HT. The 5-HT3 agonist mCPBG activated spikes in MDL-72222-dependent manner but the 5HT-1 receptor agonist sumatriptan did not affect the nociceptive firing. 5-HT also triggered peripheral CGRP release in meninges, which was blocked by MDL-72222.5-HT evoked fast membrane currents and Ca2+ transients in a fraction of trigeminal neurons. Immunohistochemistry showed expression of 5-HT3A receptors in fibers innervating meninges. Endogenous release of 5-HT from degranulated mast cells increased nociceptive firing. Low pH but not histamine strongly activated firing. 5-HT reduced monosynaptic inputs from trigeminal Aδ- and C-afferents to the upper cervical lamina I neurons and this effect was blocked by MDL-72222. Consistent with central inhibitory effect, 5-HT reduced CGRP release in the brainstem slices. In conclusion, 5-HT evokes powerful pro-nociceptive peripheral and anti-nociceptive central effects in trigeminal system transmitting migraine pain.
Collapse
Affiliation(s)
- Erkan Kilinc
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland; Abant Izzet Baysal University, Medical Faculty, Department of Physiology, 14280, Bolu, Turkey.
| | - Cindy Guerrero-Toro
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland.
| | - Andrey Zakharov
- Laboratory of Neurobiology, Kazan Federal University, 420008, Kazan, Russia; Department of Physiology, Kazan State Medical University, 420012, Kazan, Russia.
| | - Carmela Vitale
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland.
| | - Max Gubert-Olive
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland.
| | - Ksenia Koroleva
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland; Laboratory of Neurobiology, Kazan Federal University, 420008, Kazan, Russia
| | - Arina Timonina
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Liliana L Luz
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal.
| | - Irina Shelukhina
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997, Moscow, Russia.
| | - Raisa Giniatullina
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland.
| | - Fatma Tore
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland; Biruni University, School of Medicine, 34010, Istanbul, Turkey.
| | - Boris V Safronov
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal; Neuronal Networks Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135, Porto, Portugal.
| | - Rashid Giniatullin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland; Laboratory of Neurobiology, Kazan Federal University, 420008, Kazan, Russia.
| |
Collapse
|
18
|
Bannister K, Lockwood S, Goncalves L, Patel R, Dickenson AH. An investigation into the inhibitory function of serotonin in diffuse noxious inhibitory controls in the neuropathic rat. Eur J Pain 2016; 21:750-760. [PMID: 27891703 DOI: 10.1002/ejp.979] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2016] [Indexed: 01/09/2023]
Abstract
BACKGROUND Following neuropathy α2-adrenoceptor-mediated diffuse noxious inhibitory controls (DNIC), whereby a noxious conditioning stimulus inhibits the activity of spinal wide dynamic range (WDR) neurons, are abolished, and spinal 5-HT7 receptor densities are increased. Here, we manipulate spinal 5-HT content in spinal nerve ligated (SNL) animals and investigate which 5-HT receptor mediated actions predominate. METHODS Using in vivo electrophysiology we recorded WDR neuronal responses to von frey filaments applied to the hind paw before, and concurrent to, a noxious ear pinch (the conditioning stimulus) in isoflurane-anaesthetised rats. The expression of DNIC was quantified as a reduction in WDR neuronal firing in the presence of conditioning stimulus and was investigated in SNL rats following spinal application of (1) selective serotonin reuptake inhibitors (SSRIs) citalopram or fluoxetine, or dual application of (2) SSRI plus 5-HT7 receptor antagonist SB269970, or (3) SSRI plus α2 adrenoceptor antagonist atipamezole. RESULTS DNIC were revealed in SNL animals following spinal application of SSRI, but this effect was abolished upon joint application of SSRI plus SB269970 or atipamezole. CONCLUSIONS We propose that in SNL animals the inhibitory actions (quantified as the presence of DNIC) of excess spinal 5-HT (presumed present following application of SSRI) were mediated via 5-HT7 receptors. The anti-nociception depends upon an underlying tonic noradrenergic inhibitory tone via the α2-adrenoceptor. SIGNIFICANCE Following neuropathy enhanced spinal serotonin availability switches the predominant spinal 5-HT receptor-mediated actions but also alters noradrenergic signalling. We highlight the therapeutic complexity of SSRIs and monoamine modulators for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- K Bannister
- Department of Neuroscience, Physiology and Pharmacology, University College London, UK
| | - S Lockwood
- Department of Neuroscience, Physiology and Pharmacology, University College London, UK
| | - L Goncalves
- Department of Neuroscience, Physiology and Pharmacology, University College London, UK
| | - R Patel
- Department of Neuroscience, Physiology and Pharmacology, University College London, UK
| | - A H Dickenson
- Department of Neuroscience, Physiology and Pharmacology, University College London, UK
| |
Collapse
|
19
|
Abstract
Pain is more than merely nociception and response, but rather it encompasses emotional, behavioral and cognitive components that make up the pain experience. With the recent advances in imaging techniques, we now understand that nociceptive inputs can result in the activation of complex interactions among central sites, including cortical regions that are active in cognitive, emotional and reward functions. These sites can have a bimodal influence on the serotonergic and noradrenergic descending pain modulatory systems via communications among the periaqueductal gray, rostral ventromedial medulla and pontine noradrenergic nuclei, ultimately either facilitating or inhibiting further nociceptive inputs. Understanding these systems can help explain the emotional and cognitive influences on pain perception and placebo/nocebo effects, and can help guide development of better pain therapeutics.
Collapse
Affiliation(s)
- Milena De Felice
- The University of Sheffield, Academic Unit of Oral & Maxillofacial Medicine & Surgery, Sheffield, South Yorkshire, UK
| | - Michael H Ossipov
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ 85724-5050, USA
| |
Collapse
|
20
|
Nasirinezhad F, Hosseini M, Karami Z, Yousefifard M, Janzadeh A. Spinal 5-HT3 receptor mediates nociceptive effect on central neuropathic pain; possible therapeutic role for tropisetron. J Spinal Cord Med 2016; 39:212-9. [PMID: 26338446 PMCID: PMC5072495 DOI: 10.1179/2045772315y.0000000047] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
OBJECTIVES To test the analgesic effect of 5-HT-3 receptor antagonist, tropisetron, in a clip compression injury model of spinal cord pain in rats. METHODS Four weeks post compression of the spinal cord at lumbar level, tropisetron was administered intrathecally at 100 μg and 150 μg dosages. Behavioral tests were assessed before administration. Fifteen minutes after injection, behavioral tests were repeated. Randall-Sellitto and plantar test was used for mechanical and thermal hyperalgesia, respectively. Mechanical and cold allodynia were evaluated by Von Frey filament and acetone droplets, respectively. The analgesic effect of tropisetron was compared with intrathecal administration of salicylate. Locomotor score was evaluated by Basso, Beattie and Bresnahan (BBB) test every week after spinal cord injury. RESULTS Intrathecal administration of tropisetron, decreased hyperalgesia and mechanical allodynia, but not cold allodynia were observed after compression of the spinal cord. CONCLUSION Blockade of 5-HT-3 receptors by tropisetron at the spinal level induces an antinociceptive effect on chronic central neuropathic pain and suggests that this compound may have potential clinical utility for the management of central neuropathic pain, particularly in patients with hyperalgesia and tactile allodynia.
