1
|
Todorov P, Georgieva S, Cheshmedzhieva D, Assenov B, Dzhambazova Е, Angelov D, Pechlivanova D. Synthesis and analytical profile of new synthetic analogs of angiotensin 1-7, the main balancing peptide of the renin-angiotensin system. Arch Pharm (Weinheim) 2025; 358:e2500093. [PMID: 40091560 DOI: 10.1002/ardp.202500093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/19/2025]
Abstract
The heptapeptide angiotensin Asp-Arg-Val-Tyr-Ile-His-Pro (ANG 1-7) is a key member of the ACE2/ANG-(1-7)/MasR axis, which is considered a counter-regulator of the classical renin-angiotensin system (RAS) axis concerning its homeostatic and neuromodulatory functions. Four new analogs of ANG 1-7 with general structures of Asp-Arg-Val-Tyr-Ile-His-Xxx-NH2, where Xxx is 1-aminocyclopentanecarboxylic acid (Ac5c), 1-aminocyclohexane carboxylic acid (Ac6c), and (2S,4S)-4-amino-pyrrolidine-2-carboxylic acid, were synthesized and characterized by electrochemical, spectral, DFT calculational, and behavioral methods. The presence of a cis-oriented primary amino group at the molecule's C-terminus is coupled with the structural rigidity of the pyrrolidine Pro ring in the peptide molecule ANG-P1. While in ANG-P2, the cis-oriented primary amino group is connected to the peptide motif by means of the amino acid His leading to the formation of a proline/GABA cis-chimera. The partition coefficient values suggest better lipophilicity of the compounds ANG-P1 and ANG-P2 related to easier passage through the target membranes. The correlation coefficient between the theoretically predicted and experimentally determined logP values is 0.991. The ANG-P1 analog has features comparable to ANG 1-7, but the peptides ANG-P2, ANG-C5, and ANG-C6 exhibit distinct effects, particularly on anxiety-like behavior, according to a comparison of the novel analogs with the precursor peptide. Regardless of how they affect exploration in the open field test, they induce anxiogenic behavior in the elevated plus maze test. The ANG-C5 analog differs from the other analogs because it is unable to create antinociception, despite the fact that ANG 1-7 and its analogs generated notable antinociception.
Collapse
Affiliation(s)
- Petar Todorov
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, Sofia, Bulgaria
| | - Stela Georgieva
- Department of Analytical Chemistry, University of Chemical Technology and Metallurgy, Sofia, Bulgaria
| | - Diana Cheshmedzhieva
- Faculty of Chemistry and Pharmacy, Sofia University "St. Kliment Ohridski", Sofia, Bulgaria
| | - Borislav Assenov
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
- Faculty of Medicine, Sofia University "St. Kliment Ohridski", Sofia, Bulgaria
| | - Еlena Dzhambazova
- Faculty of Medicine, Sofia University "St. Kliment Ohridski", Sofia, Bulgaria
| | - Dimo Angelov
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | |
Collapse
|
2
|
Tagne AM, Fotio Y, Lee HL, Jung KM, Katz J, Ahmed F, Le J, Bazinet R, Jang C, Piomelli D. Metabolic reprogramming in the spinal cord drives the transition to pain chronicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.30.635746. [PMID: 39975205 PMCID: PMC11838349 DOI: 10.1101/2025.01.30.635746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Acute injuries can progress into painful states that endure long after healing. The mechanism underlying this transition remains unclear, but metabolic adaptations to the bioenergy demands imposed by injury are plausible contributors. Here we show that peripheral injury activates AKT/mTORC1 in afferent segments of the mouse spinal cord, redirecting local core metabolism toward biomass production while simultaneously suppressing autophagy-mediated biomass reclamation. This metabolic shift supports neuroplasticity, but creates a resource bottleneck that depletes critical spinal cord nutrients. Preventing this depletion with a modified diet normalizes biomass generation and autophagy and halts the transition to chronic pain. This effect, observed across multiple pain models, requires activation of the nutrient sensors, sirtuin-1 and AMPK, as well as restoration of autophagy. The findings identify metabolic reprogramming as a key driver of the progression to pain chronicity and point to nutritional and pharmacological interventions that could prevent this progression after surgery or other physical traumas.
Collapse
Affiliation(s)
- Alex Mabou Tagne
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, USA
| | - Yannick Fotio
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, USA
| | - Hye-Lim Lee
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, USA
| | - Kwang-Mook Jung
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, USA
| | - Jean Katz
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, USA
| | - Faizy Ahmed
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, USA
| | - Johnny Le
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - Richard Bazinet
- Department of Nutritional Sciences, University of Toronto, ON, Canada
| | - Cholsoon Jang
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, USA
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
3
|
Todorov P, Georgieva S, Trapella C, Chakarov K, Tchekalarova J, Pechlivanova D, Cheshmedzhieva D, Fantinati A, Illuminati D. Synthesis, characterization, and biological study of new synthetic opioid hemorphin-4 peptides containing sterically restricted nonnatural amino acids. Arch Pharm (Weinheim) 2024; 357:e2400052. [PMID: 38578075 DOI: 10.1002/ardp.202400052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/25/2024] [Accepted: 02/29/2024] [Indexed: 04/06/2024]
Abstract
Some new hemorphin-4 analogs with structures of Xxx-Pro-Trp-Thr-NH2 and Tyr-Yyy-Trp-Thr-NH2, where Xxx is 2-amino-3-(4-hydroxy-2,6-dimethylphenyl)propanoic acid or 2-amino-3-(4-dibenzylamino-2,6-dimethylphenyl)propanoic acid, and Yyy is (2S,4S)-4-amino-pyrrolidine-2-carboxylic acid, were synthesized and characterized by electrochemical and spectral analyses. In vivo anticonvulsant and antinociceptive activities of peptide derivatives were studied after intracerebroventricular injection in mice. The therapeutic effects of the modified peptides on seizures and pain in mice were evaluated to provide valuable insights into the potential applications of the novel compounds. Electrochemical characterization showed that the compounds behave as weak protolytes and that they are in a soluble, stable molecular form at physiological pH values. The antioxidant activity of the peptides was evaluated with voltammetric analyses, which were confirmed by applying the 2,2-Diphenyl-1-picrylhydrazyl method. The compounds showed satisfactory results regarding their structural stability, reaching the desired centers for the manifestation of biological activity without hydrolysis processes at 37°C and physiological pH. Dm-H4 and H4-P1 exhibited 100% and 83% potency to suppress the psychomotor seizures in the 6-Hz test compared to 67% activity of H4. Notably, only the H4-P1 had efficacy in blocking the tonic component in the maximal electroshock test with a potency comparable to H4. All investigated peptides containing unnatural conformationally restricted amino acids showed antinociceptive effects. The analogs Db-H4 and H4-P1 showed the most pronounced and long-lasting effect in both experimental models of pain induced by thermal and chemical stimuli. Dm-H4 produced a dose-dependent thermal antinociception and H4-P2 inhibited only formalin-induced pain behavior.
Collapse
Affiliation(s)
- Petar Todorov
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, Sofia, Bulgaria
| | - Stela Georgieva
- Department of Analytical Chemistry, University of Chemical Technology and Metallurgy, Sofia, Bulgaria
| | - Claudio Trapella
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Kalin Chakarov
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, Sofia, Bulgaria
- Department of Analytical Chemistry, University of Chemical Technology and Metallurgy, Sofia, Bulgaria
| | - Jana Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Daniela Pechlivanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
- Faculty of Medicine, Sofia University "St. Kliment Ohridski" 1, Sofia, Bulgaria
| | - Diana Cheshmedzhieva
- Faculty of Chemistry and Pharmacy, Sofia University "St. Kliment Ohridski", Sofia, Bulgaria
| | - Anna Fantinati
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Davide Illuminati
- Department of Life Science, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
4
|
Todorov P, Georgieva S, Peneva P, Nikolov S, Rangelov M, Todorova N, Pechlivanova D, Tchekalarova J. Synthesis, molecular docking, electrochemical and fluorimetric analysis of new caffeic and cinnamic acid-conjugated hemorphin derivatives designed as potential anticonvulsant and antinociceptive agents. Bioorg Chem 2024; 143:107063. [PMID: 38150935 DOI: 10.1016/j.bioorg.2023.107063] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/17/2023] [Accepted: 12/23/2023] [Indexed: 12/29/2023]
Abstract
Based on the pharmacophore model of opioid receptors, our team recently synthesized a series of short-chain hemorphin peptide analogs containing non-natural amino acids. They demonstrated anticonvulsant and antinociceptive activity with low neurotoxicity. In the present study, a series of novel bioconjugates of N-modified hemorphin analogs containing second pharmacophore cinnamic acids (CA) or caffeic (KA) were synthesized by a traditional solid-phase Fmoc chemistry method for peptide synthesis. Electrochemical and fluorimetric analysis, in vivo anticonvulsant and antinociceptive activity in mice were conducted on the compounds. The three CA acid- (H4-CA, H5-CA, and H7-CA) and three KA acid- (H4-KA, H5-KA, and H7-KA) conjugated hemorphin derivatives exhibited potency at the highest doses of 2 µg/5 µl, administered by intracerebroventricular (icv) mode, against seizure spread in the maximal electroshock test (MES) in mice. The KA-conjugated H5-KA derivate, at the lowest dose, was the only compound that suppressed clonic seizures in the subcutaneous pentylenetetrazol (scPTZ) test. Except for the H5-CA, all tested CA acid- and KA acid-conjugated peptide derivates had the potency to increase the latency for clonic seizures in a dose-dependent mode. The activity against the psychomotor seizures in the 6-Hz test was detected only for the H4-CA (0.5 µg) and H4-KA (0.5 µg and 1 µg), respectively. All investigated peptides showed a more pronounced antinociceptive effect in the "intraplantar formalin" test compared to the "hot plate" test. Shorter chain analogs showed a better antinociceptive profile against tonic pain. The data suggest a DOR and KOR-mediated mechanism of action. According to the docking analysis, H7-CA showed a different antinociceptive profile than other investigated peptides. The novel peptide derivates did not exhibit neurotoxicity in the rotarod test. Our findings suggest that conjugated CA and KA morphine peptides can be used to develop novel morphine-related analogs with anticonvulsant and antinociceptive activity.
Collapse
Affiliation(s)
- Petar Todorov
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria.
| | - Stela Georgieva
- Department of Analytical Chemistry, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria
| | - Petia Peneva
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria
| | - Spas Nikolov
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria; Department of Analytical Chemistry, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria
| | - Miroslav Rangelov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Nadezhda Todorova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Daniela Pechlivanova
- Faculty of Medicine, Sofia University "St. Kliment Ohridski", 1407 Sofia, Bulgaria; Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Jana Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
5
|
Hirota I, Koyama Y, Shimada S. Histochemical analysis of the biphasic properties of formalin pain-induced behavior. Biochem Biophys Rep 2023; 34:101467. [PMID: 37125080 PMCID: PMC10139972 DOI: 10.1016/j.bbrep.2023.101467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/24/2023] [Accepted: 04/05/2023] [Indexed: 05/02/2023] Open
Abstract
The formalin test has been established as a method for evaluating mouse models of pain. Although there have been numerous reports of formalin-pain-induced behavior, few reports of a detailed histochemical analysis of the central nervous system focus on behavioral biphasic properties. To investigate the alternation of spinal neuronal activity with formalin-induced pain, we performed immunofluorescent staining with c-Fos antibodies as neuronal activity markers using acute pain model mice induced by 2% formalin stimulation. As a result, phase-specific expression patterns were observed. In the spinal dorsal horn region, there were many neural activities in the deep region (layers V-VII) in the behavioral first phase and those in the surface region (layers I-III) in the behavioral second phase. Furthermore, we conducted comparative studies using low concentrations (0.25%) of formalin and capsaicin, which did not show distinct behavioral biphasic properties. Neural activity was observed only in the spinal dorsal horn surface region for both stimuli. Our study suggested that the histochemical biphasic nature of formalin-induced pain was attributable to the activity of the deep region of the spinal cord. In the future, treatment strategies focusing on the deep region neuron will lead to the development of effective treatments for allodynia and intractable chronic pain.
