1
|
Brandt S, Pavlichenko I, Shneidman AV, Patel H, Tripp A, Wong TSB, Lazaro S, Thompson E, Maltz A, Storwick T, Beggs H, Szendrei-Temesi K, Lotsch BV, Kaplan CN, Visser CW, Brenner MP, Murthy VN, Aizenberg J. Nonequilibrium sensing of volatile compounds using active and passive analyte delivery. Proc Natl Acad Sci U S A 2023; 120:e2303928120. [PMID: 37494398 PMCID: PMC10400973 DOI: 10.1073/pnas.2303928120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/22/2023] [Indexed: 07/28/2023] Open
Abstract
Although sensor technologies have allowed us to outperform the human senses of sight, hearing, and touch, the development of artificial noses is significantly behind their biological counterparts. This largely stems from the sophistication of natural olfaction, which relies on both fluid dynamics within the nasal anatomy and the response patterns of hundreds to thousands of unique molecular-scale receptors. We designed a sensing approach to identify volatiles inspired by the fluid dynamics of the nose, allowing us to extract information from a single sensor (here, the reflectance spectra from a mesoporous one-dimensional photonic crystal) rather than relying on a large sensor array. By accentuating differences in the nonequilibrium mass-transport dynamics of vapors and training a machine learning algorithm on the sensor output, we clearly identified polar and nonpolar volatile compounds, determined the mixing ratios of binary mixtures, and accurately predicted the boiling point, flash point, vapor pressure, and viscosity of a number of volatile liquids, including several that had not been used for training the model. We further implemented a bioinspired active sniffing approach, in which the analyte delivery was performed in well-controlled 'inhale-exhale' sequences, enabling an additional modality of differentiation and reducing the duration of data collection and analysis to seconds. Our results outline a strategy to build accurate and rapid artificial noses for volatile compounds that can provide useful information such as the composition and physical properties of chemicals, and can be applied in a variety of fields, including disease diagnosis, hazardous waste management, and healthy building monitoring.
Collapse
Affiliation(s)
- Soeren Brandt
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA02134
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA02138
| | - Ida Pavlichenko
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA02134
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA02138
| | - Anna V. Shneidman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA02134
| | - Haritosh Patel
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA02134
| | - Austin Tripp
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA02138
| | - Timothy S. B. Wong
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA02138
| | - Sean Lazaro
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA02138
| | - Ethan Thompson
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA02138
| | - Aubrey Maltz
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA02138
| | - Thomas Storwick
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA02138
| | - Holden Beggs
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA02138
| | - Katalin Szendrei-Temesi
- Max Planck Institute for Solid State Research, Stuttgart70569, Germany
- Department of Chemistry, Ludwig-Maximilians-Universität München, München81377, Germany
| | - Bettina V. Lotsch
- Max Planck Institute for Solid State Research, Stuttgart70569, Germany
- Department of Chemistry, Ludwig-Maximilians-Universität München, München81377, Germany
| | - C. Nadir Kaplan
- Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, VA24061
- Center for Soft Matter and Biological Physics, Virginia Polytechnic Institute and State University, Blacksburg, VA24061
| | - Claas W. Visser
- Department of Thermal and Fluid Engineering, Faculty of Engineering Technology, University of Twente, Enschede7522 NB, Netherlands
| | - Michael P. Brenner
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA02134
| | - Venkatesh N. Murthy
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA02138
- Center for Brain Science, Harvard University, Cambridge, MA02138
| | - Joanna Aizenberg
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA02134
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA02138
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
| |
Collapse
|
2
|
Imamura G, Minami K, Yoshikawa G. Repetitive Direct Comparison Method for Odor Sensing. BIOSENSORS 2023; 13:368. [PMID: 36979580 PMCID: PMC10046632 DOI: 10.3390/bios13030368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Olfactory sensors are one of the most anticipated applications of gas sensors. To distinguish odors-complex mixtures of gas species, it is necessary to extract sensor responses originating from the target odors. However, the responses of gas sensors tend to be affected by interfering gases with much higher concentrations than target odor molecules. To realize practical applications of olfactory sensors, extracting minute sensor responses of odors from major interfering gases is required. In this study, we propose a repetitive direct comparison (rDC) method, which can highlight the difference in odors by alternately injecting the two target odors into a gas sensor. We verified the feasibility of the rDC method on chocolates with two different flavors by using a sensor system based on membrane-type surface stress sensors (MSS). The odors of the chocolates were measured by the rDC method, and the signal-to-noise ratios (S/N) of the measurements were evaluated. The results showed that the rDC method achieved improved S/N compared to a typical measurement. The result also indicates that sensing signals could be enhanced for a specific combination of receptor materials of MSS and target odors.