Collapse
Affiliation(s)
- Farinaz Nasirinezhad
- Physiology Research Center, Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Correspondence to: Farinaz Nasirinezhad, Department of Physiology, Iran University of Medical Sciences, Tehran, Iran.
| | - Marjan Hosseini
- Department of Physiology, School of medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zohre Karami
- Department of Physiology, School of medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Yousefifard
- Department of Physiology, School of medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Autosa Janzadeh
- Physiology Research Center, Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Amorim D, Viisanen H, Wei H, Almeida A, Pertovaara A, Pinto-Ribeiro F. Galanin-Mediated Behavioural Hyperalgesia from the Dorsomedial Nucleus of the Hypothalamus Involves Two Independent Descending Pronociceptive Pathways. PLoS One 2015; 10:e0142919. [PMID: 26565961 PMCID: PMC4643915 DOI: 10.1371/journal.pone.0142919] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 10/28/2015] [Indexed: 12/17/2022] Open
Abstract
Activation of the dorsomedial nucleus of the hypothalamus (DMH) by galanin (GAL) induces behavioural hyperalgesia. Since DMH neurones do not project directly to the spinal cord, we hypothesized that the medullary dorsal reticular nucleus (DRt), a pronociceptive region projecting to the spinal dorsal horn (SDH) and/or the serotoninergic raphe-spinal pathway acting on the spinal 5-HT3 receptor (5HT3R) could relay descending nociceptive facilitation induced by GAL in the DMH. Heat-evoked paw-withdrawal latency (PWL) and activity of SDH neurones were assessed in monoarthritic (ARTH) and control (SHAM) animals after pharmacological manipulations of the DMH, DRt and spinal cord. The results showed that GAL in the DMH and glutamate in the DRt lead to behavioural hyperalgesia in both SHAM and ARTH animals, which is accompanied particularly by an increase in heat-evoked responses of wide-dynamic range neurons, a group of nociceptive SDH neurones. Facilitation of pain behaviour induced by GAL in the DMH was reversed by lidocaine in the DRt and by ondansetron, a 5HT3R antagonist, in the spinal cord. However, the hyperalgesia induced by glutamate in the DRt was not blocked by spinal ondansetron. In addition, in ARTH but not SHAM animals PWL was increased after lidocaine in the DRt and ondansetron in the spinal cord. Our data demonstrate that GAL in the DMH activates two independent descending facilitatory pathways: (i) one relays in the DRt and (ii) the other one involves 5-HT neurones acting on spinal 5HT3Rs. In experimental ARTH, the tonic pain-facilitatory action is increased in both of these descending pathways.
Collapse
Affiliation(s)
- Diana Amorim
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Institute of Biomedicine/Physiology, University of Helsinki, Helsinki, Finland
| | - Hanna Viisanen
- Institute of Biomedicine/Physiology, University of Helsinki, Helsinki, Finland
| | - Hong Wei
- Institute of Biomedicine/Physiology, University of Helsinki, Helsinki, Finland
| | - Armando Almeida
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Antti Pertovaara
- Institute of Biomedicine/Physiology, University of Helsinki, Helsinki, Finland
| | - Filipa Pinto-Ribeiro
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
22
|
Kim JM, Jeong SW, Yang J, Lee SH, Kim WM, Jeong S, Bae HB, Yoon MH, Choi JI. Spinal 5-HT1A, not the 5-HT1B or 5-HT3 receptors, mediates descending serotonergic inhibition for late-phase mechanical allodynia of carrageenan-induced peripheral inflammation. Neurosci Lett 2015; 600:91-7. [PMID: 26037417 DOI: 10.1016/j.neulet.2015.05.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 05/21/2015] [Accepted: 05/23/2015] [Indexed: 11/26/2022]
Abstract
Previous electrophysiological studies demonstrated a limited role of 5-hydroxytryptamine 3 receptor (5-HT3R), but facilitatory role of 5-HT1AR and 5-HT1BR in spinal nociceptive processing of carrageenan-induced inflammatory pain. The release of spinal 5-HT was shown to peak in early-phase and return to baseline in late-phase of carrageenan inflammation. We examined the role of the descending serotonergic projections involving 5-HT1AR, 5-HT1BR, and 5-HT3R in mechanical allodynia of early- (first 4h) and late-phase (24h after) carrageenan-induced inflammation. Intrathecal administration of 5-HT produced a significant anti-allodynic effect in late-phase, but not in early-phase. Similarly, intrathecal 5-HT1AR agonist (8-OH-DPAT) attenuated the intensity of late-phase allodynia in a dose dependent fashion which was antagonized by 5-HT1AR antagonist (WAY-100635), but produced no effect on the early-phase allodynia. However, other agonists or antagonists of 5-HT1BR (CP-93129, SB-224289) and 5-HT3R (m-CPBG, ondansetron) did not produce any anti- or pro-allodynic effect in both early- and late- phase allodynia. These results suggest that spinal 5-HT1A, but not 5-HT1B or 5-HT3 receptors mediate descending serotonergic inhibition on nociceptive processing of late-phase mechanical allodynia in carrageenan-induced inflammation.
Collapse
Affiliation(s)
- Joung Min Kim
- Department of Anesthesiology and Pain Medicine, Chonnam National University, Medical School and Hospital, Gwangju, Republic of Korea
| | - Seong Wook Jeong
- Department of Anesthesiology and Pain Medicine, Chonnam National University, Medical School and Hospital, Gwangju, Republic of Korea
| | - Jihoon Yang
- Center for Creative Biomedical Scientists, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Seong Heon Lee
- Department of Anesthesiology and Pain Medicine, Chonnam National University, Medical School and Hospital, Gwangju, Republic of Korea
| | - Woon Mo Kim
- Department of Anesthesiology and Pain Medicine, Chonnam National University, Medical School and Hospital, Gwangju, Republic of Korea; Center for Creative Biomedical Scientists, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Seongtae Jeong
- Department of Anesthesiology and Pain Medicine, Chonnam National University, Medical School and Hospital, Gwangju, Republic of Korea
| | - Hong Beom Bae
- Department of Anesthesiology and Pain Medicine, Chonnam National University, Medical School and Hospital, Gwangju, Republic of Korea; Center for Creative Biomedical Scientists, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Myung Ha Yoon
- Department of Anesthesiology and Pain Medicine, Chonnam National University, Medical School and Hospital, Gwangju, Republic of Korea; Center for Creative Biomedical Scientists, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Jeong Il Choi
- Department of Anesthesiology and Pain Medicine, Chonnam National University, Medical School and Hospital, Gwangju, Republic of Korea; Center for Creative Biomedical Scientists, Chonnam National University Medical School, Gwangju, Republic of Korea.
| |
Collapse
|
23
|
Okamoto K, Katagiri A, Rahman M, Thompson R, Bereiter DA. Inhibition of temporomandibular joint input to medullary dorsal horn neurons by 5HT3 receptor antagonist in female rats. Neuroscience 2015; 299:35-44. [PMID: 25913635 DOI: 10.1016/j.neuroscience.2015.04.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/17/2015] [Accepted: 04/16/2015] [Indexed: 12/19/2022]
Abstract
Repeated forced swim (FS) conditioning enhances nociceptive responses to temporomandibular joint (TMJ) stimulation in female rats. The basis for FS-induced TMJ hyperalgesia remains unclear. To test the hypothesis that serotonin 3 receptor (5HT3R) mechanisms contribute to enhanced TMJ nociception after FS, ovariectomized female rats were treated with estradiol and subjected to FS for three days. On day 4, rats were anesthetized with isoflurane and TMJ-responsive neurons were recorded from superficial and deep laminae at the trigeminal subnucleus caudalis/upper cervical (Vc/C1-2) region and electromyographic (EMG) activity was recorded from the masseter muscle. Only Vc/C1-2 neurons activated by intra-TMJ injections of ATP were included for further analysis. Although neurons in both superficial and deep laminae were activated by ATP, only neurons in deep laminae displayed enhanced responses after FS. Local application of the 5HT3R antagonist, ondansetron (OND), at the Vc/C1-2 region reduced the ATP-evoked responses of neurons in superficial and deep laminae and reduced the EMG response in both sham and FS rats. OND also decreased the spontaneous firing rate of neurons in deep laminae and reduced the high-threshold convergent cutaneous receptive field area of neurons in superficial and deep laminae in both sham and FS rats. These results revealed that central application of a 5HT3R antagonist, had widespread effects on the properties of TMJ-responsive neurons at the Vc/C1-2 region and on jaw muscle reflexes under sham and FS conditions. It is concluded that 5HT3R does not play a unique role in mediating stress-induced hyperalgesia related to TMJ nociception.