Collapse
Affiliation(s)
- Ikuei Hirota
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Yoshihisa Koyama
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
- Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka, 541-8567, Japan
- Corresponding author. Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Shoichi Shimada
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
- Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka, 541-8567, Japan
| |
Collapse
|
6
|
Sepulveda DE, Morris DP, Raup-Konsavage WM, Sun D, Vrana KE, Graziane NM. Cannabigerol (CBG) attenuates mechanical hypersensitivity elicited by chemotherapy-induced peripheral neuropathy. Eur J Pain 2022; 26:1950-1966. [PMID: 35899583 DOI: 10.1002/ejp.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 07/18/2022] [Accepted: 07/24/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Cannabigerol (CBG) is a non-psychoactive phytocannabinoid produced by the plant Cannabis sativa with affinity to various receptors involved in nociception. As a result, CBG is marketed as an over-the-counter treatment for many forms of pain. However, there is very little research-based evidence for the efficacy of CBG as an anti-nociceptive agent. METHODS To begin to fill this knowledge gap, we assessed the anti-nociceptive effects of CBG in C57BL/6 mice using three different models of pain; cisplatin-induced peripheral neuropathy, the formalin test, and the tail-flick assay. RESULTS Using the von Frey test, we found that CBG-attenuated mechanical hypersensitivity evoked by cisplatin-induced peripheral neuropathy in both male and female mice. Additionally, we observed that this CBG-induced reduction in mechanical hypersensitivity was attenuated by the α2 -adrenergic receptor antagonist atipamezole (3 mg/kg, i.p.) and the CB1 R antagonist, AM4113 (3 mg/kg, i.p.), and blocked by the CB2 R antagonist/inverse agonist, SR144528 (10 mg/kg, i.p.). We found that the TRPV1 antagonist, SB705498 (20 mg/kg, i.p.) was unable to prevent CBG actions. Furthermore, we show that CBG:CBD oil (10 mg/kg, i.p.) was more effective than pure CBG (10 mg/kg) at reducing mechanical hypersensitivity in neuropathic mice. Lastly, we show that pure CBG and CBG:CBD oil were ineffective at reducing nociception in other models of pain, including the formalin and tail flick assays. CONCLUSIONS Our findings support the role of CBG in alleviating mechanical hypersensitivity evoked by cisplatin-induced peripheral neuropathy, but highlight that these effects may be limited to specific types of pain. SIGNIFICANCE There are few effective treatments for neuropathic pain and neuropathic pain is projected to increase with the aging population. We demonstrate that CBG (cannabigerol) and CBG:CBD oil attenuate neuropathy-induced mechanical hypersensitivity mice. Second, we identify receptor targets that mediate CBG-induced reduction in mechanical hypersensitivity in neuropathic mice. Third, we demonstrate that an acute injection of CBG is anti-nociceptive specifically for neuropathic pain rather than other forms of pain, including persistent pain and thermal pain.
Collapse
Affiliation(s)
- Diana E Sepulveda
- Department of Pharmacology, Penn State University College of Medicine, Hershey, Pennsylvania, USA.,Department of Anesthesiology and Perioperative Medicine, Penn State University College of Medicine, Hershey, Pennsylvania, USA
| | | | - Wesley M Raup-Konsavage
- Department of Pharmacology, Penn State University College of Medicine, Hershey, Pennsylvania, USA
| | - Dongxiao Sun
- Department of Pharmacology, Penn State University College of Medicine, Hershey, Pennsylvania, USA
| | - Kent E Vrana
- Department of Pharmacology, Penn State University College of Medicine, Hershey, Pennsylvania, USA
| | - Nicholas M Graziane
- Department of Pharmacology, Penn State University College of Medicine, Hershey, Pennsylvania, USA.,Department of Anesthesiology and Perioperative Medicine, Penn State University College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
7
|
Mani S, Duraipandian C, Chidambaram SB. Analgesic, anti-inflammatory and acute oral toxicity profile of leaf and bark extracts of Albizia procera. BMC Complement Med Ther 2022; 22:50. [PMID: 35216561 PMCID: PMC8881870 DOI: 10.1186/s12906-021-03497-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 12/22/2021] [Indexed: 11/10/2022] Open
Abstract
Background Pain and inflammation are associatory events in cancer, diabetes, cardiovascular diseases, arthritis and other chronic diseases. Corticosteroids, non-steroidal anti-inflammatory drugs exert potential side effects on long term use. This study was aimed to investigate the acute oral toxicity, anti-inflammatory and analgesic activities of leaf and bark extracts of Albizia procera in experimental animal models. Methods Ethyl acetate, ethanol, and hydroalcoholic extracts of Albizia procera (leaf and bark) were subjected for acute oral toxicity, anti-inflammatory and analgesic screening. Carrageenan and cotton pellet granuloma models were used to assess acute and chronic anti-inflammatory effects, respectively. Intraplanar formalin test was used to assess the analgesic activity. Results All the extracts of Albizia procera were found to be well-tolerated up to 2000 mg/kg in female rats. Ethanolic leaf (ETLE) and bark (ETBE) of Albizia procera showed anti-inflammatory actions. But, only ETBE produced significant protection in chronic inflammation and analgesic activity. Conclusion In summary, Albizia procera possess significant anti-inflammatory and analgesic properties. This study adds evidence on the traditional use of Albizia procera plant for treating painful inflammatory disorders.
Collapse
Affiliation(s)
- Sangeetha Mani
- Dept of Pharmacognosy, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, 600116, India.
| | - Chamundeeswari Duraipandian
- Dept of Pharmacognosy, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, 600116, India
| | - Saravana Babu Chidambaram
- Dept of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, Karnataka, 570015, India
| |
Collapse
|
8
|
Renda G, Kadıoğlu M, Kılıç M, Korkmaz B, Kırmızıbekmez H. Anti-inflammatory secondary metabolites from Scrophularia kotschyana. Hum Exp Toxicol 2021; 40:S676-S683. [PMID: 34787011 DOI: 10.1177/09603271211058889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The species belonging to Scrophularia genus grow mainly in Irano-Turanian and Mediterranean regions and have been used as folk remedy for inflammatory-related diseases since ancient times. The present study was aimed to evaluate the anti-inflammatory activity of the extracts of Scrophularia kotschyana as well as the isolated compounds. The aerial parts and the roots of the plant were separately extracted with methanol. Anti-inflammatory activities of both extracts were evaluated with formalin test in mice. As the methanolic extract of the aerial parts significantly (p < .05) inhibited inflammation, it was then submitted to successive solvent extractions with n-hexane, dichloromethane, ethyl acetate and n-butanol to yield subextracts. Anti-inflammatory activities of the subextracts were evaluated within the same test system. Among the subextracts tested, the n-butanol subextract produced a significant (p < .05) anti-inflammatory activity at all doses (5, 10, and 30 mg/kg, ip.). Sequential chromatographic separation of the n-butanol subextract yielded 8-O-acetyl-4'-O-(E)-p-coumaroylharpagide, 8-O-acetyl-4'-O-(Z)-p-coumaroylharpagide, β-sitosterol 3-O-β-glucopyranoside, apigenin 7-O-β-glucopyranoside, apigenin 7-O-rutinoside, luteolin 7-O-β-glucopyranoside and luteolin 7-O-rutinoside. The anti-inflammatory activities of the isolates were evaluated at 5 mg/kg dose. Luteolin 7-O-β-glucopyranoside and apigenin 7-O-rutinoside caused a significant (p < .05) inhibition of oedema formation.
Collapse
Affiliation(s)
- Gülin Renda
- Department of Pharmacognosy, Faculty of Pharmacy, 52976Karadeniz Technical University, Trabzon, Turkey
| | - Mine Kadıoğlu
- Department of Pharmacology, Faculty of Medicine, 64255Karadeniz Technical University, Trabzon, Turkey
| | - Merve Kılıç
- Department of Pharmacology, Faculty of Medicine, 64255Karadeniz Technical University, Trabzon, Turkey
| | - Büşra Korkmaz
- Department of Pharmacognosy, Faculty of Pharmacy, 52976Karadeniz Technical University, Trabzon, Turkey
| | - Hasan Kırmızıbekmez
- Department of Pharmacognosy, Faculty of Pharmacy, 52998Yeditepe University,Istanbul, Turkey
| |
Collapse
|
9
|
Niiro A, Ohno SN, Yamagata KA, Yamagata K, Tomita K, Kuramoto E, Oda Y, Nakamura TJ, Nakamura W, Sugimura M. Diurnal Variation in Trigeminal Pain Sensitivity in Mice. Front Neurosci 2021; 15:703440. [PMID: 34408624 PMCID: PMC8365185 DOI: 10.3389/fnins.2021.703440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Management of time and circadian disruption is an extremely important factor in basic research on pain and analgesia. Although pain is known to vary throughout the day, the mechanism underlying this circadian variation remains largely unknown. In this study, we hypothesized that the process of pain transmission to the central nervous system (after receiving nociceptive stimuli from outside the body) would show day-night differences. Ten-week-old male mice were kept under a strict 12/12-h light/dark cycle for at least 10 days. Formalin was then injected into the second branch region of the trigeminal nerve and the duration of pain-related behaviors (PRBs) was assessed. Immunohistochemical staining was then performed, and the c-Fos-immunopositive cells in the trigeminal spinal tract subnucleus caudalis (Sp5C) were counted. The results showed that the duration of PRBs was longer and the number of c-Fos immunopositive cells in the Sp5C was higher at nighttime than during the day. In addition, the trigeminal ganglia (TG) were extracted from the mice and examined by quantitative real-time PCR to evaluate the daytime and nighttime expression of nociceptive receptors. The results showed that the mRNA expression of transient receptor potential ankyrin 1 in the TG was significantly higher at night than during the day. These results suggest that pain in the trigeminal nerve region is more intense at nighttime, when rodents are active, than during the daytime, partly due to differences in nociceptor expression.
Collapse
Affiliation(s)
- Ayako Niiro
- Department of Dental Anesthesiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Sachi N Ohno
- Department of Dental Anesthesiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Kanae A Yamagata
- Department of Dental Anesthesiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Kazuaki Yamagata
- Department of Dental Anesthesiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Kazuo Tomita
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Eriko Kuramoto
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yoshiaki Oda
- Unit of Basic Medical Sciences, Department of Oral Chrono-Physiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Takahiro J Nakamura
- Laboratory of Animal Physiology, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Wataru Nakamura
- Unit of Basic Medical Sciences, Department of Oral Chrono-Physiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Mitsutaka Sugimura
- Department of Dental Anesthesiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
10
|
Uddin O, Arakawa K, Raver C, Garagusi B, Keller A. Patterns of cognitive decline and somatosensory processing in a mouse model of amyloid accumulation. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2021; 10:100076. [PMID: 34820549 PMCID: PMC8599510 DOI: 10.1016/j.ynpai.2021.100076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 01/13/2023]
Abstract
Despite copious amyloid plaques, 5XFAD mice show modest signs of cognitive decline. At ages 2 to 13 months old 5XFAD mice show no signs of sensory or pain dysfunctions. 5XFAD mice may not be a valid model for pain abnormalities in the context of AD.
Pain and cognitive decline increase with age. In particular, there is a troubling relationship between dementia and pain, with some studies showing higher prevalence and inadequate treatment of pain in this population. Alzheimer’s disease (AD) is one of the most common causes of dementia in older adults. Amyloid plaques are a hallmark of AD. The downstream processes these plaques promote are believed to affect neuronal and glial health and activity. There is a need to better understand how the neuropathological changes of AD shape neural activity and pain sensitivity. Here, we use the 5XFAD mouse model, in which dense amyloid accumulations occur at early ages, and in which previous studies reported signs of cognitive decline. We hypothesized that 5XFAD mice develop sensory and pain processing dysfunctions. Although amyloid burden was high throughout the brain, including in regions involved with sensory processing, we identified no functionally significant differences in reflexive or spontaneous signs of pain. Furthermore, expected signs of cognitive decline were modest; a finding consistent with variable results in the literature. These data suggest that models recapitulating other pathological features of Alzheimer’s disease might be better suited to studying differences in pain perception in this disease.