Collapse
Affiliation(s)
- Gaku Imamura
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
- Graduate School of Information Science and Technology, Osaka University, 1-2 Yamadaoka, Suita 565-0871, Japan
| | - Kosuke Minami
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Genki Yoshikawa
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
- Materials Science and Engineering, Graduate School of Pure and Applied Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8571, Japan
| |
Collapse
|
3
|
Recent Advances in Nanomechanical Membrane-Type Surface Stress Sensors towards Artificial Olfaction. BIOSENSORS 2022; 12:bios12090762. [PMID: 36140147 PMCID: PMC9496807 DOI: 10.3390/bios12090762] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/08/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022]
Abstract
Nanomechanical sensors have gained significant attention as powerful tools for detecting, distinguishing, and identifying target analytes, especially odors that are composed of a complex mixture of gaseous molecules. Nanomechanical sensors and their arrays are a promising platform for artificial olfaction in combination with data processing technologies, including machine learning techniques. This paper reviews the background of nanomechanical sensors, especially conventional cantilever-type sensors. Then, we focus on one of the optimized structures for static mode operation, a nanomechanical Membrane-type Surface stress Sensor (MSS), and discuss recent advances in MSS and their applications towards artificial olfaction.
Collapse
|
4
|
Shiba K, Imamura G, Yoshikawa G. Odor-Based Nanomechanical Discrimination of Fuel Oils Using a Single Type of Designed Nanoparticles with Nonlinear Viscoelasticity. ACS OMEGA 2021; 6:23389-23398. [PMID: 34549138 PMCID: PMC8444291 DOI: 10.1021/acsomega.1c03270] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Odors are one of the most diverse and complicated gaseous mixtures so that their discrimination is challenging yet attractive because of the rich information about their origin. The more similar the properties of odors are, the more difficult the discrimination becomes. The practical applications, however, often demand such discrimination, especially with a compact sensing platform. In this paper, we show that a nanomaterial designed for a specific type of odors can clearly discriminate them even with a single nanomechanical sensing channel. Fuel oils and their mixture are used as a model target that has similar chemical properties but different compositions mainly consisting of paraffinic, olefinic, naphthenic, and aromatic hydrocarbons. We demonstrate using octadecyl functionalized silica-titania nanoparticles that the difference in the compositions is successfully picked up based on their high affinity for the aliphatic hydrocarbons and alkyl chain length dependent nonlinear viscoelastic behavior. Such a properly designed material is proved to derive sufficient information from a series of analytes to discriminate them even with a single sensing element. This approach provides a guideline to prepare various sensors whose response properties are distinct and optimized depending on applications.
Collapse
Affiliation(s)
- Kota Shiba
- Center
for Functional Sensor & Actuator (CFSN), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- John
A. Paulson School of Engineering and Applied Sciences (SEAS), Harvard University, 9 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Gaku Imamura
- Center
for Functional Sensor & Actuator (CFSN), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- International
Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Genki Yoshikawa
- Center
for Functional Sensor & Actuator (CFSN), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Materials
Science and Engineering, Graduate School of Pure and Applied Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
5
|
Cantilever-Based Sensor Utilizing a Diffractive Optical Element with High Sensitivity to Relative Humidity. SENSORS 2021; 21:s21051673. [PMID: 33804337 PMCID: PMC7957689 DOI: 10.3390/s21051673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 01/02/2023]
Abstract
High-sensitivity and simple, low-cost readout are desirable features for sensors independent of the application area. Micro-cantilever sensors use the deflection induced by the analyte presence to achieve high-sensitivity but possess complex electronic readouts. Current holographic sensors probe the analyte presence by measuring changes in their optical properties, have a simpler low-cost readout, but their sensitivity can be further improved. Here, the two working principles were combined to obtain a new hybrid sensor with enhanced sensitivity. The diffractive element, a holographically patterned thin photopolymer layer, was placed on a polymer (polydimethylsiloxane) layer forming a bi-layer macro-cantilever. The different responses of the layers to analyte presence lead to cantilever deflection. The sensitivity and detection limits were evaluated by measuring the variation in cantilever deflection and diffraction efficiency with relative humidity. It was observed that the sensitivity is tunable by controlling the spatial frequency of the photopolymer gratings and the cantilever thickness. The sensor deflection was also visible to the naked eye, making it a simple, user-friendly device. The hybrid sensor diffraction efficiency response to the target analyte had an increased sensitivity (10-fold when compared with the cantilever or holographic modes operating independently), requiring a minimum upturn in the readout complexity.