Collapse
Affiliation(s)
- K Okamoto
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, United States.
| | - A Katagiri
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, United States
| | - M Rahman
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, United States
| | - R Thompson
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, United States
| | - D A Bereiter
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, United States
| |
Collapse
|
24
|
Mika J, Jurga AM, Starnowska J, Wasylewski M, Rojewska E, Makuch W, Kwiatkowski K, Malek N, Przewlocka B. Effects of chronic doxepin and amitriptyline administration in naïve mice and in neuropathic pain mice model. Neuroscience 2015; 294:38-50. [PMID: 25769941 DOI: 10.1016/j.neuroscience.2015.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/03/2015] [Accepted: 03/03/2015] [Indexed: 02/02/2023]
Abstract
Neuropathic pain is a severe clinical problem, often appearing as a co-symptom of many diseases or manifesting as a result of damage to the nervous system. Many drugs and agents are currently used for the treatment of neuropathic pain, such as tricyclic antidepressants (TCAs). The aims of this paper were to test the effects of two classic TCAs, doxepin and amitriptyline, in naïve animals and in a model of neuropathic pain and to determine the role of cytokine activation in the effects of these drugs. All experiments were carried out with Albino-Swiss mice using behavioral tests (von Frey test and the cold plate test) and biochemical analyses (qRT-PCR and Western blot). In the mice subjected to chronic constriction injury (CCI), doxepin and amitriptyline attenuated the symptoms of neuropathic pain and diminished the CCI-induced increase in the levels of spinal interleukin (IL)-6 and -1β mRNA, but not the protein levels of these cytokines, measured on day 12. Unexpectedly, chronic administration of doxepin or amitriptyline for 12 days produced allodynia and hyperalgesia in naïve mice. The treatment with these drugs did not influence the spinal levels of IL-1β and IL-6 mRNA, however, the protein levels of these pronociceptive factors were increased. The administration of ondansetron (5-HT3 receptor antagonist) significantly weakened the allodynia and hyperalgesia induced by both antidepressants in naïve mice; in contrast, yohimbine (α2-adrenergic receptors antagonist) did not influence these effects. Allodynia and hyperalgesia induced in naïve animals by amitriptyline and doxepin may be associated with an increase in the levels of pronociceptive cytokines resulting from 5-HT3-induced hypersensitivity. Our results provide new and important information about the possible side effects of antidepressants. Further investigation of these mechanisms may help to guide decisions about the use of classic TCAs for therapy.
Collapse
Affiliation(s)
- J Mika
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland.
| | - A M Jurga
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - J Starnowska
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - M Wasylewski
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - E Rojewska
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - W Makuch
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - K Kwiatkowski
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - N Malek
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - B Przewlocka
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland.
| |
Collapse
|
25
|
Sagalajev B, Bourbia N, Beloushko E, Wei H, Pertovaara A. Bidirectional amygdaloid control of neuropathic hypersensitivity mediated by descending serotonergic pathways acting on spinal 5-HT3 and 5-HT1A receptors. Behav Brain Res 2014; 282:14-24. [PMID: 25557801 DOI: 10.1016/j.bbr.2014.12.052] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 12/20/2014] [Accepted: 12/25/2014] [Indexed: 12/26/2022]
Abstract
Amygdala is involved in processing of primary emotions and particularly its central nucleus (CeA) also in pain control. Here we studied mechanisms mediating the descending control of mechanical hypersensitivity by the CeA in rats with a peripheral neuropathy in the left hind limb. For drug administrations, the animals had a guide cannula in the right CeA and an intrathecal catheter or another guide cannula in the medullary raphe. Hypersensitivity was tested with monofilaments. Glutamate administration in the CeA produced a bidirectional effect on hypersensitivity that varied from an increase at a low-dose (9μg) to a reduction at high doses (30-100μg). The increase but not the reduction of hypersensitivity was prevented by blocking the amygdaloid NMDA receptor with a dose of MK-801 that alone had no effects. The glutamate-induced increase in hypersensitivity was reversed by blocking the spinal 5-HT3 receptor with ondansetron, whereas the reduction in hypersensitivity was reversed by blocking the spinal 5-HT1A receptor with WAY-100635. Both the increase and decrease of hypersensitivity induced by amygdaloid glutamate treatment were reversed by medullary administration of a 5-HT1A agonist, 8-OH-DPAT, that presumably produced autoinhibition of serotonergic cell bodies in the medullary raphe. The results indicate that depending on the dose, glutamate in the CeA has a descending facilitatory or inhibitory effect on neuropathic pain hypersensitivity. Serotoninergic raphe neurons are involved in mediating both of these effects. Spinally, the 5-HT3 receptor contributes to the increase and the 5-HT1A receptor to the decrease of neuropathic hypersensitivity induced by amygdaloid glutamate.
Collapse
Affiliation(s)
- B Sagalajev
- Institute of Biomedicine/Physiology, University of Helsinki, Helsinki, Finland
| | - N Bourbia
- Institute of Biomedicine/Physiology, University of Helsinki, Helsinki, Finland
| | - E Beloushko
- Institute of Biomedicine/Physiology, University of Helsinki, Helsinki, Finland
| | - H Wei
- Institute of Biomedicine/Physiology, University of Helsinki, Helsinki, Finland
| | - A Pertovaara
- Institute of Biomedicine/Physiology, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
26
|
Hirsch S, Dickenson A, Corradini L. Anesthesia influences neuronal activity and drug effectiveness in neuropathic rats. Pain 2014; 155:2583-2590. [DOI: 10.1016/j.pain.2014.09.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 09/16/2014] [Accepted: 09/16/2014] [Indexed: 01/16/2023]
|
27
|
Cai YQ, Wang W, Hou YY, Pan ZZ. Optogenetic activation of brainstem serotonergic neurons induces persistent pain sensitization. Mol Pain 2014; 10:70. [PMID: 25410898 PMCID: PMC4247651 DOI: 10.1186/1744-8069-10-70] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/18/2014] [Indexed: 02/07/2023] Open
Abstract
Background The rostral ventromedial medulla (RVM) is a key brainstem structure that conveys powerful descending influence of the central pain-modulating system on spinal pain transmission and processing. Serotonergic (5-HT) neurons are a major component in the heterogeneous populations of RVM neurons and in the descending pathways from RVM. However, the descending influence of RVM 5-HT neurons on pain behaviors remains unclear. Results In this study using optogenetic stimulation in tryptophan hydroxylase 2 (TPH2)- Channelrhodopsin 2 (ChR2) transgenic mice, we determined the behavioral effects of selective activation of RVM 5-HT neurons on mechanical and thermal pain behaviors in vivo. We found that ChR2-EYFP-positive neurons strongly co-localized with TPH2-positive (5-HT) neurons in RVM. Optogenetic stimulation significantly increased c-fos expression in 5-HT cells in the RVM of TPH2-ChR2 mice, but not in wild type mice. Behaviorally, the optogenetic stimulation decreased both mechanical and thermal pain threshold in an intensity-dependent manner, with repeated stimulation producing sensitized pain behavior for up to two weeks. Conclusions These results suggest that selective activation of RVM 5-HT neurons exerts a predominant effect of pain facilitation under control conditions.
Collapse
Affiliation(s)
| | | | | | - Zhizhong Z Pan
- Department of Anesthesiology and Pain Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA.
| |
Collapse
|
28
|
Greenwood-Van Meerveld B, Mohammadi E, Tyler K, Pietra C, Bee LA, Dickenson A. Synergistic effect of 5-hydroxytryptamine 3 and neurokinin 1 receptor antagonism in rodent models of somatic and visceral pain. J Pharmacol Exp Ther 2014; 351:146-52. [PMID: 25077526 DOI: 10.1124/jpet.114.216028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Synergistic activity has been observed between serotonergic 5-hydroxytryptamine 3 (5-HT3) and tachykinergic neurokinin 1 (NK1) receptor-mediated responses. This study investigated the efficacy of a 5-HT3 antagonist, palonosetron, and a NK1 antagonist, netupitant, alone or in combination in rodent models of somatic and visceral colonic hypersensitivity. In a rat model of experimental neuropathic pain, somatic hypersensitivity was quantified by the number of ipsilateral paw withdrawals to a von Frey filament (6g). Electrophysiologic responses were recorded in the dorsal horn neurons after mechanical or thermal stimuli. Acute colonic hypersensitivity was induced experimentally in rats by infusing dilute acetic acid (0.6%) directly into the colon. Colonic sensitivity was assessed by a visceromotor behavioral response quantified as the number of abdominal contractions in response to graded isobaric pressures (0-60 mm Hg) of colorectal distension. Palonosetron or netupitant was administered alone or in combination via oral gavage. When dosed alone, both significantly reduced somatic sensitivity, decreased the evoked response of spinal dorsal horn neurons to mechanical or thermal stimulation, and caused significant (P < 0.05) inhibition of colonic hypersensitivity in a dose-dependent manner. The combined administration of palonosetron and netupitant at doses that were ineffective alone significantly reduced both somatic and visceral sensitivity and decreased the evoked response of spinal dorsal horn neurons to mechanical or thermal stimulation. In summary, the combination of palonosetron with a NK1 receptor antagonist showed synergistic analgesic activity in rodent models of somatic and visceral hypersensitivity, and may prove to be a useful therapeutic approach to treat pain associated with irritable bowel syndrome.