Collapse
Affiliation(s)
- Olivia Uddin
- Department of Anatomy and Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, 20 Penn Street, Baltimore, MD 21201, United States
| | - Keiko Arakawa
- Department of Anatomy and Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, 20 Penn Street, Baltimore, MD 21201, United States
| | - Charles Raver
- Department of Anatomy and Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, 20 Penn Street, Baltimore, MD 21201, United States
| | - Brendon Garagusi
- Department of Anatomy and Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, 20 Penn Street, Baltimore, MD 21201, United States
| | - Asaf Keller
- Department of Anatomy and Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, 20 Penn Street, Baltimore, MD 21201, United States
| |
Collapse
|
11
|
Ayoub R, Jarrar Q, Ali D, Moshawih S, Jarrar Y, Hakim M, Zakaria Z. Synthesis of Novel Esters of Mefenamic Acid with Pronounced Anti-nociceptive Effects and a Proposed Activity on GABA , Opioid and Glutamate Receptors. Eur J Pharm Sci 2021; 163:105865. [PMID: 33979659 DOI: 10.1016/j.ejps.2021.105865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/10/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Mefenamic acid (MFA), a commonly prescribed non-steroidal anti-inflammatory drug (NSAID), possesses a greater risk of dose-related central nervous system (CNS) toxicity than other NSAIDs. In this study, α-tocopherol and α-tocopherol acetate were selected as prodrug moieties for MFA in an attempt to reduce the CNS toxicity and enhance the therapeutic efficacy. METHOD α-tocopherol monoester of MFA (TMMA) and α-tocopherol di-ester of MFA (TDMA) were synthesized by esterification reaction and were subjected to various in vivo characterizations. RESULTS Masking of the carboxylate group of MFA with the proposed pro-moieties significantly (p<0.05) delayed the onset of tonic-clonic seizure in mice. Besides, the intraperitoneal administration of TMMA and TDMA in mice produced significantly (p<0.05) stronger anti-inflammatory effects in the carrageenan-induced paw edema test and greater anti-nociceptive effect in the acetic acid-induced writhing test than MFA at an equimolar dose of 20 mg/kg. Treatment with TMMA and TDMA caused a significant (p<0.05) inhibition of pain at 1st and 2nd phases of formalin-induced licking test in mice, whereas treatment with MFA inhibited the 2nd phase only. Pretreatment with naloxone and flumazenil significantly (p<0.05) reversed the anti-nociceptive effect of MFA, TMMA and TDMA in the acetic acid-induced writhing test. In addition, treatment with TMMA and TDMA caused significantly (p<0.05) a higher inhibition of pain in the glutamate-induced licking response in mice than MFA. CONCLUSION Masking the carboxylate moiety of MFA by α-tocopherol and α-tocopherol acetate has a great potential for reducing CNS toxicity, enhancing the therapeutic efficacy and altering the mode of anti-nociceptive action.
Collapse
Affiliation(s)
- Rami Ayoub
- Department of applied pharmaceutical sciences and clinical pharmacy, Faculty of pharmacy, Isra University, Amman, Jordan
| | - Qais Jarrar
- Department of applied pharmaceutical sciences and clinical pharmacy, Faculty of pharmacy, Isra University, Amman, Jordan.
| | - Dalia Ali
- Department of applied pharmaceutical sciences and clinical pharmacy, Faculty of pharmacy, Isra University, Amman, Jordan
| | - Said Moshawih
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Yazun Jarrar
- Department of Pharmaceutical Science, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Muhammad Hakim
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Zainul Zakaria
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
12
|
Liu X, Zhang JT, Hu Y, Shan WQ, Wang ZH, Fu QY, Fu DN, Ji J, Liu T. Formalin Itch Test: Low-Dose Formalin Induces Histamine-Independent, TRPA1-Mediated Itch in Mice. Front Med (Lausanne) 2021; 8:627725. [PMID: 33681255 PMCID: PMC7928323 DOI: 10.3389/fmed.2021.627725] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/14/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic itch is a common distressing symptom of many diseases, which reduced patient's quality of life. The mechanistic study on itch and screening for new anti-itch drugs require the development of new pre-clinical itch animal models. Herein, we established an acute itch model by intradermal (i.d.) injection of low-dose formalin into the neck or cheek in mice. In mice, i.d. injection of formalin (0.1–5%) in the nape of the neck evoked robust scratching behavior in a dose-dependent manner and the dose–response curves showed an inverted “U” shape. I.d. injection of formalin (0.3–0.6%) into the cheek evoked scratching in mice but wiping in rats, while formalin (1.25–5%) induced mixed wiping and scratching behavior in both mice and rats. Further, we found that 0.3% formalin-induced scratching was histamine-independent and significantly attenuated by transient receptor potential ion channel A1 (TRPA1) inhibitor (HC030031) or in TRPA1 knockout (KO) mice, but not affected by transient receptor potential ion channel V1 (TRPV1) inhibitor (capsazepine) or in TRPV1 KO mice. Additionally, 0.3% formalin-induced up-regulation of phosphorylation of extracellular regulated protein kinases (p-ERK) in the dorsal root ganglion (DRG) and scratching were suppressed by intrathecal injection of MEK inhibitor U0126 in mice. Incubation of 0.03% formalin induced the accumulation of intracellular reactive oxygen species (ROS) in the cultured DRG-derived cell line ND7-23, and formalin-induced itch was suppressed by antioxidants in mice. Finally, perfusion of 0.03% formalin induced elevation of intracellular calcium in a subset of primary cultured DRG neurons of mice. Thus, these results indicate that low-dose formalin induced non-histaminergic itch by activation of TRPA1 in mice, which may be employed as a useful acute itch model for screening potential anti-itch drugs.
Collapse
Affiliation(s)
- Xu Liu
- Department of Dermatology, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Jiang-Tao Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Yue Hu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Wen-Qi Shan
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Zhi-Hong Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Qing-Yue Fu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Dan-Ni Fu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Jiang Ji
- Department of Dermatology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Tong Liu
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China.,College of Life Sciences, Yanan University, Yanan, China
| |
Collapse
|
13
|
Wotton JM, Peterson E, Anderson L, Murray SA, Braun RE, Chesler EJ, White JK, Kumar V. Machine learning-based automated phenotyping of inflammatory nocifensive behavior in mice. Mol Pain 2020; 16:1744806920958596. [PMID: 32955381 PMCID: PMC7509709 DOI: 10.1177/1744806920958596] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The discovery and development of new and potentially nonaddictive pain therapeutics requires rapid, yet clinically relevant assays of nociception in preclinical models. A reliable and scalable automated scoring system for nocifensive behavior of mice in the formalin assay would dramatically lower the time and labor costs associated with experiments and reduce experimental variability. Here, we present a method that exploits machine learning techniques for video recordings that consists of three components: key point detection, per frame feature extraction using these key points, and classification of behavior using the GentleBoost algorithm. This approach to automation is flexible as different model classifiers or key points can be used with only small losses in accuracy. The adopted system identified the behavior of licking/biting of the hind paw with an accuracy that was comparable to a human observer (98% agreement) over 111 different short videos (total 284 min) at a resolution of 1 s. To test the system over longer experimental conditions, the responses of two inbred strains, C57BL/6NJ and C57BL/6J, were recorded over 90 min post formalin challenge. The automated system easily scored over 80 h of video and revealed strain differences in both response timing and amplitude. This machine learning scoring system provides the required accuracy, consistency, and ease of use that could make the formalin assay a feasible choice for large-scale genetic studies.
Collapse
|
14
|
Recla JM, Bubier JA, Gatti DM, Ryan JL, Long KH, Robledo RF, Glidden NC, Hou G, Churchill GA, Maser RS, Zhang ZW, Young EE, Chesler EJ, Bult CJ. Genetic mapping in Diversity Outbred mice identifies a Trpa1 variant influencing late-phase formalin response. Pain 2019; 160:1740-1753. [PMID: 31335644 PMCID: PMC6668363 DOI: 10.1097/j.pain.0000000000001571] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Identification of genetic variants that influence susceptibility to pain is key to identifying molecular mechanisms and targets for effective and safe therapeutic alternatives to opioids. To identify genes and variants associated with persistent pain, we measured late-phase response to formalin injection in 275 male and female Diversity Outbred mice genotyped for over 70,000 single nucleotide polymorphisms. One quantitative trait locus reached genome-wide significance on chromosome 1 with a support interval of 3.1 Mb. This locus, Nociq4 (nociceptive sensitivity quantitative trait locus 4; MGI: 5661503), harbors the well-known pain gene Trpa1 (transient receptor potential cation channel, subfamily A, member 1). Trpa1 is a cation channel known to play an important role in acute and chronic pain in both humans and mice. Analysis of Diversity Outbred founder strain allele effects revealed a significant effect of the CAST/EiJ allele at Trpa1, with CAST/EiJ carrier mice showing an early, but not late, response to formalin relative to carriers of the 7 other inbred founder alleles (A/J, C57BL/6J, 129S1/SvImJ, NOD/ShiLtJ, NZO/HlLtJ, PWK/PhJ, and WSB/EiJ). We characterized possible functional consequences of sequence variants in Trpa1 by assessing channel conductance, TRPA1-TRPV1 interactions, and isoform expression. The phenotypic differences observed in CAST/EiJ relative to C57BL/6J carriers were best explained by Trpa1 isoform expression differences, implicating a splice junction variant as the causal functional variant. This study demonstrates the utility of advanced, high-precision genetic mapping populations in resolving specific molecular mechanisms of variation in pain sensitivity.
Collapse
Affiliation(s)
- Jill M. Recla
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
- IGERT Program in Functional Genomics, Graduate School of Biomedical Sciences and Engineering, The University of Maine, Orono, ME 04469, USA
| | - Jason A. Bubier
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Daniel M. Gatti
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Jennifer L. Ryan
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Katie H. Long
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | | | - Nicole C. Glidden
- Department of Genetics and Genome Sciences, UCONN Health, 400 Farmington Avenue, Farmington, CT 06030-6403, USA
| | - Guoqiang Hou
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | | | - Richard S. Maser
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Zhong-wei Zhang
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Erin E. Young
- Department of Genetics and Genome Sciences, UCONN Health, 400 Farmington Avenue, Farmington, CT 06030-6403, USA
- School of Nursing, University of Connecticut, 231 Glenbrook Rd, Unit 4026, Storrs, CT 06269-4026, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269-4026, USA
| | | | - Carol J. Bult
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| |
Collapse
|
15
|
Holanda VAD, Oliveira MC, Souza LS, Lobão-Soares B, André E, Da Silva Junior ED, Guerrini R, Calo G, Ruzza C, Gavioli EC. Dopamine D 1 and D 2 receptors mediate neuropeptide S-induced antinociception in the mouse formalin test. Eur J Pharmacol 2019; 859:172557. [PMID: 31326375 DOI: 10.1016/j.ejphar.2019.172557] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/31/2022]
Abstract
Neuropeptide S (NPS) is the endogenous ligand of a G-protein coupled receptor named NPS receptor. The NPS system controls several biological functions, including anxiety, wakefulness, locomotor activity, food intake, and pain transmission. A growing body of evidence supports facilitatory effects for NPS over dopaminergic neurotransmission. The present study was aimed to investigate the role of dopamine receptors signaling in the antinociceptive effects of NPS in the mouse formalin test. The following dopamine receptor antagonists were employed: SCH 23390 (selective dopamine D1 antagonist, 0.05 mg/kg, ip), haloperidol (non-selective dopamine D2-like receptor antagonist; 0.03 mg/kg, ip), and sulpiride (selective dopamine D2-like receptor antagonist; 25 mg/kg, ip). Mice were pretreated with dopamine antagonists before the supraspinal administration of NPS (0.1 nmol, icv). Morphine (5 mg/kg, sc) and indomethacin (10 mg/kg, ip) were used as positive controls to set up the experimental conditions. Morphine-induced antinociceptive effects were observed during phases 1 and 2 of the test, while indomethacin was only active at phase 2. Central NPS significantly reduced formalin-induced nociception during both phases. The systemic administration of SCH 23390 slightly blocked the effects of NPS only during phase 2. Haloperidol prevented NPS-induced antinociceptive effects. Similar to haloperidol, sulpiride also counteracted the antinociceptive effects of NPS in both phases of the formalin test. In conclusion, the present findings suggest that the analgesic effects of NPS are linked with dopaminergic neurotransmission mainly through dopamine D2-like receptor signaling.