Collapse
|
6
|
Fedorov FS, Simonenko NP, Trouillet V, Volkov IA, Plugin IA, Rupasov DP, Mokrushin AS, Nagornov IA, Simonenko TL, Vlasov IS, Simonenko EP, Sevastyanov VG, Kuznetsov NT, Varezhnikov AS, Sommer M, Kiselev I, Nasibulin AG, Sysoev VV. Microplotter-Printed On-Chip Combinatorial Library of Ink-Derived Multiple Metal Oxides as an "Electronic Olfaction" Unit. ACS APPLIED MATERIALS & INTERFACES 2020; 12:56135-56150. [PMID: 33270411 DOI: 10.1021/acsami.0c14055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Information about the surrounding atmosphere at a real timescale significantly relies on available gas sensors to be efficiently combined into multisensor arrays as electronic olfaction units. However, the array's performance is challenged by the ability to provide orthogonal responses from the employed sensors at a reasonable cost. This issue becomes more demanded when the arrays are designed under an on-chip paradigm to meet a number of emerging calls either in the internet-of-things industry or in situ noninvasive diagnostics of human breath, to name a few, for small-sized low-powered detectors. The recent advances in additive manufacturing provide a solid top-down background to develop such chip-based gas-analytical systems under low-cost technology protocols. Here, we employ hydrolytically active heteroligand complexes of metals as ink components for microplotter patterning a multioxide combinatorial library of chemiresistive type at a single chip equipped with multiple electrodes. To primarily test the performance of such a multisensor array, various semiconducting oxides of the p- and n-conductance origins based on pristine and mixed nanocrystalline MnOx, TiO2, ZrO2, CeO2, ZnO, Cr2O3, Co3O4, and SnO2 thin films, of up to 70 nm thick, have been printed over hundred μm areas and their micronanostructure and fabrication conditions are thoroughly assessed. The developed multioxide library is shown to deliver at a range of operating temperatures, up to 400 °C, highly sensitive and highly selective vector signals to different, but chemically akin, alcohol vapors (methanol, ethanol, isopropanol, and n-butanol) as examples at low ppm concentrations when mixed with air. The suggested approach provides us a promising way to achieve cost-effective and well-performed electronic olfaction devices matured from the diverse chemiresistive responses of the printed nanocrystalline oxides.
Collapse
Affiliation(s)
- Fedor S Fedorov
- Laboratory of Nanomaterials, Skolkovo Institute of Science and Technology, 3 Nobel Street, Moscow 121205, Russia
| | - Nikolay P Simonenko
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky Pr., Moscow 119991, Russia
| | - Vanessa Trouillet
- Institute for Applied Materials (IAM) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Ivan A Volkov
- Moscow Institute of Physics and Technology (MIPT), 9 Institutskiy per., Dolgoprudny, Moscow Region 141701, Russia
| | - Ilya A Plugin
- Department of Physics, Yuri Gagarin State Technical University of Saratov, 77 Polytechnicheskaya Street, Saratov 410054, Russia
| | - Dmitry P Rupasov
- Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, 3 Nobel Street, Moscow 121205, Russia
| | - Artem S Mokrushin
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky Pr., Moscow 119991, Russia
| | - Ilya A Nagornov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky Pr., Moscow 119991, Russia
| | - Tatiana L Simonenko
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky Pr., Moscow 119991, Russia
| | - Ivan S Vlasov
- Moscow Institute of Physics and Technology (MIPT), 9 Institutskiy per., Dolgoprudny, Moscow Region 141701, Russia
| | - Elizaveta P Simonenko
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky Pr., Moscow 119991, Russia
| | - Vladimir G Sevastyanov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky Pr., Moscow 119991, Russia
| | - Nikolay T Kuznetsov
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, 31 Leninsky Pr., Moscow 119991, Russia
| | - Alexey S Varezhnikov
- Department of Physics, Yuri Gagarin State Technical University of Saratov, 77 Polytechnicheskaya Street, Saratov 410054, Russia
| | - Martin Sommer
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Ilia Kiselev
- Breitmeier Messtechnik GmbH, Englerstr. 27, 76275 Ettlingen, Germany
| | - Albert G Nasibulin
- Laboratory of Nanomaterials, Skolkovo Institute of Science and Technology, 3 Nobel Street, Moscow 121205, Russia
- Aalto University School of Chemical Engineering, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Victor V Sysoev
- Department of Physics, Yuri Gagarin State Technical University of Saratov, 77 Polytechnicheskaya Street, Saratov 410054, Russia
| |
Collapse
|
7
|
Venturelli L, Kohler AC, Stupar P, Villalba MI, Kalauzi A, Radotic K, Bertacchi M, Dinarelli S, Girasole M, Pešić M, Banković J, Vela ME, Yantorno O, Willaert R, Dietler G, Longo G, Kasas S. A perspective view on the nanomotion detection of living organisms and its features. J Mol Recognit 2020; 33:e2849. [PMID: 32227521 DOI: 10.1002/jmr.2849] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 12/23/2022]
Abstract
The insurgence of newly arising, rapidly developing health threats, such as drug-resistant bacteria and cancers, is one of the most urgent public-health issues of modern times. This menace calls for the development of sensitive and reliable diagnostic tools to monitor the response of single cells to chemical or pharmaceutical stimuli. Recently, it has been demonstrated that all living organisms oscillate at a nanometric scale and that these oscillations stop as soon as the organisms die. These nanometric scale oscillations can be detected by depositing living cells onto a micro-fabricated cantilever and by monitoring its displacements with an atomic force microscope-based electronics. Such devices, named nanomotion sensors, have been employed to determine the resistance profiles of life-threatening bacteria within minutes, to evaluate, among others, the effect of chemicals on yeast, neurons, and cancer cells. The data obtained so far demonstrate the advantages of nanomotion sensing devices in rapidly characterizing microorganism susceptibility to pharmaceutical agents. Here, we review the key aspects of this technique, presenting its major applications. and detailing its working protocols.