Collapse
Affiliation(s)
- Beverley Greenwood-Van Meerveld
- Department of Physiology (B.G.-V.M.), Veterans Affairs Medical Center (B.G.-V.M.), Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center (B.G.-V.M., E.M., K.T.), Oklahoma City, Oklahoma; Research and Preclinical Department, Helsinn Healthcare SA, Lugano, Switzerland (C.P.); and Department of Neuroscience, Physiology, and Pharmacology, University College London, London, United Kingdom (L.A.B., A.D.)
| | - Ehsan Mohammadi
- Department of Physiology (B.G.-V.M.), Veterans Affairs Medical Center (B.G.-V.M.), Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center (B.G.-V.M., E.M., K.T.), Oklahoma City, Oklahoma; Research and Preclinical Department, Helsinn Healthcare SA, Lugano, Switzerland (C.P.); and Department of Neuroscience, Physiology, and Pharmacology, University College London, London, United Kingdom (L.A.B., A.D.)
| | - Karl Tyler
- Department of Physiology (B.G.-V.M.), Veterans Affairs Medical Center (B.G.-V.M.), Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center (B.G.-V.M., E.M., K.T.), Oklahoma City, Oklahoma; Research and Preclinical Department, Helsinn Healthcare SA, Lugano, Switzerland (C.P.); and Department of Neuroscience, Physiology, and Pharmacology, University College London, London, United Kingdom (L.A.B., A.D.)
| | - Claudio Pietra
- Department of Physiology (B.G.-V.M.), Veterans Affairs Medical Center (B.G.-V.M.), Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center (B.G.-V.M., E.M., K.T.), Oklahoma City, Oklahoma; Research and Preclinical Department, Helsinn Healthcare SA, Lugano, Switzerland (C.P.); and Department of Neuroscience, Physiology, and Pharmacology, University College London, London, United Kingdom (L.A.B., A.D.)
| | - Lucy A Bee
- Department of Physiology (B.G.-V.M.), Veterans Affairs Medical Center (B.G.-V.M.), Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center (B.G.-V.M., E.M., K.T.), Oklahoma City, Oklahoma; Research and Preclinical Department, Helsinn Healthcare SA, Lugano, Switzerland (C.P.); and Department of Neuroscience, Physiology, and Pharmacology, University College London, London, United Kingdom (L.A.B., A.D.)
| | - Anthony Dickenson
- Department of Physiology (B.G.-V.M.), Veterans Affairs Medical Center (B.G.-V.M.), Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center (B.G.-V.M., E.M., K.T.), Oklahoma City, Oklahoma; Research and Preclinical Department, Helsinn Healthcare SA, Lugano, Switzerland (C.P.); and Department of Neuroscience, Physiology, and Pharmacology, University College London, London, United Kingdom (L.A.B., A.D.)
| |
Collapse
|
29
|
Yang J, Bae H, Ki H, Oh J, Kim W, Lee H, Yoon M, Choi J. Different role of spinal 5-HT(hydroxytryptamine)7 receptors and descending serotonergic modulation in inflammatory pain induced in formalin and carrageenan rat models. Br J Anaesth 2014; 113:138-47. [DOI: 10.1093/bja/aet336] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
30
|
Abstract
PURPOSE OF REVIEW Chronic pain is an important public health problem that negatively impacts quality of life of affected individuals and exacts an enormous socio-economic cost. Currently available therapeutics provide inadequate management of pain in many patients. Acute pain states generally resolve in most patients. However, for reasons that are poorly understood, in some individuals, acute pain can transform to a chronic state. Our understanding of the risk factors that underlie the development of chronic pain is limited. Recent studies have suggested an important contribution of dysfunction in descending pain modulatory circuits to pain 'chronification'. Human studies provide insights into possible endogenous and exogenous factors that may promote the conversion of pain into a chronic condition. RECENT FINDINGS Descending pain modulatory systems have been studied and characterized in animal models. Human brain imaging techniques, deep brain stimulation and the mechanisms of action of drugs that are effective in the treatment of pain confirm the clinical relevance of top-down pain modulatory circuits. Growing evidence supports the concept that chronic pain is associated with a dysregulation in descending pain modulation. Disruption of the balance of descending modulatory circuits to favour facilitation may promote and maintain chronic pain. Recent findings suggest that diminished descending inhibition is likely to be an important element in determining whether pain may become chronic. This view is consistent with the clinical success of drugs that enhance spinal noradrenergic activity, such as serotonin/norepinephrine reuptake inhibitors (SNRIs), in the treatment of chronic pain states. Consistent with this concept, a robust descending inhibitory system may be normally engaged to protect against the development of chronic pain. Imaging studies show that higher cortical and subcortical centres that govern emotional, motivational and cognitive processes communicate directly with descending pain modulatory circuits providing a mechanistic basis to explain how exogenous factors can influence the expression of chronic pain in a susceptible individual. SUMMARY Preclinical studies coupled with clinical pharmacologic and neuroimaging investigations have advanced our understanding of brain circuits that modulate pain. Descending pain facilitatory and inhibitory circuits arising ultimately in the brainstem provide mechanisms that can be engaged to promote or protect against pain 'chronification'. These systems interact with higher centres, thus providing a means through which exogenous factors can influence the risk of pain chronification. A greater understanding of the role of descending pain modulation can lead to novel therapeutic directions aimed at normalizing aberrant processes that can lead to chronic pain.
Collapse
Affiliation(s)
- Michael H Ossipov
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, Arizona, USA
| | | | | |
Collapse
|
31
|
Coupling of serotonergic input to NMDA receptor-phosphorylation following peripheral nerve injury via rapid, synaptic up-regulation of ND2. Exp Neurol 2014; 255:86-95. [DOI: 10.1016/j.expneurol.2014.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/31/2014] [Accepted: 02/14/2014] [Indexed: 11/15/2022]
|
32
|
Baptista-de-Souza D, Di Cesare Mannelli L, Zanardelli M, Micheli L, Nunes-de-Souza RL, Canto-de-Souza A, Ghelardini C. Serotonergic modulation in neuropathy induced by oxaliplatin: effect on the 5HT2C receptor. Eur J Pharmacol 2014; 735:141-9. [PMID: 24786153 DOI: 10.1016/j.ejphar.2014.04.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 04/16/2014] [Accepted: 04/17/2014] [Indexed: 01/23/2023]
Abstract
Fluoxetine has been shown to be effective in clinical and experimental studies of neuropathic pain. Besides to increase serotonin levels in the synaptic cleft, fluoxetine is able to block the serotonergic 5-HT2C receptor subtype, which in turn has been involved in the modulation of neuropathic pain. This study investigated the effect of repeated treatments with fluoxetine on the neuropathic nociceptive response induced by oxaliplatin and the effects of both treatments on 5-HT2C receptor mRNA expression and protein levels in the rat spinal cord (SC), rostral ventral medulla (RVM), midbrain periaqueductal gray (PAG) and amygdala (Amy). Nociception was assessed by paw-pressure, cold plate and Von Frey tests. Fluoxetine prevented mechanical hypersensitivity and pain threshold alterations induced by oxaliplatin but did not prevent the impairment in weight gain induced by this anticancer drug. Ex vivo analysis revealed that oxaliplatin increased the 5-HT2C receptor mRNA expression and protein levels in the SC and PAG. Similar effects were observed in fluoxetine-treated animals but only within the PAG. While oxaliplatin decreased the 5-HT2C mRNA expression levels in the Amy, fluoxetine increased their protein levels in this area. Fluoxetine impaired the oxaliplatin effects on the 5-HT2C receptor mRNA expression in the SC and Amy and protein levels in the SC. All treatments increased of 5-HT2C receptor mRNA expression and protein levels in the PAG. These results suggest that the effects of fluoxetine on neuropathic pain induced by oxaliplatin are associated with quantitative changes in the 5-HT2C receptors located within important areas of the nociceptive system.