Collapse
Affiliation(s)
- Victor A D Holanda
- Department of Biophysics and Pharmacology, Federal University of Rio Grande Do Norte, Natal, RN, Brazil
| | - Matheus C Oliveira
- Department of Biophysics and Pharmacology, Federal University of Rio Grande Do Norte, Natal, RN, Brazil
| | - Lisiane S Souza
- Department of Biophysics and Pharmacology, Federal University of Rio Grande Do Norte, Natal, RN, Brazil
| | - Bruno Lobão-Soares
- Department of Biophysics and Pharmacology, Federal University of Rio Grande Do Norte, Natal, RN, Brazil
| | - Eunice André
- Department of Pharmacology, Federal University of Parana, Curitiba, PR, Brazil
| | - Edilson D Da Silva Junior
- Department of Biophysics and Pharmacology, Federal University of Rio Grande Do Norte, Natal, RN, Brazil
| | - Remo Guerrini
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Girolamo Calo
- Department of Medical Sciences, Section of Pharmacology, and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | - Chiara Ruzza
- Department of Medical Sciences, Section of Pharmacology, and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | - Elaine C Gavioli
- Department of Biophysics and Pharmacology, Federal University of Rio Grande Do Norte, Natal, RN, Brazil.
| |
Collapse
|
16
|
Increased pain and inflammatory sensitivity in growth hormone-releasing hormone (GHRH) knockout mice. Prostaglandins Other Lipid Mediat 2019; 144:106362. [PMID: 31301405 DOI: 10.1016/j.prostaglandins.2019.106362] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/04/2019] [Accepted: 07/09/2019] [Indexed: 02/06/2023]
Abstract
Growth hormone (GH) and GH-releasing hormone (GHRH), in addition to metabolic and endocrine effects, play a role in the modulation of pain and inflammation. We aimed to elucidate the consequences of GHRH deficiency on acute nociceptive stimulation and on both acute and chronic inflammatory stimuli in a mouse model of GH deficiency. Mice with generalized ablation of the GHRH gene (GHRH knock out, GHRHKO, -/-) were compared to wild type (GHRH +/+) mice. Responsiveness to acute nociceptive stimulation and to acute inflammatory stimulation was evaluated by conventional hot plate apparatus and formalin test, respectively. We also evaluated responsiveness to colonic inflammation induced both in vivo, after dextran sodium sulfate (DSS) treatment, or ex vivo, by incubating colon segments with bacterial lipopolysaccaride (LPS). Macroscopical and histological examinations were performed, prostaglandin (PG) E2 and 8-iso-PGF2α levels and cyclooxigenase (COX)-2 and tumor necrosis factor (TNF)-α gene expression were measured. Compared to controls, -/- mice showed decreased response latency during the hot plate test, and increased licking/biting time in formalin test, particularly in the second phase of inflammation. DSS treated -/- mice showed a significant increase of colonic inflammation compared to controls. Moreover DSS treatment increased PGE2 and 8-iso-PGF2α levels, along with COX-2 and TNF-α gene expression more markedly in colon specimens of -/- mice compared to controls. LPS-induced PGE2 and 8-iso-PGF2α production from colonic segments incubated ex vivo was also increased in -/- mice. Generalized GHRH gene ablation increases sensitivity to thermal pain and both acute and persistent inflammatory stimuli in male mice.
Collapse
|
17
|
Zhou WZ, Zhao TY, Wang ZY, Lu GY, Zhang SZ, Zhang C, Wu N, Li J. Synergistic antinociception between ZC88, an N-type voltage-dependent calcium channel blocker, and ibuprofen in mouse models of visceral and somatic inflammatory pain. Eur J Pain 2018; 23:46-56. [PMID: 29978517 DOI: 10.1002/ejp.1281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2018] [Indexed: 11/06/2022]
Abstract
BACKGROUND A combination of analgesic agents with different mechanisms can induce additive or synergistic analgesia. The N-type voltage-dependent calcium channel (N-VDCC) is a novel therapeutic target for pain control. In addition to providing effective pain relief when used alone, N-VDCC blockers produce synergistic analgesia when used in combination with opiates. However, the interaction between N-VDCC blockers and nonsteroidal anti-inflammatory drugs (NSAIDs) remains unclear. METHODS Using isobolographic analysis and composite additive curve analysis, the antinociceptive interaction between ZC88, a selective N-VDCC blocker and ibuprofen, a classical NSAID, was investigated in two mouse models of visceral and somatic inflammatory pain. RESULTS In the acetic acid writhing test, both ZC88 (10.5-42 mg/kg, intraperitoneally) and ibuprofen (50-200 mg/kg, orally) produced dose-dependent antinociception, with ED50 values of 27.2 and 100.5 mg/kg, respectively. ZC88 in combination with ibuprofen (ZC88 + ibuprofen) also induced significant antinociception, and isobolographic analysis revealed a synergistic interaction at 50% effect level. The experimental ED50 (ED50 mix ) of this combination (34.5 mg/kg) was significantly lower than the theoretical ED50 (ED50 add ; 63.8 mg/kg). Additionally, composite additive curve analysis displayed synergistic interaction at other effect levels. In the formalin test, ZC88 or ibuprofen alone significantly reduced late-phase rather than early-phase pain, with ED50 values of 31.3 and 123.9 mg/kg, respectively. Similarly, both isobolographic analysis and composite additive curve analysis revealed synergistic antinociception of ZC88 + ibuprofen (40.6 mg/kg of ED50 mix vs. 77.6 mg/kg of ED50 add ). CONCLUSION ZC88 in combination with ibuprofen produces synergistic antinociception in mouse models of somatic and visceral inflammatory pain. SIGNIFICANCE Because ZC88 + ibuprofen achieves the same antinociceptive effect at lower doses, the use of this combination could result in fewer dose-related untoward effects. The potentiation of ZC88 on ibuprofen-induced antinociception indicates that N-VDCC blocker has potential benefit to treat severe inflammatory pain.
Collapse
Affiliation(s)
- W-Z Zhou
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, China
| | - T-Y Zhao
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, China
| | - Z-Y Wang
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, China
| | - G-Y Lu
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, China
| | - S-Z Zhang
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, China
| | - C Zhang
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, China
| | - N Wu
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, China
| | - J Li
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, China
| |
Collapse
|
18
|
Zhang L, Yin JB, Hu W, Zhao WJ, Fan QR, Qiu ZC, He MJ, Ding T, Sun Y, Kaye AD, Wang ER. Analgesic Effects of Duloxetine on Formalin-Induced Hyperalgesia and Its Underlying Mechanisms in the CeA. Front Pharmacol 2018; 9:317. [PMID: 29692727 PMCID: PMC5902556 DOI: 10.3389/fphar.2018.00317] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 03/20/2018] [Indexed: 12/17/2022] Open
Abstract
In rodents, the amygdala has been proposed to serve as a key center for the nociceptive perception. Previous studies have shown that extracellular signal-regulated kinase (ERK) signaling cascade in the central nucleus of amygdala (CeA) played a functional role in inflammation-induced peripheral hypersensitivity. Duloxetine (DUL), a serotonin and noradrenaline reuptake inhibitor, produced analgesia on formalin-induced spontaneous pain behaviors. However, it is still unclear whether single DUL pretreatment influences formalin-induced hypersensitivity and what is the underlying mechanism. In the current study, we revealed that systemic pretreatment with DUL not only dose-dependently suppressed the spontaneous pain behaviors, but also relieved mechanical and thermal hypersensitivity induced by formalin hindpaw injection. Consistent with the analgesic effects of DUL on the pain behaviors, the expressions of Fos and pERK that were used to check the neuronal activities in the spinal cord and CeA were also dose-dependently reduced following DUL pretreatment. Meanwhile, no emotional aversive behaviors were observed at 24 h after formalin injection. The concentration of 5-HT in the CeA was correlated with the dose of DUL in a positive manner at 24 h after formalin injection. Direct injecting 5-HT into the CeA suppressed both the spontaneous pain behaviors and hyperalgesia induced by formalin injection. However, DUL did not have protective effects on the formalin-induced edema of hindpaw. In sum, the activation of CeA neurons may account for the transition from acute pain to long-term hyperalgesia after formalin injection. DUL may produce potent analgesic effects on the hyperalgesia and decrease the expressions of p-ERK through increasing the concentration of serotonin in the CeA.
Collapse
Affiliation(s)
- Lie Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jun-Bin Yin
- Department of Neurosurgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China.,Department of Neurology, The 456th Hospital of PLA, Jinan, China.,Department of Human Anatomy, The Fourth Military Medical University, Xi'an, China
| | - Wei Hu
- Department of Neurosurgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China.,Department of Human Anatomy, The Fourth Military Medical University, Xi'an, China
| | - Wen-Jun Zhao
- Department of Human Anatomy, The Fourth Military Medical University, Xi'an, China
| | - Qing-Rong Fan
- Department of Neurosurgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Zhi-Chun Qiu
- Department of Neurosurgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Ming-Jie He
- Department of Neurosurgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Tan Ding
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yan Sun
- Cadet Bridge, The Fourth Military Medical University, Xi'an, China
| | - Alan D Kaye
- Departments of Anesthesiology and Pharmacology, Louisiana State University School of Medicine, New Orleans, LA, United States
| | - En-Ren Wang
- Department of Neurosurgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
19
|
Petrelli R, Scortichini M, Kachler S, Boccella S, Cerchia C, Torquati I, Del Bello F, Salvemini D, Novellino E, Luongo L, Maione S, Jacobson KA, Lavecchia A, Klotz KN, Cappellacci L. Exploring the Role of N 6-Substituents in Potent Dual Acting 5'-C-Ethyltetrazolyladenosine Derivatives: Synthesis, Binding, Functional Assays, and Antinociceptive Effects in Mice ∇. J Med Chem 2017; 60:4327-4341. [PMID: 28447789 DOI: 10.1021/acs.jmedchem.7b00291] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Structural determinants of affinity of N6-substituted-5'-C-(ethyltetrazol-2-yl)adenosine and 2-chloroadenosine derivatives at adenosine receptor (AR) subtypes were studied with binding and molecular modeling. Small N6-cycloalkyl and 3-halobenzyl groups furnished potent dual acting A1AR agonists and A3AR antagonists. 4 was the most potent dual acting human (h) A1AR agonist (Ki = 0.45 nM) and A3AR antagonist (Ki = 0.31 nM) and highly selective versus A2A; 11 and 26 were most potent at both h and rat (r) A3AR. All N6-substituted-5'-C-(ethyltetrazol-2-yl)adenosine derivatives proved to be antagonists at hA3AR but agonists at the rA3AR. Analgesia of 11, 22, and 26 was evaluated in the mouse formalin test (A3AR antagonist blocked and A3AR agonist strongly potentiated). N6-Methyl-5'-C-(ethyltetrazol-2-yl)adenosine (22) was most potent, inhibiting both phases, as observed combining A1AR and A3AR agonists. This study demonstrated for the first time the advantages of a single molecule activating two AR pathways both leading to benefit in this acute pain model.
Collapse
Affiliation(s)
- Riccardo Petrelli
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino , Via S. Agostino 1, 62032 Camerino, Italy
| | - Mirko Scortichini
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino , Via S. Agostino 1, 62032 Camerino, Italy
| | - Sonja Kachler
- Institut für Pharmakologie and Toxikologie, Universität Würzburg , D-97078 Würzburg, Germany
| | - Serena Boccella
- Section of Pharmacology "L. Donatelli", Department of Experimental Medicine, University of Campania "L. Vanvitelli" , 80138 Naples, Italy
| | - Carmen Cerchia
- Department of Pharmacy, "Drug Discovery" Laboratory, University of Naples Federico II , 80131 Naples, Italy
| | - Ilaria Torquati
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino , Via S. Agostino 1, 62032 Camerino, Italy
| | - Fabio Del Bello
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino , Via S. Agostino 1, 62032 Camerino, Italy
| | - Daniela Salvemini
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine , St. Louis, Missouri 63104, United States
| | - Ettore Novellino
- Department of Pharmacy, "Drug Discovery" Laboratory, University of Naples Federico II , 80131 Naples, Italy
| | - Livio Luongo
- Section of Pharmacology "L. Donatelli", Department of Experimental Medicine, University of Campania "L. Vanvitelli" , 80138 Naples, Italy
| | - Sabatino Maione
- Section of Pharmacology "L. Donatelli", Department of Experimental Medicine, University of Campania "L. Vanvitelli" , 80138 Naples, Italy
| | - Kenneth A Jacobson
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Antonio Lavecchia
- Department of Pharmacy, "Drug Discovery" Laboratory, University of Naples Federico II , 80131 Naples, Italy
| | - Karl-Norbert Klotz
- Institut für Pharmakologie and Toxikologie, Universität Würzburg , D-97078 Würzburg, Germany
| | - Loredana Cappellacci
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino , Via S. Agostino 1, 62032 Camerino, Italy
| |
Collapse
|
20
|
Abstract
OBJECTIVES Animal models are essential to understand the pathogenesis of acute pancreatitis (AP) and to develop new therapeutic strategies. Although it has been shown that cerulein-induced AP is associated with pain in experimental animals, most experiments are carried out without any pain-relieving treatment because researchers are apprehensive of an interference of the analgetic agent with AP-associated inflammation. In light of the growing ethical concerns and the legal tightening regarding animal welfare during experiments, this attitude should be changed. METHODS Acute pancreatitis was induced by cerulein in the C57BL/6J and FVB/N mouse inbred strains. One group received vehicle only, and the other was treated with metamizol as analgetic agent. Pain sensation and parameters of AP were analyzed as well as the effect of metamizol in the pancreas and its actions in the brain. RESULTS We report that oral administration of metamizol protects cerulein-treated mice from abdominal pain without influencing the clinical and histopathological course of the disease. In addition, it could be shown that metamizol reduces the central pain response. CONCLUSIONS This study reveals that oral administered metamizol has no influence on the cerulein-induced AP and can be given as an analgesic to increase animal welfare in experiments with induced AP.