Collapse
Affiliation(s)
- Leonardo Venturelli
- Laboratoire de Physique de la Matière Vivante, Institut de Physique, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Anne-Céline Kohler
- Laboratoire de Physique de la Matière Vivante, Institut de Physique, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Petar Stupar
- Laboratoire de Physique de la Matière Vivante, Institut de Physique, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Maria I Villalba
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI-CONICET-CCT La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Aleksandar Kalauzi
- Institute for Multidisciplinary Research, Department of Life Sciences, University of Belgrade, Belgrade, Serbia
| | - Ksenija Radotic
- Institute for Multidisciplinary Research, Department of Life Sciences, University of Belgrade, Belgrade, Serbia
| | | | - Simone Dinarelli
- Consiglio Nazionale delle Ricerche - Istituto di Struttura della Materia, CNR-ISM, Rome, Italy
| | - Marco Girasole
- Consiglio Nazionale delle Ricerche - Istituto di Struttura della Materia, CNR-ISM, Rome, Italy
| | - Milica Pešić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jasna Banković
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Maria E Vela
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA-CONICET-CCT La Plata), Universidad Nacional de La Plata, La Plata, Argentina
| | - Osvaldo Yantorno
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI-CONICET-CCT La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Ronnie Willaert
- ARG VUB-UGent NanoMicrobiology, IJRG VUB-EPFL BioNanotechnology & NanoMedicine, Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Giovanni Dietler
- Laboratoire de Physique de la Matière Vivante, Institut de Physique, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Giovanni Longo
- Consiglio Nazionale delle Ricerche - Istituto di Struttura della Materia, CNR-ISM, Rome, Italy
| | - Sandor Kasas
- Laboratoire de Physique de la Matière Vivante, Institut de Physique, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Centre Universitaire Romand de Médecine Légale, UFAM, Université de Lausanne, Lausanne, Switzerland
| |
Collapse
|
8
|
Körner J. Effective sensor properties and sensitivity considerations of a dynamic co-resonantly coupled cantilever sensor. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2018; 9:2546-2560. [PMID: 30345217 PMCID: PMC6176814 DOI: 10.3762/bjnano.9.237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/22/2018] [Indexed: 06/08/2023]
Abstract
Background: Co-resonant coupling of a micro- and a nanocantilever can be introduced to significantly enhance the sensitivity of dynamic-mode cantilever sensors while maintaining the ease of detection. Experimentally, a low-stiffness nanocantilever is coupled to an easy to read out microcantilever and the eigenfrequencies of both beams are brought close to one another. This results in a strong interplay between both beams and, hence, any interaction applied at the nanocantilever alters the oscillatory state of the coupled system as a whole and can be detected at the microcantilever. The amplitude response curve of the microcantilever exhibits two resonance peaks and their response to an interaction applied to the sensor depends on the properties of the individual beams and the degree of frequency matching. Consequently, while an individual cantilever is characterized by its eigenfrequency, spring constant, effective mass and quality factor, the resonance peaks of the co-resonantly coupled system can be described by effective properties which are a mixture of both subsystem's characteristics. These effective properties give insight into the amount of sensitivity of the nanocantilever that can be accessed and, consequently, into the sensitivity gain associated with the co-resonance. In order to design sensors based on the co-resonant principle and predict their behaviour it is crucial to derive a description for these effective sensor properties. Results: By modeling the co-resonantly coupled system as a coupled harmonic oscillator and using electromechanical analogies, analytical expressions for the effective sensor properties have been derived and discussed. To illustrate the findings, numerical values for an exemplary system based on experimental sensor realizations have been employed. The results give insight into the complex interplay between the individual subsystem's properties and the frequency matching, leading to a rather large parameter space for the co-resonant system's effective properties. While the effective spring constant and effective mass mainly define the sensitivity of the coupled cantilever sensor, the effective quality factor primarily influences the detectability. Hence, a balance has to be found in optimizing both parameters in sensor design which becomes possible with the derived analytic expressions. Besides the description of effective sensor properties, it was studied how the thermal noise and, consequently, minimal detectable frequency shift for the co-resonantly coupled sensor represented by a coupled harmonic oscillator could be derived. Due to the complex nature of the coupled system's transfer function and the required analysis, it is beyond the scope of this publication to present a full solution. Instead, a simplified approach to estimate the minimal detectable frequency shift for the co-resonant system based on the effective sensor properties is given. Conclusion: By establishing a theoretical description for the effective sensor properties of a co-resonantly coupled system, the design of such systems is facilitated as sensor parameters can easily be predicted and adapted for a desired use case. It allows to study the potential sensitivity (gain) and detectability capabilities before sensor fabrication in a fast and easy way, even for large parameter spaces. So far, such an analysis of a co-resonantly coupled sensor was only possible with numerical methods and even then only with very limited capability to include and understand the complex interplay between all contributions. The outlined calculation steps regarding the noise considerations in a coupled harmonic oscillator system can provide the basis for a thorough study of that question. Furthermore, in a broader scope, the investigations presented within this work contribute towards extending and completing the already established theoretical basics of this novel co-resonant sensor concept and open up new ways of studying the coupled system's behaviour.