Collapse
Affiliation(s)
- Daniela Baptista-de-Souza
- Psychobiology Group/Department of Psychology/CECH-UFSCar, São Carlos, SP 13565-905, Brazil; Joint Graduate Program in Physiological Sciences UFSCar/UNESP., São Carlos, SP 13565-905, Brazil; Department of Neuroscience, Psychology, Drug Research and Child Health - Neurofarba - Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy.
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health - Neurofarba - Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | - Matteo Zanardelli
- Department of Neuroscience, Psychology, Drug Research and Child Health - Neurofarba - Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | - Laura Micheli
- Department of Neuroscience, Psychology, Drug Research and Child Health - Neurofarba - Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | | | - Azair Canto-de-Souza
- Psychobiology Group/Department of Psychology/CECH-UFSCar, São Carlos, SP 13565-905, Brazil; Joint Graduate Program in Physiological Sciences UFSCar/UNESP., São Carlos, SP 13565-905, Brazil
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health - Neurofarba - Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| |
Collapse
|
33
|
Huang ZX, Lu ZJ, Ma WQ, Wu FX, Zhang YQ, Yu WF, Zhao ZQ. Involvement of RVM-expressed P2X7 receptor in bone cancer pain: mechanism of descending facilitation. Pain 2014; 155:783-791. [PMID: 24447511 DOI: 10.1016/j.pain.2014.01.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 01/03/2014] [Accepted: 01/14/2014] [Indexed: 01/02/2023]
Abstract
Patients with bone cancer commonly experience bone pain that is severe, intolerable, and difficult to manage. The rostral ventromedial medulla (RVM) plays an important role in the development of chronic pain via descending facilitation of spinal nociception. The compelling evidence shows that glial P2X7 receptor (P2X7R) is involved in the induction and maintenance of chronic pain syndromes. The present study explored the mechanism of glial activation and P2X7R expression underlying the induction of bone cancer pain. The results demonstrated that microglia and astrocytes in the RVM were markedly activated in bone cancer rats, and the expression of P2X7R was significantly upregulated. Injection of Brilliant Blue G (BBG), an inhibitor of P2X7R, into the RVM significantly alleviated pain behaviors of cancer rats, which was supported by intra-RVM injection of RNA interference targeting the P2X7R in the RVM. It is suggested that activation of microglia-expressed P2X7R in the RVM contributes to bone cancer pain. Given that 5-HT in the RVM is involved in modulating spinal nociception, changes in 5-HT and Fos expression were addressed in the spinal cord. Inhibition of P2X7R by BBG or small-interference RNA targeting P2X7 in the RVM markedly reduced 5-HT level and Fos expression in the spinal cord. The data clearly suggest that the activation of microglial P2X7R in the RVM contributes to the development of bone cancer pain via upregulation of spinal 5HT levels by the descending pain facilitatory system.
Collapse
Affiliation(s)
- Zhang Xiang Huang
- Department of Anesthesiology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China Department of Anesthesiology, Kunming General Hospital of Chengdu Military Command, Yunnan, China Unit of Pain Research, Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
34
|
Polymorphism in serotonin receptor 3B is associated with pain catastrophizing. PLoS One 2013; 8:e78889. [PMID: 24244382 PMCID: PMC3823944 DOI: 10.1371/journal.pone.0078889] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 09/16/2013] [Indexed: 12/13/2022] Open
Abstract
Pain catastrophizing, a coping style characterized by excessively negative thoughts and emotions in relation to pain, is one of the psychological factors that most markedly predicts variability in the perception of pain; however, only little is known about the underlying neurobiology. The aim of this study was to test for associations between psychological variables, such as pain catastrophizing, anxiety and depression, and selected polymorphisms in genes related to monoaminergic neurotransmission, in particular serotonin pathway genes. Three hundred seventy-nine healthy participants completed a set of psychological questionnaires: the Pain Catastrophizing Scale (PCS), the State-Trait Anxiety Inventory and Beck’s Depression Inventory, and were genotyped for 15 single nucleotide polymorphisms (SNPs) in nine genes. The SNP rs1176744 located in the serotonin receptor 3B gene (5-HTR3B) was found to be associated with pain catastrophizing scores: both the global score and the subscales of magnification and helplessness. This is the first study to show an association between 5-HTR3B and PCS scores, thus suggesting a role of the serotonin pathway in pain catastrophizing. Since 5-HTR3B has previously been associated with descending pain modulation pathways, future studies will be of great interest to elucidate the molecular pathways involved in the relation between serotonin, its receptors and pain catastrophizing.
Collapse
|
35
|
Peripheral and spinal 5-HT receptors participate in the pronociceptive and antinociceptive effects of fluoxetine in rats. Neuroscience 2013; 252:396-409. [DOI: 10.1016/j.neuroscience.2013.08.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 08/03/2013] [Accepted: 08/15/2013] [Indexed: 01/13/2023]
|
36
|
Lei J, You HJ. Endogenous descending facilitation and inhibition differ in control of formalin intramuscularly induced persistent muscle nociception. Exp Neurol 2013; 248:100-11. [DOI: 10.1016/j.expneurol.2013.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 04/29/2013] [Accepted: 06/01/2013] [Indexed: 01/12/2023]
|
37
|
Shen F, Tsuruda PR, Smith JAM, Obedencio GP, Martin WJ. Relative contributions of norepinephrine and serotonin transporters to antinociceptive synergy between monoamine reuptake inhibitors and morphine in the rat formalin model. PLoS One 2013; 8:e74891. [PMID: 24098676 PMCID: PMC3787017 DOI: 10.1371/journal.pone.0074891] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 08/07/2013] [Indexed: 01/21/2023] Open
Abstract
Multimodal analgesia is designed to optimize pain relief by coadministering drugs with distinct mechanisms of action or by combining multiple pharmacologies within a single molecule. In clinical settings, combinations of monoamine reuptake inhibitors and opioid receptor agonists have been explored and one currently available analgesic, tapentadol, functions as both a µ-opioid receptor agonist and a norepinephrine transporter inhibitor. However, it is unclear whether the combination of selective norepinephrine reuptake inhibition and µ-receptor agonism achieves an optimal antinociceptive synergy. In this study, we assessed the pharmacodynamic interactions between morphine and monoamine reuptake inhibitors that possess different affinities and selectivities for norepinephrine and serotonin transporters. Using the rat formalin model, in conjunction with measurements of ex vivo transporter occupancy, we show that neither the norepinephrine-selective inhibitor, esreboxetine, nor the serotonin-selective reuptake inhibitor, fluoxetine, produce antinociceptive synergy with morphine. Atomoxetine, a monoamine reuptake inhibitor that achieves higher levels of norepinephrine than serotonin transporter occupancy, exhibited robust antinociceptive synergy with morphine. Similarly, a fixed-dose combination of esreboxetine and fluoxetine which achieves comparable levels of transporter occupancy potentiated the antinociceptive response to morphine. By contrast, duloxetine, a monoamine reuptake inhibitor that achieves higher serotonin than norepinephrine transporter occupancy, failed to potentiate the antinociceptive response to morphine. However, when duloxetine was coadministered with the 5-HT3 receptor antagonist, ondansetron, potentiation of the antinociceptive response to morphine was revealed. These results support the notion that inhibition of both serotonin and norepinephrine transporters is required for monoamine reuptake inhibitor and opioid-mediated antinociceptive synergy; yet, excess serotonin, acting via 5-HT3 receptors, may reduce the potential for synergistic interactions. Thus, in the rat formalin model, the balance between norepinephrine and serotonin transporter inhibition influences the degree of antinociceptive synergy observed between monoamine reuptake inhibitors and morphine.