Collapse
|
21
|
Bao X, Cai Y, Wang Y, Zhao J, He X, Yu D, Huang J, Jing S, Du Z, Yang T, Warner M, Gustafsson JA, Fan X. Liver X Receptor β Is Involved in Formalin-Induced Spontaneous Pain. Mol Neurobiol 2016; 54:1467-1481. [PMID: 26846362 DOI: 10.1007/s12035-016-9737-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/20/2016] [Indexed: 12/30/2022]
Abstract
Increasing evidence indicates that the liver X receptor(LXR) β modulates inflammatory pain. However, the molecular mechanisms through which LXRβ modulates pain are unclear. Here, we found that LXRβ-null mice responded more strongly to acute noxious stimuli than wild-type (WT) littermates (in the hot plate and Hargreaves tests) and had augmented tonic inflammatory pain (in the formalin test). This increased reactivity to inflammatory pain was accompanied by enhanced formalin-evoked Fos and pERK staining of second-order nociceptive neurons. Immunohistochemistry showed that the expression of CGRP, SP, and IB4 was increased in the lamina I-II of the lumbar dorsal horns in formalin-injected LXRβ knockout (KO) mice compared with the WT controls. In addition, LXRβ deletion in the mice enhanced the formalin-induced inflammation with more activated microglia and astrocytes in the spinal cord. Furthermore, the levels of pro-inflammatory cytokines (IL-1β ,TNF-α) as well as NFκB in the formalin-injected paw were elevated by the loss of LXRβ. Taken together, these data indicate that LXRβ is involved in acute as well as inflammatory pain, and thus, it may be considered as a new target for the development of analgesics.
Collapse
Affiliation(s)
- Xiaohang Bao
- Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400038, People's Republic of China.,Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, China
| | - Yulong Cai
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, China
| | - Ying Wang
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, China
| | - Jinghui Zhao
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, China
| | - Xie He
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, China
| | - Dan Yu
- Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400038, People's Republic of China
| | - Jing Huang
- Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400038, People's Republic of China
| | - Sheng Jing
- Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400038, People's Republic of China
| | - Zhiyong Du
- Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400038, People's Republic of China
| | - Tiande Yang
- Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400038, People's Republic of China.
| | - Margaret Warner
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, 77054, USA
| | - Jan-Ake Gustafsson
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, 77054, USA. .,Department of Biosciences and Nutrition, Karolinska Institute, Novum, Novum, 141 86, Sweden.
| | - Xiaotang Fan
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
22
|
Ren AJ, Wang K, Zhang H, Liu A, Ma X, Liang Q, Cao D, Wood JN, He DZ, Ding YQ, Yuan WJ, Xie Z, Zhang WJ. ZBTB20 regulates nociception and pain sensation by modulating TRP channel expression in nociceptive sensory neurons. Nat Commun 2014; 5:4984. [PMID: 25369838 PMCID: PMC6687506 DOI: 10.1038/ncomms5984] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/14/2014] [Indexed: 12/21/2022] Open
Abstract
In mammals, pain sensation is initiated by the detection of noxious stimuli through specialized transduction ion channels and receptors in nociceptive sensory neurons. Transient receptor potential (TRP) channels are the key sensory transducers that confer nociceptors distinct sensory modalities. However, the regulatory mechanisms about their expression are poorly defined. Here we show that the zinc-finger protein ZBTB20 regulates TRP channels expression in nociceptors. ZBTB20 is highly expressed in nociceptive sensory neurons of dorsal root ganglia. Disruption of ZBTB20 in nociceptors led to a marked decrease in the expression levels of TRPV1, TRPA1 and TRPM8 and the response of calcium flux and whole-cell currents evoked by their respective specific agonists. Phenotypically, the mice lacking ZBTB20 specifically in nociceptors showed a defect in nociception and pain sensation in response to thermal, mechanical and inflammatory stimulation. Our findings point to ZBTB20 as a critical regulator of nociception and pain sensation by modulating TRP channels expression in nociceptors.
Collapse
Affiliation(s)
- An-Jing Ren
- Department of Pathophysiology, Second Military Medical University, Shanghai 200433, China
| | - Kai Wang
- Department of Pathophysiology, Second Military Medical University, Shanghai 200433, China
| | - Huan Zhang
- Department of Pathophysiology, Second Military Medical University, Shanghai 200433, China
| | - Anjun Liu
- 1] Department of Pathophysiology, Second Military Medical University, Shanghai 200433, China [2] Department of Cell Biology, Second Military Medical University, Shanghai 200433, China
| | - Xianhua Ma
- Department of Pathophysiology, Second Military Medical University, Shanghai 200433, China
| | - Qing Liang
- Department of Pathophysiology, Second Military Medical University, Shanghai 200433, China
| | - Dongmei Cao
- Department of Pathophysiology, Second Military Medical University, Shanghai 200433, China
| | - John N Wood
- Biology Department, University College London, Gower Street, London WC1E 6BT, UK
| | - David Z He
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska 68102, USA
| | - Yu-Qiang Ding
- Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai 200092, China
| | - Wen-Jun Yuan
- Department of Physiology and Neurobiology, Key Lab of Ministry of Education in Fertility Preservation and Maintenance, Ningxia Medical University, Yinchuan 750004, China
| | - Zhifang Xie
- 1] Department of Pathophysiology, Second Military Medical University, Shanghai 200433, China [2] Department of Cell Biology, Second Military Medical University, Shanghai 200433, China
| | - Weiping J Zhang
- Department of Pathophysiology, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
23
|
Mingorance-Le Meur A, Ghisdal P, Mullier B, De Ron P, Downey P, Van Der Perren C, Declercq V, Cornelis S, Famelart M, Van Asperen J, Jnoff E, Courade JP. Reversible inhibition of the glycine transporter GlyT2 circumvents acute toxicity while preserving efficacy in the treatment of pain. Br J Pharmacol 2014; 170:1053-63. [PMID: 23962079 DOI: 10.1111/bph.12343] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 07/18/2013] [Accepted: 08/04/2013] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE Available medications for chronic pain provide only partial relief and often cause unacceptable side effects. There is therefore a need for novel molecular targets to develop new therapeutics with improved efficacy and tolerability. Despite encouraging efficacy data in rodents with inhibitors of the neuronal glycine transporter-2 (GlyT2), there are also some reports of toxicity and their development was discontinued. EXPERIMENTAL APPROACH In order to clarify the possibility of targeting GlyT2 for the treatment of pain, we have used an integrated approach comprising in vitro pharmacology, selectivity, bioavailability, in vivo efficacy and safety assessment to analyse the properties and efficacy of ALX-1393 and Org-25543, the two published GlyT2 inhibitors from which in vivo data are available. KEY RESULTS We report that these compounds have a different set of undesirable properties that limit their usefulness as pharmacological tools. Importantly, we discover that inhibitors of GlyT2 can exert an apparent reversible or irreversible inhibition of the transporter and describe a new class of reversible GlyT2 inhibitors that preserves efficacy while avoiding acute toxicity. CONCLUSIONS AND IMPLICATIONS Our pharmacological comparison of two closely related GlyT2 inhibitors with different modes of inhibition provides important insights into their safety and efficacy profiles, uncovering that in the presence of a GlyT2 mechanism-based toxicity, reversible inhibitors might allow a tolerable balance between efficacy and toxicity. These findings shed light into the drawbacks associated with the early GlyT2 inhibitors and describe a new mechanism that might serve as the starting point for new drug development.
Collapse
|
24
|
Michot B, Kayser V, Bastian G, Bourgoin S, Hamon M. Differential pharmacological alleviation of oxaliplatin-induced hyperalgesia/allodynia at cephalic versus extra-cephalic level in rodents. Neuropharmacology 2014; 79:432-43. [DOI: 10.1016/j.neuropharm.2013.12.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 12/06/2013] [Accepted: 12/09/2013] [Indexed: 12/21/2022]
|
25
|
Fischer M, Carli G, Raboisson P, Reeh P. The interphase of the formalin test. Pain 2014; 155:511-521. [DOI: 10.1016/j.pain.2013.11.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 11/21/2013] [Accepted: 11/21/2013] [Indexed: 10/26/2022]
|
26
|
Hypoalgesia Induced by Preliminary Microwave Irradiation of an Acupuncture Point: Effects on Somatic Pain in Mice. NEUROPHYSIOLOGY+ 2013. [DOI: 10.1007/s11062-013-9393-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
27
|
Mechanisms involved in the nociception triggered by the venom of the armed spider Phoneutria nigriventer. PLoS Negl Trop Dis 2013; 7:e2198. [PMID: 23638210 PMCID: PMC3636088 DOI: 10.1371/journal.pntd.0002198] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 03/25/2013] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The frequency of accidental spider bites in Brazil is growing, and poisoning due to bites from the spider genus Phoneutria nigriventer is the second most frequent source of such accidents. Intense local pain is the major symptom reported after bites of P. nigriventer, although the mechanisms involved are still poorly understood. Therefore, the aim of this study was to identify the mechanisms involved in nociception triggered by the venom of Phoneutria nigriventer (PNV). METHODOLOGY/PRINCIPAL FINDINGS Twenty microliters of PNV or PBS was injected into the mouse paw (intraplantar, i.pl.). The time spent licking the injected paw was considered indicative of the level of nociception. I.pl. injection of PNV produced spontaneous nociception, which was reduced by arachnid antivenin (ArAv), local anaesthetics, opioids, acetaminophen and dipyrone, but not indomethacin. Boiling or dialysing the venom reduced the nociception induced by the venom. PNV-induced nociception is not dependent on glutamate or histamine receptors or on mast cell degranulation, but it is mediated by the stimulation of sensory fibres that contain serotonin 4 (5-HT4) and vanilloid receptors (TRPV1). We detected a kallikrein-like kinin-generating enzyme activity in tissue treated with PNV, which also contributes to nociception. Inhibition of enzymatic activity or administration of a receptor antagonist for kinin B2 was able to inhibit the nociception induced by PNV. PNV nociception was also reduced by the blockade of tetrodotoxin-sensitive Na(+) channels, acid-sensitive ion channels (ASIC) and TRPV1 receptors. CONCLUSION/SIGNIFICANCE Results suggest that both low- and high-molecular-weight toxins of PNV produce spontaneous nociception through direct or indirect action of kinin B2, TRPV1, 5-HT4 or ASIC receptors and voltage-dependent sodium channels present in sensory neurons but not in mast cells. Understanding the mechanisms involved in nociception caused by PNV are of interest not only for better treating poisoning by P. nigriventer but also appreciating the diversity of targets triggered by PNV toxins.
Collapse
|
28
|
Involvement of EphB1 receptors signalling in models of inflammatory and neuropathic pain. PLoS One 2013; 8:e53673. [PMID: 23341972 PMCID: PMC3547059 DOI: 10.1371/journal.pone.0053673] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 12/03/2012] [Indexed: 12/12/2022] Open
Abstract
EphB receptors tyrosine kinases and ephrinB ligands were first identified as guidance molecules involved in the establishment of topographical mapping and connectivity in the nervous system during development. Later in development and into adulthood their primary role would switch from guidance to activity-dependent modulation of synaptic efficacy. In sensory systems, they play a role in both the onset of inflammatory and neuropathic pain, and in the establishment of central sensitisation, an NMDA-mediated form of synaptic plasticity thought to underlie most forms of chronic pain. We studied wild type and EphB1 knockout mice in a range of inflammatory and neuropathic pain models to determine 1), whether EphB1 expression is necessary for the onset and/or maintenance of persistent pain, regardless of origin; 2), whether in these models cellular and molecular changes, e.g. phosphorylation of the NR2B subunit of the NMDA receptor, increased c-fos expression or microglial activation, associated with the onset of pain, are affected by the lack of functional EphB1 receptors. Differences in phenotype were examined behaviourally, anatomically, biochemically and electrophysiologically. Our results establish firstly, that functional EphB1 receptors are not essential for the development of normal nociception, thermal or mechanical sensitivity. Secondly, they demonstrate a widespread involvement of EphB1 receptors in chronic pain. NR2B phosphorylation, c-fos expression and microglial activation are all reduced in EphB1 knockout mice. This last finding is intriguing, since microglial activation is supposedly triggered directly by primary afferents, therefore it was not expected to be affected. Interestingly, in some models of long-term pain (days), mechanical and thermal hyperalgesia develop both in wild type and EphB1 knockout mice, but recovery is faster in the latter, indicating that in particular models these receptors are required for the maintenance, rather than the onset of, thermal and mechanical hypersensitivity. This potentially makes them an attractive target for analgesic strategies.