Collapse
Affiliation(s)
- Julia Körner
- University of Utah, 50 S. Central Campus Dr #2110, Salt Lake City, Utah, 84112, USA
| |
Collapse
|
9
|
Hong S, Lee C. The Current Status and Future Outlook of Quantum Dot-Based Biosensors for Plant Virus Detection. THE PLANT PATHOLOGY JOURNAL 2018; 34:85-92. [PMID: 29628814 PMCID: PMC5880352 DOI: 10.5423/ppj.rw.08.2017.0184] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 01/14/2018] [Accepted: 01/18/2018] [Indexed: 05/23/2023]
Abstract
Enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR), widely used for the detection of plant viruses, are not easily performed, resulting in a demand for an innovative and more efficient diagnostic method. This paper summarizes the characteristics and research trends of biosensors focusing on the physicochemical properties of both interface elements and bioconjugates. In particular, the topological and photophysical properties of quantum dots (QDs) are discussed, along with QD-based biosensors and their practical applications. The QD-based Fluorescence Resonance Energy Transfer (FRET) genosensor, most widely used in the biomolecule detection fields, and QD-based nanosensor for Rev-RRE interaction assay are presented as examples. In recent years, QD-based biosensors have emerged as a new class of sensor and are expected to open opportunities in plant virus detection, but as yet there have been very few practical applications (Table 3). In this article, the details of those cases and their significance for the future of plant virus detection will be discussed.
Collapse
Affiliation(s)
| | - Cheolho Lee
- Corresponding author. Phone) +82-2-940-7188, E-mail)
| |
Collapse
|
10
|
Sposito AJ, Kurdekar A, Zhao J, Hewlett I. Application of nanotechnology in biosensors for enhancing pathogen detection. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2018. [PMID: 29528198 DOI: 10.1002/wnan.1512] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Rapid detection and identification of pathogenic microorganisms is fundamental to minimizing the spread of infectious disease, and informing clinicians on patient treatment strategies. This need has led to the development of enhanced biosensors that utilize state of the art nanomaterials and nanotechnology, and represent the next generation of diagnostics. A primer on nanoscale biorecognition elements such as, nucleic acids, antibodies, and their synthetic analogs (molecular imprinted polymers), will be presented first. Next the application of various nanotechnologies for biosensor transduction will be discussed, along with the inherent nanoscale phenomenon that leads to their improved performance and capabilities in biosensor systems. A future outlook on characterization and quality assurance, nanotoxicity, and nanomaterial integration into lab-on-a-chip systems will provide the closing thoughts. This article is categorized under: Diagnostic Tools > Diagnostic Nanodevices Diagnostic Tools > Biosensing.
Collapse
Affiliation(s)
- Alex J Sposito
- Laboratory of Molecular Virology, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Aditya Kurdekar
- Laboratories for Nanoscience and Nanotechnology Research, Sri Sathya Sai Institute of Higher Learning, Anantapur, India
| | - Jiangqin Zhao
- Laboratory of Molecular Virology, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Indira Hewlett
- Laboratory of Molecular Virology, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|
11
|
Design and Electro-Thermo-Mechanical Behavior Analysis of Au/Si₃N₄ Bimorph Microcantilevers for Static Mode Sensing. SENSORS 2017; 17:s17112510. [PMID: 29104265 PMCID: PMC5713188 DOI: 10.3390/s17112510] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/23/2017] [Accepted: 10/29/2017] [Indexed: 11/16/2022]
Abstract
This paper presents a design optimization method based on theoretical analysis and numerical calculations, using a commercial multi-physics solver (e.g., ANSYS and ESI CFD-ACE+), for a 3D continuous model, to analyze the bending characteristics of an electrically heated bimorph microcantilever. The results from the theoretical calculation and numerical analysis are compared with those measured using a CCD camera and magnification lenses for a chip level microcantilever array fabricated in this study. The bimorph microcantilevers are thermally actuated by joule heating generated by a 0.4 μm thin-film Au heater deposited on 0.6 μm Si₃N₄ microcantilevers. The initial deflections caused by residual stress resulting from the thermal bonding of two metallic layers with different coefficients of thermal expansion (CTEs) are additionally considered, to find the exact deflected position. The numerically calculated total deflections caused by electrical actuation show differences of 10%, on average, with experimental measurements in the operating current region (i.e., ~25 mA) to prevent deterioration by overheating. Bimorph microcantilevers are promising components for use in various MEMS (Micro-Electro-Mechanical System) sensing applications, and their deflection characteristics in static mode sensing are essential for detecting changes in thermal stress on the surface of microcantilevers.