Collapse
Affiliation(s)
- Fei Shen
- Departments of Pharmacology, Theravance Inc., South San Francisco, California, United States of America
- * E-mail:
| | - Pamela R. Tsuruda
- Departments of Molecular and Cell Biology, Theravance Inc., South San Francisco, California, United States of America
| | - Jacqueline A. M. Smith
- Departments of Molecular and Cell Biology, Theravance Inc., South San Francisco, California, United States of America
| | - Glenmar P. Obedencio
- Departments of Molecular and Cell Biology, Theravance Inc., South San Francisco, California, United States of America
| | - William J. Martin
- Departments of Pharmacology, Theravance Inc., South San Francisco, California, United States of America
| |
Collapse
|
38
|
Rahman W, Dickenson AH. Voltage gated sodium and calcium channel blockers for the treatment of chronic inflammatory pain. Neurosci Lett 2013; 557 Pt A:19-26. [PMID: 23941888 DOI: 10.1016/j.neulet.2013.08.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 07/30/2013] [Accepted: 08/01/2013] [Indexed: 01/16/2023]
Abstract
The inflammatory response is a natural response of the body that occurs immediately following tissue damage, which may be due to injury, infection or disease. The acute inflammatory response is an essential mechanism that promotes healing and a key aspect is the ensuing pain, which warns the subject to protect the site of injury. Thus, it is common to see a zone of primary sensitization as well as consequential central sensitization that generally, is maintained by a peripheral drive from the zone of tissue injury. Inflammation associated with chronic pain states, such as rheumatoid and osteoarthritis, cancer and migraine etc. is deleterious to health and often debilitating for the patient. Thus there is a large unmet clinical need. The mechanisms underlying both acute and chronic inflammatory pain are extensive and complex, involving a diversity of cell types, receptors and proteins. Among these the contribution of voltage gated sodium and calcium channels on peripheral nociceptors is critical for nociceptive transmission beyond the peripheral transducers and changes in their distribution, accumulation, clustering and functional activities have been linked to both inflammatory and neuropathic pain. The latter has been the main area for trials and use of drugs that modulate ion channels such as carbamazepine and gabapentin, but given the large peripheral drive that follows tissue damage, there is a clear rationale for blocking voltage gated sodium and calcium channels in these pain states. It has been hypothesized that pain of inflammatory origin may evolve into a condition that resembles neuropathic pain, but mixed pains such as low back pain and cancer pain often include elements of both pain states. This review considers the therapeutic potential for sodium and calcium channel blockers for the treatment of chronic inflammatory pain states.
Collapse
Affiliation(s)
- Wahida Rahman
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| | | |
Collapse
|
39
|
Chang EY, Chen X, Sandhu A, Li CY, Luo ZD. Spinal 5-HT3 receptors facilitate behavioural hypersensitivity induced by elevated calcium channel alpha-2-delta-1 protein. Eur J Pain 2013; 17:505-13. [PMID: 23065867 PMCID: PMC3548964 DOI: 10.1002/j.1532-2149.2012.00221.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2012] [Indexed: 12/31/2022]
Abstract
BACKGROUND Peripheral nerve injury induces up-regulation of the calcium channel alpha-2-delta-1 proteins in the dorsal root ganglia and dorsal spinal cord that correlates with neuropathic pain development. Similar behavioural hypersensitivity was also observed in injury-free transgenic (TG) mice over-expressing the alpha-2-delta-1 proteins in neuronal tissues. To investigate pathways regulating alpha-2-delta-1 protein-mediated behavioural hypersensitivity, we examined whether spinal serotonergic 5-HT3 receptors are involved similarly in the modulation of behavioural hypersensitivity induced by either peripheral nerve injury in a nerve injury model or neuronal alpha-2-delta-1 over-expression in the TG model. METHODS The effects of blocking behavioural hypersensitivity in these two models by intrathecal or systemic injections of 5-HT3 receptor antagonist, ondansetron, were compared. RESULTS Our data indicated that the TG mice displayed similar behavioural hypersensitivities to non-painful mechanical stimulation (tactile allodynia) and painful thermal stimulation (thermal hyperalgesia) as that observed in the nerve injury model. Interestingly, tactile allodynia and thermal hyperalgesia in both models can be blocked similarly by intrathecal, but not systemic, injection of ondansetron. CONCLUSIONS Our data suggest that spinal 5-HT3 receptors are likely to play a role in alpha-2-delta-1-mediated behavioural hypersensitivities through a descending serotonergic facilitation.
Collapse
Affiliation(s)
- E Y Chang
- Department of Anesthesiology & Perioperative Care School of Medicine, University of California, Irvine, USA
| | | | | | | | | |
Collapse
|
40
|
Okubo M, Castro A, Guo W, Zou S, Ren K, Wei F, Keller A, Dubner R. Transition to persistent orofacial pain after nerve injury involves supraspinal serotonin mechanisms. J Neurosci 2013; 33:5152-61. [PMID: 23516281 PMCID: PMC3640487 DOI: 10.1523/jneurosci.3390-12.2013] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The orofacial region is a major focus of chronic neuropathic pain conditions characterized by primary hyperalgesia at the site of injury and secondary hyperalgesia outside the injured zone. We have used a rat model of injury to the maxillary branch (V2) of the trigeminal nerve to produce constant and long-lasting primary hyperalgesia in the V2 territory and secondary hyperalgesia in territories innervated by the mandibular branch (V3). Our findings indicate that the induction of primary and secondary hyperalgesia depended on peripheral input from the injured nerve. In contrast, the maintenance of secondary hyperalgesia depended on central mechanisms. The centralization of the secondary hyperalgesia involved descending 5-HT drive from the rostral ventromedial medulla and the contribution of 5-HT3 receptors in the trigeminal nucleus caudalis (Vc), the homolog of the spinal dorsal horn. Electrophysiological studies further indicate that after nerve injury spontaneous responses and enhanced poststimulus discharges in Vc nociresponsive neurons were time-dependent on descending 5-HT drive and peripheral input. The induction phase of secondary hyperalgesia involved central sensitization mechanisms in Vc neurons that were dependent on peripheral input, whereas the maintenance phase of secondary hyperalgesia involved central sensitization in Vc neurons conducted by a delayed descending 5-HT drive and a persistence of peripheral inputs. Our results are the first to show that the maintenance of secondary hyperalgesia and underlying central sensitization associated with persistent pain depend on a transition to supraspinal mechanisms involving the serotonin system in rostral ventromedial medulla-dorsal horn circuits.