Collapse
|
29
|
Mandegary A, Pournamdari M, Sharififar F, Pournourmohammadi S, Fardiar R, Shooli S. Alkaloid and flavonoid rich fractions of fenugreek seeds (Trigonella foenum-graecum L.) with antinociceptive and anti-inflammatory effects. Food Chem Toxicol 2012; 50:2503-7. [DOI: 10.1016/j.fct.2012.04.020] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 04/02/2012] [Accepted: 04/11/2012] [Indexed: 12/01/2022]
|
30
|
Woode E, Abotsi WKM. Antinociceptive effect of an ethanolic extract of the aerial parts of Hilleria latifolia (Lam.) H. Walt. (Phytolaccaceae). J Pharm Bioallied Sci 2011; 3:384-96. [PMID: 21966159 PMCID: PMC3178945 DOI: 10.4103/0975-7406.84445] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 03/05/2011] [Accepted: 03/05/2011] [Indexed: 12/25/2022] Open
Abstract
Background: Hilleria latifolia (Lam.) H. Walt. (Phytolaccaceae) is a perennial herb used in Ghanaian traditional medicine for the treatment of various painful conditions. Little scientific evidence exists in literature on the effect of this plant on pain. Materials and Methods: The present study examined the antinociceptive effect of the ethanolic extract of the aerial parts of H. latifolia in chemical (acetic acid-induced abdominal writhing, glutamate, formalin, and capsaicin tests) and thermal (tail immersion test) behavioral pain models in rodents. The possible mechanisms of the antinociceptive action were also assessed with various antagonists in the formalin test. Results: The H. latifolia extract (HLE) together with morphine and diclofenac (positive controls), showed significant antinociceptive activity in all the models used. The antinociceptive effect exhibited by HLE in the formalin test was partly or wholly reversed by the systemic administration of naloxone, theophylline, and atropine. Glibenclamide, ondansetron, yohimbine, nifedipine, and NG-L-nitro-arginine methyl ester (L-NAME), however, did not significantly block the antinociceptive effect of the extract. HLE, unlike morphine, did not induce tolerance to its antinociceptive effect in the formalin test after chronic administration; morphine tolerance did not also cross-generalize to HLE. Interestingly, also, the chronic concomitant administration of HLE and morphine significantly suppressed the development of morphine tolerance. Conclusion: Together, these results indicate that HLE produces dose-related antinociception in several models of chemical and thermal pain, without tolerance induction, through mechanisms that involve an interaction with adenosinergic, muscarinic cholinergic, and opioid pathways.
Collapse
Affiliation(s)
- Eric Woode
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science & Technology, Kumasi, Ghana
| | | |
Collapse
|
31
|
Estrogen receptors beta and alpha have specific pro- and anti-nociceptive actions. Neuroscience 2011; 184:172-82. [DOI: 10.1016/j.neuroscience.2011.02.057] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 02/24/2011] [Accepted: 02/26/2011] [Indexed: 11/18/2022]
|
32
|
Bornhof M, Ihmsen H, Schwilden H, Yeomans DC, Tzabazis A. The orofacial formalin test in mice revisited--effects of formalin concentration, age, morphine and analysis method. THE JOURNAL OF PAIN 2011; 12:633-9. [PMID: 21481645 DOI: 10.1016/j.jpain.2010.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 11/09/2010] [Accepted: 11/27/2010] [Indexed: 10/18/2022]
Abstract
UNLABELLED The orofacial formalin test is established in rats and was recently transferred to mice. The aim of this study was to determine the ideal formalin concentration for testing analgesic drugs, to examine alternatives for the assessment of nociceptive and non-nociceptive behavior as well as the effects of morphine and age on formalin-induced nociception. Formalin (.5, 1, 2.5, 5, 7.5, 10, and 15%) was injected into the vibrissa of mice. The cumulative nociceptive behavior was measured as well as nociceptive and non-nociceptive behavior based on a score that was recorded over a 5-second observation period once per minute. We also examined the effects of morphine on the nociceptive response induced by 2.5% formalin. Age-dependent differences were tested in the third part of the experiment. NONMEM was used to model the pharmacodynamic effects of formalin and morphine. Injection of formalin lead to a concentration-dependent increase in cumulative nociceptive behavior ratings as well as the specific nociceptive behavior 3 of scratching injection site with hindpaw (score 3). The formalin concentrations that lead to 50% of the maximum effect were 2.6 and 3.3%, respectively, for the continuous rating method and the scoring method. Morphine dose dependently suppressed the nociceptive behavior and the number of score 3 ratings of the nociceptive behavior. Age differences in behavior could not be detected by either analytic method. PERSPECTIVE To improve the existing behavioral nociceptive assay for pain processed by the trigeminal system, we determined an ideal formalin concentration for the orofacial formalin test in mice, evaluated alternative timesaving analysis approaches, and investigated effects of morphine and age on formalin-induced nociception.
Collapse
Affiliation(s)
- Manuel Bornhof
- Anästhesiologische Klinik, Universitätsklinikum Erlangen, Erlangen, Germany
| | | | | | | | | |
Collapse
|
33
|
Pierre F, O’Brien SE, Haddach M, Bourbon P, Schwaebe MK, Stefan E, Darjania L, Stansfield R, Ho C, Siddiqui-Jain A, Streiner N, Rice WG, Anderes K, Ryckman DM. Novel potent pyrimido[4,5-c]quinoline inhibitors of protein kinase CK2: SAR and preliminary assessment of their analgesic and anti-viral properties. Bioorg Med Chem Lett 2011; 21:1687-91. [DOI: 10.1016/j.bmcl.2011.01.091] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Revised: 01/19/2011] [Accepted: 01/20/2011] [Indexed: 10/18/2022]
|
34
|
Chen J, Lariviere WR. The nociceptive and anti-nociceptive effects of bee venom injection and therapy: a double-edged sword. Prog Neurobiol 2010; 92:151-83. [PMID: 20558236 PMCID: PMC2946189 DOI: 10.1016/j.pneurobio.2010.06.006] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Revised: 03/31/2010] [Accepted: 06/08/2010] [Indexed: 12/23/2022]
Abstract
Bee venom injection as a therapy, like many other complementary and alternative medicine approaches, has been used for thousands of years to attempt to alleviate a range of diseases including arthritis. More recently, additional theraupeutic goals have been added to the list of diseases making this a critical time to evaluate the evidence for the beneficial and adverse effects of bee venom injection. Although reports of pain reduction (analgesic and antinociceptive) and anti-inflammatory effects of bee venom injection are accumulating in the literature, it is common knowledge that bee venom stings are painful and produce inflammation. In addition, a significant number of studies have been performed in the past decade highlighting that injection of bee venom and components of bee venom produce significant signs of pain or nociception, inflammation and many effects at multiple levels of immediate, acute and prolonged pain processes. This report reviews the extensive new data regarding the deleterious effects of bee venom injection in people and animals, our current understanding of the responsible underlying mechanisms and critical venom components, and provides a critical evaluation of reports of the beneficial effects of bee venom injection in people and animals and the proposed underlying mechanisms. Although further studies are required to make firm conclusions, therapeutic bee venom injection may be beneficial for some patients, but may also be harmful. This report highlights key patterns of results, critical shortcomings, and essential areas requiring further study.
Collapse
Affiliation(s)
- Jun Chen
- Institute for Biomedical Sciences of Pain and Institute for Functional Brain Disorders, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Baqiao District, Xi’an 710038, PR China
- Institute for Biomedical Sciences of Pain, Capital Medical University, Beijing 100069, PR China
| | - William R. Lariviere
- Departments of Anesthesiology and Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
35
|
Pasquini S, Ligresti A, Mugnaini C, Semeraro T, Cicione L, De Rosa M, Guida F, Luongo L, De Chiaro M, Cascio MG, Bolognini D, Marini P, Pertwee R, Maione S, Di Marzo V, Corelli F. Investigations on the 4-quinolone-3-carboxylic acid motif. 3. Synthesis, structure-affinity relationships, and pharmacological characterization of 6-substituted 4-quinolone-3-carboxamides as highly selective cannabinoid-2 receptor ligands. J Med Chem 2010; 53:5915-28. [PMID: 20718492 DOI: 10.1021/jm100123x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A set of quinolone-3-carboxamides 2 bearing diverse substituents at position 1, 3, and 6 of the bicyclic nucleus was prepared. Except for six compounds exhibiting Ki>100 nM, all the quinolone-3-carboxamides 2 proved to be high affinity CB2 ligands, with Ki values ranging from 73.2 to 0.7 nM and selectivity [SI=Ki(CB1)/Ki(CB2)] varying from >14285 to 1.9, with only 2ah exhibiting a reverse selectivity (SI<1). In the formalin test of peripheral acute and inflammatory pain in mice, 2ae showed analgesic activity that was antagonized by a selective CB2 antagonist. By contrast, 2e was inactive per se and antagonized the effect of a selective CB2 agonist. Finally, 2g and 2p exhibited CB2 inverse agonist-like behavior in this in vivo test. However, two different functional assays carried out in vitro on 2e and 2g indicated for both compounds an overall inverse agonist activity at CB2 receptors.
Collapse
Affiliation(s)
- Serena Pasquini
- Dipartimento Farmaco Chimico Tecnologico, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Pozza DH, Potes CS, Barroso PA, Azevedo L, Castro-Lopes JM, Neto FL. Nociceptive behaviour upon modulation of mu-opioid receptors in the ventrobasal complex of the thalamus of rats. Pain 2010; 148:492-502. [PMID: 20106595 DOI: 10.1016/j.pain.2009.12.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Revised: 11/18/2009] [Accepted: 12/18/2009] [Indexed: 12/22/2022]
Abstract
The role of mu-opioid receptors (MORs) in the inflammatory pain processing mechanisms within the ventrobasal complex of the thalamus (VB) is not well understood. This study investigated the effect of modulating MOR activity upon nociception, by stereotaxically injecting specific ligands in the VB. Nociceptive behaviour was evaluated in two established animal models of inflammatory pain, by using the formalin (acute and tonic pain) and the ankle-bend (chronic monoarthritic pain) tests. Control (saline intra-VB injection) formalin-injected rats showed acute and tonic pain-related behaviours. In contrast, intrathalamic administration of [D-Ala(2), N-Me-Phe(4), Gly(5)-ol]-enkephalin acetate (DAMGO), a MOR-specific agonist, induced a statistically significant decrease of all tonic phase pain-related behaviours assessed until 30-35min after formalin hind paw injection. In the acute phase only the number of paw-jerks was affected. In monoarthritic rats, there was a noticeable antinociceptive effect with approximately 40min of duration, as denoted by the reduced ankle-bend scores observed after DAMGO injection. Intra-VB injection of D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH(2) (CTOP), a specific MOR antagonist, or of CTOP followed, 10min after, by DAMGO had no effects in either formalin or ankle-bend tests. Data show that DAMGO-induced MOR activation in the VB has an antinociceptive effect in the formalin test as well as in chronic pain observed in MA rats, suggesting an important and specific role for MORs in the VB processing of inflammatory pain.
Collapse
Affiliation(s)
- Daniel Humberto Pozza
- Instituto de Histologia e Embriologia, Faculdade de Medicina, Universidade do Porto, Portugal IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal Serviço de Bioestatística e Informática Médica, Faculdade de Medicina, Universidade do Porto, Portugal Centro de Investigação em Tecnologias e Sistemas de Informação em Saúde - CINTESIS, Universidade do Porto, Portugal
| | | | | | | | | | | |
Collapse
|
37
|
Cascio MG, Bolognini D, Pertwee RG, Palazzo E, Corelli F, Pasquini S, Di Marzo V, Maione S. In vitro and in vivo pharmacological characterization of two novel selective cannabinoid CB(2) receptor inverse agonists. Pharmacol Res 2009; 61:349-54. [PMID: 19961936 DOI: 10.1016/j.phrs.2009.11.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 11/26/2009] [Accepted: 11/27/2009] [Indexed: 12/13/2022]
Abstract
We have previously developed quinolone-3-carboxamides with the aim of obtaining new ligands for both cannabinoid receptors, CB1 and CB2. Our preliminary screening led to the identification of cannabinoid receptor ligands characterized by high affinity and, in some cases, also selectivity for CB(2) receptors. Specifically, three compounds, 1, 2 and 3 showed high affinity for CB2 as well as high selectivity over CB1 receptors. In addition, the activity shown by 1 against the formalin-induced nocifensive response in mice, reported in our previous paper, suggests that quinolone-3-carboxamides possess anti-nociceptive properties. In the present work, we have performed functional in vitro bioassays with the aim of investigating the functional activity in the [35S]GTPgammaS binding assay of the other two compounds that, like 1, behave as CB2 selective ligands, and their potential analgesic actions in vivo. We found that both 2 and 3 behave in vitro as CB2 inverse agonists and are able to decrease nociceptive behaviour in the late phase of the formalin test only at the highest dose tested, although, at lower doses, they prevent the anti-nociceptive effects of a selective CB2 partial agonist in the formalin test. These results identify in 2 and 3 two novel, potent and selective CB2 antagonists/inverse agonists and confirm previous reports in the literature that, in addition to agonists at cannabinoid CB2 receptors, also inverse agonists/antagonists at these receptors show promise as anti-inflammatory agents.