Collapse
|
12
|
Abstract
Early liver cancer diagnosis has clinical significance in treating cancer. Joint detection of multiple biomarkers has been considered as an effective and reliable method for early cancer diagnosis. In this work, a novel biosensor based on microcantilever array was batch-fabricated for multiple liver cancer biomarkers detection with high sensitivity, high accuracy, high throughput, and high specification. A micro-cavity was designed in the free end of the cantilever for local reaction between antibody and antigen, which can dramatically reduce the effect of adsorption-induced stiffness coefficient k variation. Furthermore,the pillar arrays in the micro-cavity were designed for increasing detection upper limit. A linear relationship between the relative frequency shift and the antigen concentration was observed for three liver cancer biomarkers, alpha-fetoprotein (AFP), γ-glutamyltranspeptidase II (GGT-2), and hepatocyte growth factor (HGF). Slight cross-reaction response to different antigens ensures high specificity of the sensor. These features will promote clinical application of the cantilever sensors in early cancer diagnosis.
Collapse
|
13
|
Effect of water-DNA interactions on elastic properties of DNA self-assembled monolayers. Sci Rep 2017; 7:536. [PMID: 28373707 PMCID: PMC5428875 DOI: 10.1038/s41598-017-00605-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 03/07/2017] [Indexed: 12/18/2022] Open
Abstract
DNA-water interactions have revealed as very important actor in DNA mechanics, from the molecular to the macroscopic scale. Given the particularly useful properties of DNA molecules to engineer novel materials through self-assembly and by bridging organic and inorganic materials, the interest in understanding DNA elasticity has crossed the boundaries of life science to reach also materials science and engineering. Here we show that thin films of DNA constructed through the self-assembly of sulfur tethered ssDNA strands demonstrate a Young's modulus tuning range of about 10 GPa by simply varying the environment relative humidity from 0% up to 70%. We observe that the highest tuning range occurs for ssDNA grafting densities of about 3.5 × 1013 molecules/cm 2, where the distance between the molecules maximizes the water mediated interactions between the strands. Upon hybridization with the complementary strand, the DNA self-assembled monolayers significantly soften by one order of magnitude and their Young's modulus dependency on the hydration state drastically decreases. The experimental observations are in agreement with molecular dynamics simulations.
Collapse
|
14
|
|
15
|
Mathew R, Sankar AR. Numerical study on the influence of buried oxide layer of SOI wafers on the terminal characteristics of a micro/nano cantilever biosensor with an integrated piezoresistor. Biomed Phys Eng Express 2016. [DOI: 10.1088/2057-1976/2/5/055012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Piezoresistive Membrane Surface Stress Sensors for Characterization of Breath Samples of Head and Neck Cancer Patients. SENSORS 2016; 16:s16071149. [PMID: 27455276 PMCID: PMC4970191 DOI: 10.3390/s16071149] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 07/09/2016] [Accepted: 07/14/2016] [Indexed: 02/04/2023]
Abstract
For many diseases, where a particular organ is affected, chemical by-products can be found in the patient’s exhaled breath. Breath analysis is often done using gas chromatography and mass spectrometry, but interpretation of results is difficult and time-consuming. We performed characterization of patients’ exhaled breath samples by an electronic nose technique based on an array of nanomechanical membrane sensors. Each membrane is coated with a different thin polymer layer. By pumping the exhaled breath into a measurement chamber, volatile organic compounds present in patients’ breath diffuse into the polymer layers and deform the membranes by changes in surface stress. The bending of the membranes is measured piezoresistively and the signals are converted into voltages. The sensor deflection pattern allows one to characterize the condition of the patient. In a clinical pilot study, we investigated breath samples from head and neck cancer patients and healthy control persons. Evaluation using principal component analysis (PCA) allowed a clear distinction between the two groups. As head and neck cancer can be completely removed by surgery, the breath of cured patients was investigated after surgery again and the results were similar to those of the healthy control group, indicating that surgery was successful.