Collapse
Affiliation(s)
| | - Alberto Castro
- 2Department of Anatomy and Neurobiology, Medical School; Program in Neuroscience, University of Maryland, Baltimore, Maryland 21201
| | - Wei Guo
- 1Department of Neural and Pain Sciences, Dental School and
| | - Shiping Zou
- 1Department of Neural and Pain Sciences, Dental School and
| | - Ke Ren
- 1Department of Neural and Pain Sciences, Dental School and
| | - Feng Wei
- 1Department of Neural and Pain Sciences, Dental School and
| | - Asaf Keller
- 2Department of Anatomy and Neurobiology, Medical School; Program in Neuroscience, University of Maryland, Baltimore, Maryland 21201
| | - Ronald Dubner
- 1Department of Neural and Pain Sciences, Dental School and
| |
Collapse
|
41
|
Cho SY, Park AR, Yoon MH, Lee HG, Kim WM, Choi JI. Antinociceptive effect of intrathecal nefopam and interaction with morphine in formalin-induced pain of rats. Korean J Pain 2013; 26:14-20. [PMID: 23342202 PMCID: PMC3546204 DOI: 10.3344/kjp.2013.26.1.14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 12/04/2012] [Accepted: 12/05/2012] [Indexed: 12/18/2022] Open
Abstract
Background Nefopam, a non-opiate analgesic, has been regarded as a substance that reduces the requirement for morphine, but conflicting results have also been reported. The inhibition of monoamine reuptake is a mechanism of action for the analgesia of nefopam. The spinal cord is an important site for the action of monoamines however, the antinociceptive effect of intrathecal nefopam was not clear. This study was performed to examine the antinociceptive effect of intrathecal (i.t.) nefopam and the pattern of pharmacologic interaction with i.t. morphine in the formalin test. Methods Male Sprague-Dawley rats were implanted with an i.t. catheter, and were randomly treated with a vehicle, nefopam, or morphine. Formalin was injected into the hind-paw 10 min. after an i.t. injection of the above experiment drugs. After obtaining antinociceptive ED50 of nefopam and morphine, the mixture of nefopam and morphine was tested for the antinociceptive effect in the formalin test at a dose of 1/8, 1/4, 1/2 of ED50, or ED50 of each drug followed by an isobolographic analysis. Results Intrathecal nefopam significantly reduced the flinching responses in both phases of the formalin test in a dose-dependent manner. Its effect, however, peaked at a dose of 30 µg in phase 1 (39.8% of control) and 10 µg during phase 2 (37.6% of control). The isobolograhic analysis indicated an additive interaction of nefopam and morphine during phase 2, and a synergy effect in antinociception during phase 1. Conclusions This study demonstrated that i.t. nefopam produces an antinociceptive effect in formalin induced pain behavior during both phases of the formalin test, while interacting differently with i.t. morphine, synergistically during phase 1, and additively during phase 2.
Collapse
Affiliation(s)
- Soo Young Cho
- Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | | | | | | | | | | |
Collapse
|
42
|
Ondansetron reverses antihypersensitivity from clonidine in rats after peripheral nerve injury: role of γ-aminobutyric acid in α2-adrenoceptor and 5-HT3 serotonin receptor analgesia. Anesthesiology 2012; 117:389-98. [PMID: 22722575 DOI: 10.1097/aln.0b013e318260d381] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Monoaminergic pathways, impinging an α2-adrenoceptors and 5-HT3 serotonin receptors, modulate nociceptive transmission, but their mechanisms and interactions after neuropathic injury are unknown. Here we examine these interactions in rodents after nerve injury. METHODS Male Sprague-Dawley rats following L5-L6 spinal nerve ligation (SNL) were used for either behavioral testing, in vivo microdialysis for γ-aminobutyric acid (GABA) and acetylcholine release, or synaptosome preparation for GABA release. RESULTS Intrathecal administration of the α2-adrenoceptor agonist (clonidine) and 5-HT3 receptor agonist (chlorophenylbiguanide) reduced hypersensitivity in SNL rats via GABA receptor-mediated mechanisms. Clonidine increased GABA and acetylcholine release in vivo in the spinal cord of SNL rats but not in normal rats. Clonidine-induced spinal GABA release in SNL rats was blocked by α2-adrenergic and nicotinic cholinergic antagonists. The 5-HT3 receptor antagonist ondansetron decreased and chlorophenylbiguanide increased spinal GABA release in both normal and SNL rats. In synaptosomes from the spinal dorsal horn of SNL rats, presynaptic GABA release was increased by nicotinic agonists and decreased by muscarinic and α2-adrenergic agonists. Spinally administered ondansetron significantly reduced clonidine-induced antihypersensitivity and spinal GABA release in SNL rats. CONCLUSION These results suggest that spinal GABA contributes to antihypersensitivity from intrathecal α2-adrenergic and 5-HT3 receptor agonists in the neuropathic pain state, that cholinergic neuroplasticity after nerve injury is critical for α2-adrenoceptor-mediated GABA release, and that blockade of spinal 5-HT3 receptors reduces α2-adrenoceptor-mediated antihypersensitivity via reducing total GABA release.
Collapse
|
43
|
Sikandar S, Bannister K, Dickenson AH. Brainstem facilitations and descending serotonergic controls contribute to visceral nociception but not pregabalin analgesia in rats. Neurosci Lett 2012; 519:31-6. [PMID: 22579856 PMCID: PMC3661978 DOI: 10.1016/j.neulet.2012.05.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 04/30/2012] [Accepted: 05/02/2012] [Indexed: 11/18/2022]
Abstract
Pro-nociceptive ON-cells in the rostral ventromedial medulla (RVM) facilitate nociceptive processing and contribute to descending serotonergic controls. We use RVM injections of neurotoxic dermorphin-saporin (Derm-SAP) in rats to evaluate the role of putative ON-cells, or μ-opioid receptor-expressing (MOR) neurones, in visceral pain processing. Our immunohistochemistry shows that intra-RVM Derm-SAP locally ablates a substantial proportion of MOR and serotonergic cells. Given the co-localization of these neuronal markers, some RVM ON-cells are serotonergic. We measure visceromotor responses in the colorectal distension (CRD) model in control and Derm-SAP rats, and using the 5-HT(3) receptor antagonist ondansetron, we demonstrate pro-nociceptive serotonergic modulation of visceral nociception and a facilitatory drive from RVM MOR cells. The α(2)δ calcium channel ligand pregabalin produces state-dependent analgesia in neuropathy and osteoarthritis models relating to injury-specific interactions with serotonergic facilitations from RVM MOR cells. Although RVM MOR cells mediate noxious mechanical visceral input, we show that their presence is not a permissive factor for pregabalin analgesia in acute visceral pain.
Collapse
Affiliation(s)
- Shafaq Sikandar
- Department of Neuroscience, Physiology and Pharmacology, University College London, WC1E 6BT London, UK.
| | | | | |
Collapse
|
44
|
Role of peripheral and spinal 5-HT3 receptors in development and maintenance of formalin-induced long-term secondary allodynia and hyperalgesia. Pharmacol Biochem Behav 2012; 101:246-57. [DOI: 10.1016/j.pbb.2012.01.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 01/13/2012] [Accepted: 01/16/2012] [Indexed: 12/19/2022]
|
45
|
Marshall TM, Herman DS, Largent-Milnes TM, Badghisi H, Zuber K, Holt SC, Lai J, Porreca F, Vanderah TW. Activation of descending pain-facilitatory pathways from the rostral ventromedial medulla by cholecystokinin elicits release of prostaglandin-E₂ in the spinal cord. Pain 2011; 153:86-94. [PMID: 22030324 DOI: 10.1016/j.pain.2011.09.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 09/20/2011] [Accepted: 09/21/2011] [Indexed: 11/18/2022]
Abstract
Cholecystokinin (CCK) has been suggested to be both pro-nociceptive and "anti-opioid" by actions on pain-modulatory cells within the rostral ventromedial medulla (RVM). One consequence of activation of RVM CCK₂ receptors may be enhanced spinal nociceptive transmission; but how this might occur, especially in states of pathological pain, is unknown. Here, in vivo microdialysis was used to demonstrate that levels of RVM CCK increased by approximately 2-fold after ligation of L₅/L₆ spinal nerves (SNL). Microinjection of CCK into the RVM of naïve rats elicited hypersensitivity to tactile stimulation of the hindpaw. In addition, RVM CCK elicited a time-related increase in (prostaglandin-E₂) PGE₂ measured in cerebrospinal fluid from the lumbar spinal cord. The peak increase in spinal PGE₂ was approximately 5-fold and was observed at approximately 80 minutes post-RVM CCK, a time coincident with maximal RVM CCK-induced mechanical hypersensitivity. Spinal administration of naproxen, a nonselective COX-inhibitor, significantly attenuated RVM CCK-induced hindpaw tactile hypersensitivity. RVM-CCK also resulted in a 2-fold increase in spinal 5-hydroxyindoleacetic acid (5-HIAA), a 5-hydoxytryptophan (5-HT) metabolite, as compared with controls, and mechanical hypersensitivity that was attenuated by spinal application of ondansetron, a 5-HT₃ antagonist. The present studies suggest that chronic nerve injury can result in activation of descending facilitatory mechanisms that may promote hyperalgesia via ultimate release of PGE₂ and 5-HT in the spinal cord.