Collapse
Affiliation(s)
- Maria Grazia Cascio
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Woode E, Danquah C, Boakye-Gya E, Ansah C, Ainooson G. Antinociceptive Effects of an Ethanolic Extract of Capparis erythrocarpos Isert Roots in the Mice Formalin Test. INT J PHARMACOL 2009. [DOI: 10.3923/ijp.2009.354.361] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
39
|
Brizzi A, Brizzi V, Cascio MG, Corelli F, Guida F, Ligresti A, Maione S, Martinelli A, Pasquini S, Tuccinardi T, Di Marzo V. New Resorcinol−Anandamide “Hybrids” as Potent Cannabinoid Receptor Ligands Endowed with Antinociceptive Activity in Vivo. J Med Chem 2009; 52:2506-14. [DOI: 10.1021/jm8016255] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Antonella Brizzi
- Dipartimento Farmaco Chimico Tecnologico, Università degli Studi di Siena, Via A. Moro 2, 53100 Siena, Italy, Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy, Dipartimento di Medicina Sperimentale, Sezione di Farmacologia “L. Donatelli”, Seconda Università di Napoli, Via Costantinopoli 16, 80138 Napoli, Italy, Dipartimento di Scienze Farmaceutiche, Università di Pisa, Via Bonanno 6, 56126 Pisa,
| | - Vittorio Brizzi
- Dipartimento Farmaco Chimico Tecnologico, Università degli Studi di Siena, Via A. Moro 2, 53100 Siena, Italy, Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy, Dipartimento di Medicina Sperimentale, Sezione di Farmacologia “L. Donatelli”, Seconda Università di Napoli, Via Costantinopoli 16, 80138 Napoli, Italy, Dipartimento di Scienze Farmaceutiche, Università di Pisa, Via Bonanno 6, 56126 Pisa,
| | - Maria Grazia Cascio
- Dipartimento Farmaco Chimico Tecnologico, Università degli Studi di Siena, Via A. Moro 2, 53100 Siena, Italy, Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy, Dipartimento di Medicina Sperimentale, Sezione di Farmacologia “L. Donatelli”, Seconda Università di Napoli, Via Costantinopoli 16, 80138 Napoli, Italy, Dipartimento di Scienze Farmaceutiche, Università di Pisa, Via Bonanno 6, 56126 Pisa,
| | - Federico Corelli
- Dipartimento Farmaco Chimico Tecnologico, Università degli Studi di Siena, Via A. Moro 2, 53100 Siena, Italy, Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy, Dipartimento di Medicina Sperimentale, Sezione di Farmacologia “L. Donatelli”, Seconda Università di Napoli, Via Costantinopoli 16, 80138 Napoli, Italy, Dipartimento di Scienze Farmaceutiche, Università di Pisa, Via Bonanno 6, 56126 Pisa,
| | - Francesca Guida
- Dipartimento Farmaco Chimico Tecnologico, Università degli Studi di Siena, Via A. Moro 2, 53100 Siena, Italy, Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy, Dipartimento di Medicina Sperimentale, Sezione di Farmacologia “L. Donatelli”, Seconda Università di Napoli, Via Costantinopoli 16, 80138 Napoli, Italy, Dipartimento di Scienze Farmaceutiche, Università di Pisa, Via Bonanno 6, 56126 Pisa,
| | - Alessia Ligresti
- Dipartimento Farmaco Chimico Tecnologico, Università degli Studi di Siena, Via A. Moro 2, 53100 Siena, Italy, Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy, Dipartimento di Medicina Sperimentale, Sezione di Farmacologia “L. Donatelli”, Seconda Università di Napoli, Via Costantinopoli 16, 80138 Napoli, Italy, Dipartimento di Scienze Farmaceutiche, Università di Pisa, Via Bonanno 6, 56126 Pisa,
| | - Sabatino Maione
- Dipartimento Farmaco Chimico Tecnologico, Università degli Studi di Siena, Via A. Moro 2, 53100 Siena, Italy, Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy, Dipartimento di Medicina Sperimentale, Sezione di Farmacologia “L. Donatelli”, Seconda Università di Napoli, Via Costantinopoli 16, 80138 Napoli, Italy, Dipartimento di Scienze Farmaceutiche, Università di Pisa, Via Bonanno 6, 56126 Pisa,
| | - Adriano Martinelli
- Dipartimento Farmaco Chimico Tecnologico, Università degli Studi di Siena, Via A. Moro 2, 53100 Siena, Italy, Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy, Dipartimento di Medicina Sperimentale, Sezione di Farmacologia “L. Donatelli”, Seconda Università di Napoli, Via Costantinopoli 16, 80138 Napoli, Italy, Dipartimento di Scienze Farmaceutiche, Università di Pisa, Via Bonanno 6, 56126 Pisa,
| | - Serena Pasquini
- Dipartimento Farmaco Chimico Tecnologico, Università degli Studi di Siena, Via A. Moro 2, 53100 Siena, Italy, Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy, Dipartimento di Medicina Sperimentale, Sezione di Farmacologia “L. Donatelli”, Seconda Università di Napoli, Via Costantinopoli 16, 80138 Napoli, Italy, Dipartimento di Scienze Farmaceutiche, Università di Pisa, Via Bonanno 6, 56126 Pisa,
| | - Tiziano Tuccinardi
- Dipartimento Farmaco Chimico Tecnologico, Università degli Studi di Siena, Via A. Moro 2, 53100 Siena, Italy, Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy, Dipartimento di Medicina Sperimentale, Sezione di Farmacologia “L. Donatelli”, Seconda Università di Napoli, Via Costantinopoli 16, 80138 Napoli, Italy, Dipartimento di Scienze Farmaceutiche, Università di Pisa, Via Bonanno 6, 56126 Pisa,
| | - Vincenzo Di Marzo
- Dipartimento Farmaco Chimico Tecnologico, Università degli Studi di Siena, Via A. Moro 2, 53100 Siena, Italy, Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy, Dipartimento di Medicina Sperimentale, Sezione di Farmacologia “L. Donatelli”, Seconda Università di Napoli, Via Costantinopoli 16, 80138 Napoli, Italy, Dipartimento di Scienze Farmaceutiche, Università di Pisa, Via Bonanno 6, 56126 Pisa,
| |
Collapse
|
40
|
Franchetti P, Cappellacci L, Vita P, Petrelli R, Lavecchia A, Kachler S, Klotz KN, Marabese I, Luongo L, Maione S, Grifantini M. N6-Cycloalkyl- and N6-Bicycloalkyl-C5′(C2′)-modified Adenosine Derivatives as High-Affinity and Selective Agonists at the Human A1 Adenosine Receptor with Antinociceptive Effects in Mice. J Med Chem 2009; 52:2393-406. [DOI: 10.1021/jm801456g] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Palmarisa Franchetti
- Department of Chemical Sciences, University of Camerino, 62032 Camerino, Italy, Department of Pharmaceutical and Toxicological Chemistry, University of Naples “Federico II”, 80131 Naples, Italy, Institut für Pharmakologie and Toxikologie, Universität Würzburg, D-97078 Würzburg, Germany, and Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Second University of Naples, 80138 Naples, Italy
| | - Loredana Cappellacci
- Department of Chemical Sciences, University of Camerino, 62032 Camerino, Italy, Department of Pharmaceutical and Toxicological Chemistry, University of Naples “Federico II”, 80131 Naples, Italy, Institut für Pharmakologie and Toxikologie, Universität Würzburg, D-97078 Würzburg, Germany, and Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Second University of Naples, 80138 Naples, Italy
| | - Patrizia Vita
- Department of Chemical Sciences, University of Camerino, 62032 Camerino, Italy, Department of Pharmaceutical and Toxicological Chemistry, University of Naples “Federico II”, 80131 Naples, Italy, Institut für Pharmakologie and Toxikologie, Universität Würzburg, D-97078 Würzburg, Germany, and Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Second University of Naples, 80138 Naples, Italy
| | - Riccardo Petrelli
- Department of Chemical Sciences, University of Camerino, 62032 Camerino, Italy, Department of Pharmaceutical and Toxicological Chemistry, University of Naples “Federico II”, 80131 Naples, Italy, Institut für Pharmakologie and Toxikologie, Universität Würzburg, D-97078 Würzburg, Germany, and Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Second University of Naples, 80138 Naples, Italy
| | - Antonio Lavecchia
- Department of Chemical Sciences, University of Camerino, 62032 Camerino, Italy, Department of Pharmaceutical and Toxicological Chemistry, University of Naples “Federico II”, 80131 Naples, Italy, Institut für Pharmakologie and Toxikologie, Universität Würzburg, D-97078 Würzburg, Germany, and Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Second University of Naples, 80138 Naples, Italy
| | - Sonja Kachler
- Department of Chemical Sciences, University of Camerino, 62032 Camerino, Italy, Department of Pharmaceutical and Toxicological Chemistry, University of Naples “Federico II”, 80131 Naples, Italy, Institut für Pharmakologie and Toxikologie, Universität Würzburg, D-97078 Würzburg, Germany, and Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Second University of Naples, 80138 Naples, Italy
| | - Karl-Norbert Klotz
- Department of Chemical Sciences, University of Camerino, 62032 Camerino, Italy, Department of Pharmaceutical and Toxicological Chemistry, University of Naples “Federico II”, 80131 Naples, Italy, Institut für Pharmakologie and Toxikologie, Universität Würzburg, D-97078 Würzburg, Germany, and Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Second University of Naples, 80138 Naples, Italy
| | - Ida Marabese
- Department of Chemical Sciences, University of Camerino, 62032 Camerino, Italy, Department of Pharmaceutical and Toxicological Chemistry, University of Naples “Federico II”, 80131 Naples, Italy, Institut für Pharmakologie and Toxikologie, Universität Würzburg, D-97078 Würzburg, Germany, and Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Second University of Naples, 80138 Naples, Italy
| | - Livio Luongo
- Department of Chemical Sciences, University of Camerino, 62032 Camerino, Italy, Department of Pharmaceutical and Toxicological Chemistry, University of Naples “Federico II”, 80131 Naples, Italy, Institut für Pharmakologie and Toxikologie, Universität Würzburg, D-97078 Würzburg, Germany, and Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Second University of Naples, 80138 Naples, Italy
| | - Sabatino Maione
- Department of Chemical Sciences, University of Camerino, 62032 Camerino, Italy, Department of Pharmaceutical and Toxicological Chemistry, University of Naples “Federico II”, 80131 Naples, Italy, Institut für Pharmakologie and Toxikologie, Universität Würzburg, D-97078 Würzburg, Germany, and Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Second University of Naples, 80138 Naples, Italy
| | - Mario Grifantini
- Department of Chemical Sciences, University of Camerino, 62032 Camerino, Italy, Department of Pharmaceutical and Toxicological Chemistry, University of Naples “Federico II”, 80131 Naples, Italy, Institut für Pharmakologie and Toxikologie, Universität Würzburg, D-97078 Würzburg, Germany, and Department of Experimental Medicine, Section of Pharmacology L. Donatelli, Second University of Naples, 80138 Naples, Italy
| |
Collapse
|
41
|
A novel role for receptor like protein tyrosine phosphatase zeta in modulation of sensorimotor responses to noxious stimuli: evidences from knockout mice studies. Behav Brain Res 2009; 201:29-40. [PMID: 19428613 DOI: 10.1016/j.bbr.2009.01.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 01/12/2009] [Accepted: 01/19/2009] [Indexed: 12/27/2022]
Abstract
Receptor like protein tyrosine phosphatase zeta (RPTPz) (also known as RPTPbeta or PTPxi) is a tyrosine phosphatase widely expressed in the nervous system, thought to play a role in cell-cell communication. However, knocking out RPTPz does not induce major neural abnormalities in mice. In order to better assess the potential role of RPTPz in various neural functions, we performed a comprehensive behavioural characterization of CNS/PNS functions in knockout mice (RPTPz -/-) confirming previously observed impaired working memory functions and further demonstrating an altered motor coordination. Moreover, RPTPz -/- mice displayed reduced responses to moderate thermal and tactile stimuli, both in baseline and under inflammatory conditions. These findings assign novel functional role of RPTPz in motor coordination and nociception.