Collapse
|
17
|
Singh SS, Pal P, Pandey AK, Xing Y, Sato K. Determination of precise crystallographic directions for mask alignment in wet bulk micromachining for MEMS. MICRO AND NANO SYSTEMS LETTERS 2016. [DOI: 10.1186/s40486-016-0027-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
18
|
Numerical Modeling and Experimental Validation by Calorimetric Detection of Energetic Materials Using Thermal Bimorph Microcantilever Array: A Case Study on Sensing Vapors of Volatile Organic Compounds (VOCs). SENSORS 2015; 15:21785-806. [PMID: 26334276 PMCID: PMC4610452 DOI: 10.3390/s150921785] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 08/23/2015] [Accepted: 08/27/2015] [Indexed: 11/22/2022]
Abstract
Bi-layer (Au-Si3N4) microcantilevers fabricated in an array were used to detect vapors of energetic materials such as explosives under ambient conditions. The changes in the bending response of each thermal bimorph (i.e., microcantilever) with changes in actuation currents were experimentally monitored by measuring the angle of the reflected ray from a laser source used to illuminate the gold nanocoating on the surface of silicon nitride microcantilevers in the absence and presence of a designated combustible species. Experiments were performed to determine the signature response of this nano-calorimeter platform for each explosive material considered for this study. Numerical modeling was performed to predict the bending response of the microcantilevers for various explosive materials, species concentrations, and actuation currents. The experimental validation of the numerical predictions demonstrated that in the presence of different explosive or combustible materials, the microcantilevers exhibited unique trends in their bending responses with increasing values of the actuation current.
Collapse
|
19
|
Lowry TW, Prommapan P, Rainer Q, Van Winkle D, Lenhert S. Lipid Multilayer Grating Arrays Integrated by Nanointaglio for Vapor Sensing by an Optical Nose. SENSORS 2015; 15:20863-72. [PMID: 26308001 PMCID: PMC4570451 DOI: 10.3390/s150820863] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 07/29/2015] [Accepted: 08/17/2015] [Indexed: 01/06/2023]
Abstract
Lipid multilayer gratings are recently invented nanomechanical sensor elements that are capable of transducing molecular binding to fluid lipid multilayers into optical signals in a label free manner due to shape changes in the lipid nanostructures. Here, we show that nanointaglio is suitable for the integration of chemically different lipid multilayer gratings into a sensor array capable of distinguishing vapors by means of an optical nose. Sensor arrays composed of six different lipid formulations are integrated onto a surface and their optical response to three different vapors (water, ethanol and acetone) in air as well as pH under water is monitored as a function of time. Principal component analysis of the array response results in distinct clustering indicating the suitability of the arrays for distinguishing these analytes. Importantly, the nanointaglio process used here is capable of producing lipid gratings out of different materials with sufficiently uniform heights for the fabrication of an optical nose.
Collapse
Affiliation(s)
- Troy W Lowry
- Department of Biological Science and Integrative Nanoscience Institute, Florida State University, 89 Chieftan Way, Tallahassee, FL 32304, USA.
- Department of Physics, Florida State University, 77 Chieftan Way, Tallahassee, FL 32304, USA.
| | - Plengchart Prommapan
- Department of Physics, Florida State University, 77 Chieftan Way, Tallahassee, FL 32304, USA.
| | - Quinn Rainer
- Department of Biological Science and Integrative Nanoscience Institute, Florida State University, 89 Chieftan Way, Tallahassee, FL 32304, USA.
| | - David Van Winkle
- Department of Physics, Florida State University, 77 Chieftan Way, Tallahassee, FL 32304, USA.
| | - Steven Lenhert
- Department of Biological Science and Integrative Nanoscience Institute, Florida State University, 89 Chieftan Way, Tallahassee, FL 32304, USA.
| |
Collapse
|
20
|
Zheng W, Du R, Cao Y, Mohammad MA, Dew SK, McDermott MT, Evoy S. Diazonium Chemistry for the Bio-Functionalization of Glassy Nanostring Resonator Arrays. SENSORS 2015; 15:18724-41. [PMID: 26263989 PMCID: PMC4570343 DOI: 10.3390/s150818724] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 07/10/2015] [Accepted: 07/17/2015] [Indexed: 11/16/2022]
Abstract
Resonant glassy nanostrings have been employed for the detection of biomolecules. These devices offer high sensitivity and amenability to large array integration and multiplexed assays. Such a concept has however been impaired by the lack of stable and biocompatible linker chemistries. Diazonium salt reduction-induced aryl grafting is an aqueous-based process providing strong chemical adhesion. In this work, diazonium-based linker chemistry was performed for the first time on glassy nanostrings, which enabled the bio-functionalization of such devices. Large arrays of nanostrings with ultra-narrow widths down to 10 nm were fabricated employing electron beam lithography. Diazonium modification was first developed on SiCN surfaces and validated by X-ray photoelectron spectroscopy. Similarly modified nanostrings were then covalently functionalized with anti-rabbit IgG as a molecular probe. Specific enumeration of rabbit IgG was successfully performed through observation of downshifts of resonant frequencies. The specificity of this enumeration was confirmed through proper negative control experiments. Helium ion microscopy further verified the successful functionalization of nanostrings.