Collapse
Affiliation(s)
- Timothy M Marshall
- Department of Pharmacology, University of Arizona Health Sciences Center, College of Medicine, Tucson, AZ, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Butkevich IP, Mikhailenko VA, Vershinina EA, Otellin VA, Aloisi AM. Buspirone before prenatal stress protects against adverse effects of stress on emotional and inflammatory pain-related behaviors in infant rats: age and sex differences. Brain Res 2011; 1419:76-84. [PMID: 21937026 DOI: 10.1016/j.brainres.2011.08.068] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 08/23/2011] [Accepted: 08/27/2011] [Indexed: 12/29/2022]
Abstract
Prenatal stress strengthens tonic pain and provokes depression. The serotoninergic system is involved in these processes. We recently showed that maternal buspirone, a 5-HT1A receptor agonist, protects against the adverse effects of in utero stress on depression and pain in adult rat offspring. Using a similar maternal treatment with buspirone, we focus here on the infant stage, which is important for the correction of prenatal abnormalities. Maternal buspirone before restraint stress during the last week of pregnancy decreased the time of immobility in the forced swim test in the infant offspring. Prenatal stress increased formalin-induced pain in the second part of the time-course of the response to formalin in males of middle infancy but in the first part of the response in males of late infancy. The effect was reversed by maternal buspirone. Pain dominated in males of both middle and late infancy but the time-course of formalin pain in infant females revealed a slower development of the processes. The results show that the time-course of formalin-induced pain in infant rats reacts to prenatal stress in an age-dependent and sexually dimorphic manner. Our finding of opposite influences of prenatal stress and buspirone before prenatal stress on formalin-induced pain during the interphase indicates that functional maturity of the descending serotonergic inhibitory system occurs in late infancy males (11-day-olds), and 5-HT1A receptors participate in this process. The data provide evidence that maternal treatment with buspirone prior to stress during pregnancy alleviates depression-like and tonic pain-related behaviors in the infant offspring.
Collapse
Affiliation(s)
- Irina P Butkevich
- Laboratory of Ontogeny of the Nervous System, Pavlov Institute of Physiology, Russian Academy of Sciences, Nab. Makarova 6, St. Petersburg 199034, Russia.
| | | | | | | | | |
Collapse
|
47
|
Bandschapp O, Filitz J, Urwyler A, Koppert W, Ruppen W. Tropisetron blocks analgesic action of acetaminophen: a human pain model study. Pain 2011; 152:1304-1310. [PMID: 21420788 DOI: 10.1016/j.pain.2011.02.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 01/26/2011] [Accepted: 02/01/2011] [Indexed: 11/24/2022]
Abstract
Because the mechanism underlying the analgesic action of acetaminophen remains unclear, we investigated the possible interaction of acetaminophen with central serotonergic pathways. The effects of acetaminophen, tropisetron, the combination of both drugs, and saline on pain perception and central sensitization in healthy volunteers were compared. Sixteen healthy volunteers were included in this randomized, double-blind, placebo-controlled crossover study. Intracutaneous electrical stimulation (46.1 ± 19.1 mA) induced acute pain (numeric rating scale, 6 of 10) and stable areas of hyperalgesia and allodynia. Pain intensities and areas of hyperalgesia and allodynia were regularly assessed before, during, and after a 15-min infusion of acetaminophen, tropisetron, the combination of both drugs, and saline. Acetaminophen concentrations were measured to rule out any pharmacokinetic interaction. Both acetaminophen and tropisetron led to decreased pain ratings as compared to saline. However, when acetaminophen and tropisetron were administered simultaneously, the pain ratings were not affected. There was no significant difference in the evolution of the hyperalgesic and allodynic areas during the study period between the study groups (P = .06 and P = .33, respectively). Acetaminophen serum levels were not significantly different when associated with tropisetron (P = .063), although we observed a trend toward lower acetaminophen concentrations when both drugs were concurrently administered. In summary, while the combination of acetaminophen and tropisetron showed no analgesic action, each drug administered alone led to decreased pain ratings as compared to saline. In an electrically evoked human pain model, the combination of acetaminophen with tropisetron was free of any analgesic potential. However, when administered on its own, both acetaminophen and tropisetron were mildly analgesic.
Collapse
Affiliation(s)
- Oliver Bandschapp
- Department of Anesthesia and Intensive Care Medicine, University Hospital Basel, University of Basel, Spitalstrasse 21, CH-4031 Basel, Switzerland Department of Anesthesiology, University Hospital Hannover, Hannover, Germany
| | | | | | | | | |
Collapse
|
48
|
Longhi-Balbinot DT, Martins DF, Lanznaster D, Silva MD, Facundo VA, Santos AR. Further analyses of mechanisms underlying the antinociceptive effect of the triterpene 3β, 6β, 16β-trihydroxylup-20(29)-ene in mice. Eur J Pharmacol 2011; 653:32-40. [DOI: 10.1016/j.ejphar.2010.11.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 10/07/2010] [Accepted: 11/26/2010] [Indexed: 10/18/2022]
|
49
|
Ossipov MH, Dussor GO, Porreca F. Central modulation of pain. J Clin Invest 2010; 120:3779-87. [PMID: 21041960 DOI: 10.1172/jci43766] [Citation(s) in RCA: 748] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
It has long been appreciated that the experience of pain is highly variable between individuals. Pain results from activation of sensory receptors specialized to detect actual or impending tissue damage (i.e., nociceptors). However, a direct correlation between activation of nociceptors and the sensory experience of pain is not always apparent. Even in cases in which the severity of injury appears similar, individual pain experiences may vary dramatically. Emotional state, degree of anxiety, attention and distraction, past experiences, memories, and many other factors can either enhance or diminish the pain experience. Here, we review evidence for "top-down" modulatory circuits that profoundly change the sensory experience of pain.
Collapse
Affiliation(s)
- Michael H Ossipov
- Department of Pharmacology, University of Arizona, Tucson, Arizona 85724, USA
| | | | | |
Collapse
|
50
|
Spinal cord mechanisms mediating behavioral hyperalgesia induced by neurokinin-1 tachykinin receptor activation in the rostral ventromedial medulla. Neuroscience 2010; 171:1341-56. [PMID: 20888891 DOI: 10.1016/j.neuroscience.2010.09.040] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 08/24/2010] [Accepted: 09/22/2010] [Indexed: 11/23/2022]
Abstract
Hyperalgesia in animal injury models is linked to activation of descending raphespinal modulatory circuits originating in the rostral ventromedial medulla (RVM). A neurokinin-1 (NK-1) receptor antagonist microinjected into the RVM before or after inflammation produced by complete Freund's adjuvant (CFA) resulted in an attenuation of thermal hyperalgesia. A transient (acute) or a continuous infusion of Substance P (SP) microinjected into the RVM of non-inflamed animals led to similar pain hypersensitivity. Intrathecal pretreatment or post-treatment of a 5-HT3 receptor antagonist (Y-25130 or ondansetron) blocked the SP-induced hyperalgesia. The SP-induced hyperalgesia was both GABA(A) and NMDA receptor-dependent after pre- and post-treatment with selective antagonists at the spinal level. A microinjection of SP into the RVM also led to increased NMDA NR1 receptor subunit phosphorylation in spinal cord tissue. The GABA(A) receptor-mediated hyperalgesia involved a shift in the anionic gradient in dorsal horn nociceptive neurons and an increase in phosphorylated NKCC1 protein (isoform of the Na-K-Cl cotransporter). Following a low dose of SP infused into the RVM, intrathecal muscimol (GABA(A) agonist) increased SP-induced thermal hyperalgesia, phosphorylated NKCC1 protein expression, and NMDA NR1 subunit phosphorylation in the spinal cord. The thermal hyperalgesia was blocked by intrathecal gabazine, the GABA(A) receptor antagonist, and MK-801, the NMDA receptor channel blocker. These findings indicate that NK-1 receptors in the RVM are involved in SP-induced thermal hyperalgesia, this hyperalgesia is 5-HT3-receptor dependent at the spinal level, and involves the functional interaction of spinal GABA(A) and NMDA receptors.
Collapse
|