Collapse
|
42
|
BOLD fMRI mapping of brain responses to nociceptive stimuli in rats under ketamine anesthesia. Med Eng Phys 2008; 30:953-8. [DOI: 10.1016/j.medengphy.2007.12.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 12/05/2007] [Accepted: 12/12/2007] [Indexed: 12/25/2022]
|
43
|
Antinociceptive effects of tetrazole inhibitors of endocannabinoid inactivation: cannabinoid and non-cannabinoid receptor-mediated mechanisms. Br J Pharmacol 2008; 155:775-82. [PMID: 18660824 DOI: 10.1038/bjp.2008.308] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE Tetrazoles were recently developed as inhibitors of the cellular uptake of the endocannabinoid anandamide or of its hydrolysis by fatty acid amide hydrolase (FAAH), but were proposed to act also on non-endocannabinoid-related serine hydrolases. EXPERIMENTAL APPROACH We tested, in a model of inflammatory pain induced in mice by formalin, five chemically similar inhibitors: (i) OMDM119 and OMDM122, two potent carbamoyl tetrazole FAAH inhibitors with no effect on anandamide uptake; (ii) LY2183240, a carbamoyl tetrazole with activity as both FAAH and uptake inhibitor; (iii) OMDM132, a non-carbamoyl tetrazole with activity only as uptake inhibitor and iv) OMDM133, a non-carbamoyl tetrazole with no activity at either FAAH or uptake. RESULTS All compounds (2.5-10 mg kg(-1), i.p.) inhibited the second phase of the nocifensive response induced by intraplantar injection of formalin. The effects of OMDM119, OMDM122 and OMDM133 were not antagonized by pretreatment with cannabinoid CB(1) receptor antagonists, such as rimonabant or AM251 (1-3 mg kg(-1), i.p.). The effects of LY2183240 and OMDM132 were fully or partially antagonized by rimonabant, respectively, and the latter compound was also partly antagonized by the CB(2) receptor antagonist, AM630. CONCLUSIONS AND IMPLICATIONS (i) non-FAAH hydrolases might be entirely responsible for the antinociceptive activity of some, but not all, tetrazole FAAH inhibitors, (ii) the presence of a carbamoylating group is neither necessary nor sufficient for such compounds to act through targets other than FAAH and (iii) inhibition of anandamide uptake is responsible for part of this antinociceptive activity, independently of effects on FAAH.
Collapse
|
44
|
Kayser V, Elfassi IE, Aubel B, Melfort M, Julius D, Gingrich JA, Hamon M, Bourgoin S. Mechanical, thermal and formalin-induced nociception is differentially altered in 5-HT1A-/-, 5-HT1B-/-, 5-HT2A-/-, 5-HT3A-/- and 5-HTT-/- knock-out male mice. Pain 2007; 130:235-248. [PMID: 17250964 DOI: 10.1016/j.pain.2006.11.015] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2005] [Revised: 11/07/2006] [Accepted: 11/29/2006] [Indexed: 12/11/2022]
Abstract
Extensive studies in rodents suggest that serotonin (5-HT) modulates nociceptive responses through the stimulation of several receptor types. However, it remains to demonstrate that these receptors participate in the control of nociception under physiological conditions. Pain behaviors of mutants which do not express 5-HT1A, 5-HT1B, 5-HT2A or 5-HT3A receptors, or lacking the 5-HT transporter, compared to paired wild-type mice of the same genetic background, were examined using validated tests based on different sensory modalities. Mechanical (von Frey filaments, tail pressure, tail clip tests), thermal (radiant heat, 46 degrees C water bath, hot-plate test) and formalin-induced nociception were determined in 2- to 3-month-old males. 5-HT1A knock-out mice differed from wild-types by higher thermal sensitivity (hot-plate test only), and 5-HT1B knock-out mice by higher thermal and formalin sensitivity. Both 5-HT2A and 5-HT3A knock-out mice differed from wild-types by a dramatic decrease in the formalin-induced nociceptive responses for phase II (16-45 min after injection/inflammatory phase). In contrast, neither mechanical, thermal nor formalin-induced nociception differed between mutants lacking the 5-HT transporter and paired wild-type mice. Although differences in spontaneous locomotor activity in 5-HT1B-/- (increase) and 5-HT3A-/- (decrease) knock-out mice versus paired wild-types might have confounded differences in nociception, acute 5-HT receptor blockade by selective antagonists was found to replicate in wild-type mice the effects on pain behavior, but not on locomotor activity, of the respective gene knock-out in mutants. These results support the conclusion that the complex control of pain mechanisms by 5-HT, acting at multiple receptors, is physiologically relevant in mice.
Collapse
MESH Headings
- Animals
- Fluorobenzenes/pharmacology
- Granisetron/pharmacology
- Hindlimb
- Hot Temperature
- Male
- Mice
- Mice, Knockout
- Motor Activity
- Nociceptors/physiology
- Pain Measurement
- Physical Stimulation
- Piperazines/pharmacology
- Piperidines/pharmacology
- Pyridines/pharmacology
- Receptor, Serotonin, 5-HT1A/genetics
- Receptor, Serotonin, 5-HT1A/metabolism
- Receptor, Serotonin, 5-HT2A/genetics
- Receptor, Serotonin, 5-HT2A/metabolism
- Receptors, Serotonin/genetics
- Receptors, Serotonin/metabolism
- Receptors, Serotonin, 5-HT3/genetics
- Receptors, Serotonin, 5-HT3/metabolism
- Serotonin 5-HT1 Receptor Antagonists
- Serotonin 5-HT2 Receptor Antagonists
- Serotonin 5-HT3 Receptor Antagonists
- Serotonin Antagonists/pharmacology
- Serotonin Plasma Membrane Transport Proteins/genetics
- Serotonin Plasma Membrane Transport Proteins/metabolism
- Skin Temperature
Collapse
Affiliation(s)
- Valérie Kayser
- University Pierre et Marie Curie-Paris 6, Faculté de Médecine Pierre et Marie Curie, Site Pitié-Salpétrière, IFR 70 des Neurosciences, UMR S677, Paris, F-75013, France INSERM, U677, Paris F-75013, France Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94143, USA Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Han DW, Kweon TD, Lee JS, Yoo YC, Lee YW, Kim S. The Interaction between Intrathecal NMDA Receptor Antagonist and 5-HT 3Receptor Agonist in the Rat Formalin Test. Korean J Anesthesiol 2007. [DOI: 10.4097/kjae.2007.52.6.694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Dong Woo Han
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Korea
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Tae Dong Kweon
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Korea
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Seok Lee
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Korea
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Young Chul Yoo
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Youn-Woo Lee
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Korea
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - SunChong Kim
- Department of Anesthesiology and Pain Medicine, Soonchunhyang University College of Medicine, Seoul, Korea
| |
Collapse
|
46
|
Petrenko AB, Yamakura T, Askalany AR, Kohno T, Sakimura K, Baba H. Effects of ketamine on acute somatic nociception in wild-type and N-methyl-d-aspartate (NMDA) receptor ɛ1 subunit knockout mice. Neuropharmacology 2006; 50:741-7. [PMID: 16427663 DOI: 10.1016/j.neuropharm.2005.11.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Revised: 11/14/2005] [Accepted: 11/29/2005] [Indexed: 10/25/2022]
Abstract
Although the properties of ketamine appear to be well characterized, there is a lot of ambiguity in the literature regarding its analgesic effects. After careful selection of proper experimental conditions and drug doses, we systematically characterized the effects of systemic ketamine on acute somatic nociception in mice and examined the role of the NMDA receptor epsilon1 subunit in mediating its analgesia. Intraperitoneal administration of ketamine was not analgesic in any of the phasic pain assays (thermal, mechanical, electrical) applied to C57BL/6 (wild-type) and NMDA receptor epsilon1 subunit knockout (mutant) mice. Surprisingly, rather than being analgesic for thermal nociception, ketamine showed pronociceptive properties in case of low-intensity heat stimulation in wild-type mice. In the formalin test (tonic pain), ketamine significantly reduced phase 2 nociceptive behavior in both wild-type and mutant mice. These data indicate that in wild-type mice ketamine has no analgesic effect on phasic pain in normal somatic tissues, but alleviates tonic pain after inflammation. Such analgesic spectrum of ketamine can be fully explained by its NMDA receptor antagonist properties. The results for the mutant mice suggest that the epsilon1 subunit of the NMDA receptor does not mediate the analgesic effects of ketamine in tonic pain.
Collapse
Affiliation(s)
- Andrey B Petrenko
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, Asahimachi 1-757, Niigata 951-8510, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Gura EN, Gonchar EM. Microwave-induced and pharmacological suppression of somatic pain under conditions of the formalin test in mice. NEUROPHYSIOLOGY+ 2006. [DOI: 10.1007/s11062-006-0024-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Snutch TP, David LS. T-type calcium channels: an emerging therapeutic target for the treatment of pain. Drug Dev Res 2006. [DOI: 10.1002/ddr.20103] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
49
|
Campos MM, Fernandes ES, Ferreira J, Santos ARS, Calixto JB. Antidepressant-like effects of Trichilia catigua (Catuaba) extract: evidence for dopaminergic-mediated mechanisms. Psychopharmacology (Berl) 2005; 182:45-53. [PMID: 15991001 DOI: 10.1007/s00213-005-0052-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Accepted: 04/29/2005] [Indexed: 11/28/2022]
Abstract
RATIONALE Currently available therapy for depression treatment is often associated with several undesirable side effects, and it is effective only in a certain portion of the population. Therefore, the identification of alternative therapeutic tools for the treatment of depression is still needed. OBJECTIVE The present study analyzed the possible antidepressant-like effects of the Brazilian medicinal plant, Trichilia catigua, in rodents. Attempts were also made to investigate some of the possible mechanisms implicated in its actions. METHODS The antidepressant-like effects of T. catigua extract were assessed in two species of rodents (mice and rats) by means of in vivo (forced swimming test) and in vitro (monoamine reuptake and release in synaptosomal preparations) approaches. RESULTS Acute oral treatment with the extract of T. catigua produced antidepressant-like effects in the forced swimming model in both mice and rats. Anti-immobility actions of T. catigua extract in mice were significantly reversed by haloperidol or by chlorpromazine, but not by pimozide, ketanserin, spiroxatrine or p-chlorophenylalanine. In vitro, T. catigua extract concentration-dependently inhibited the uptake and increased the release of serotonin, and especially of dopamine, from rat brain synaptosomal preparations. CONCLUSIONS The present study provides convincing evidence for a dopamine-mediated antidepressant-like effect of the active principle(s) present in the hydroalcoholic extract of T. catigua in mice and rats when in vivo and in vitro strategies were employed. Therefore, a standardized T. catigua extract or its purified constituents could be of potential interest for the treatment of depressive disorders.
Collapse
Affiliation(s)
- Maria M Campos
- Department of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, 88049-900 Florianópolis, Santa Catarina, Brazil
| | | | | | | | | |
Collapse
|
50
|
Hargraves WA, Hentall ID. Analgesic effects of dietary caloric restriction in adult mice. Pain 2005; 114:455-461. [PMID: 15777870 DOI: 10.1016/j.pain.2005.01.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2004] [Revised: 12/06/2004] [Accepted: 01/18/2005] [Indexed: 11/29/2022]
Abstract
Nociception was studied in male mice, mostly of the C57BL/6 strain, during continuous or prolonged restriction of caloric intake (60% of ad-libitum) from midlife to senescence (up to 105 weeks). Restricted mice showed fewer licking or biting responses 20-60 min after hind paw injection of 5% formalin at 46 and 70 weeks, but not at 93 weeks. Also, they showed longer response latencies around 46 weeks of age in the 52 degrees C hot-plate test, which partial tail amputation failed to affect, although it did produce at least 2 weeks of chronic neuropathic hypersensitivity in ad libitum controls. Injection of collagen subcutaneously at 36-42 weeks led to chronic hyperalgesia in the DBA/1 but not the C57BL/6 strain, measured weekly by the barely nociceptive 50 degrees C hot-plate test to minimize damage. This collagen-induced arthritic hyperalgesia was then gradually and reversibly blocked during 9-15 weeks of caloric restriction starting at 53-58 weeks. In longitudinal trials on normal mice, performed every 2-4 weeks between 42 and 105 weeks with the 50 degrees C hot-plate, caloric restriction led to altered latencies (higher relative to controls) only in the last 10-20 weeks, perhaps because it delayed the onset of age-related peripheral neuropathies. In conclusion, long-term caloric restriction leads to significant hypoalgesia in pre-senescent mice subjected to above-threshold pain of widely different durations, the effect disappearing at later ages unless spontaneous neuropathies become influential. A reduction in cumulative food intake thus appears to generate antinociceptive signals in adult male mice, perhaps serving specifically to promote riskier behavior during prolonged food shortages.
Collapse
|