Collapse
Affiliation(s)
- Wei Zheng
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2V4, Canada.
| | - Rongbing Du
- Department of Chemistry and National Institute for Nanotechnology, University of Alberta, Edmonton, AB T6G 2G2, Canada.
| | - Yong Cao
- Department of Chemistry and National Institute for Nanotechnology, University of Alberta, Edmonton, AB T6G 2G2, Canada.
| | - Mohammad A Mohammad
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2V4, Canada.
| | - Steven K Dew
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2V4, Canada.
| | - Mark T McDermott
- Department of Chemistry and National Institute for Nanotechnology, University of Alberta, Edmonton, AB T6G 2G2, Canada.
| | - Stephane Evoy
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2V4, Canada.
| |
Collapse
|
21
|
Chae I, Lee D, Kim S, Thundat T. Electronic Nose for Recognition of Volatile Vapor Mixtures Using a Nanopore-Enhanced Opto-Calorimetric Spectroscopy. Anal Chem 2015; 87:7125-32. [PMID: 26111073 DOI: 10.1021/acs.analchem.5b00915] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An electronic nose (e-nose) for identification and quantification of volatile organic compounds (VOCs) vapor mixtures was developed using nanopore-enhanced opto-calorimetric spectroscopy. Opto-calorimetric spectroscopy based on specific molecular vibrational transitions in the mid infrared (IR) "molecular fingerprint" regime allows highly selective detection of VOCs vapor mixtures. Nanoporous anodic aluminum oxide (AAO) microcantilevers, fabricated using a two-step anodization and simple photolithography process, were utilized as highly sensitive thermomechanical sensors for opto-calorimetric signal transduction. The AAO microcantilevers were optimized by fine-tuning AAO nanopore diameter in order to enhance their thermomechanical sensitivity as well as their surface area. The thermomechanical sensitivity of a bilayer AAO microcantilever with a 60 nm pore diameter was approximately 1 μm/K, which is far superior to that of a bilayer plain silicon (Si) microcantilever. The adsorbed molecules of VOCs mixtures on the AAO microcantilever were fully recognized and quantified by variations of peak positions and amplitudes in the opto-calorimetric IR spectra as well as by shifts in the resonance frequency of the AAO microcantilever with the adsorbed molecules. Furthermore, identification of complex organic compounds with a real industrial sample was demonstrated by this e-nose system.
Collapse
Affiliation(s)
- Inseok Chae
- †Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2V4, Canada
| | - Dongkyu Lee
- †Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2V4, Canada.,§Daegu Research Center for Medical Devices, Korea Institute of Machinery and Materials, Daegu 711-880, Republic of Korea
| | - Seonghwan Kim
- ‡Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Thomas Thundat
- †Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2V4, Canada
| |
Collapse
|
22
|
De Simoni G, Signore G, Agostini M, Beltram F, Piazza V. A surface-acoustic-wave-based cantilever bio-sensor. Biosens Bioelectron 2015; 68:570-576. [DOI: 10.1016/j.bios.2014.12.058] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 11/13/2014] [Accepted: 12/27/2014] [Indexed: 11/24/2022]
|
23
|
Jiang C, Tang C, Song J. The smallest resonator arrays in atmosphere by chip-size-grown nanowires with tunable Q-factor and frequency for subnanometer thickness detection. NANO LETTERS 2015; 15:1128-1134. [PMID: 25575294 DOI: 10.1021/nl504135x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A chip-size vertically aligned nanowire (NW) resonator arrays (VNRs) device has been fabricated with simple one-step lithography process by using grown self-assembled zinc oxide (ZnO) NW arrays. VNR has cantilever diameter of 50 nm, which breakthroughs smallest resonator record (>100 nm) functioning in atmosphere. A new atomic displacement sensing method by using atomic force microscopy is developed to effectively identify the resonance of NW resonator with diameter 50 nm in atmosphere. Size-effect and half-dimensional properties of the NW resonator have been systematically studied. Additionally, VNR has been demonstrated with the ability of detecting nanofilm thickness with subnanometer (<10(-9)m) resolution.
Collapse
Affiliation(s)
- Chengming Jiang
- Department of Metallurgical and Materials Engineering, Center for Materials for Information Technology (MINT), The University of Alabama , Tuscaloosa, Alabama 35487, United States
| | | | | |
Collapse
|
24
|
Putrino G, Martyniuk M, Keating A, Faraone L, Dell J. On-chip read-out of picomechanical motion under ambient conditions. NANOSCALE 2015; 7:1927-1933. [PMID: 25529834 DOI: 10.1039/c4nr05419a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Monitoring the nanomechanical movement of suspended cantilever structures has found use in applications ranging from biological/chemical sensing to atomic force microscopy. Interrogating these sensors relies on the ability to accurately determine the sub-nanometre movements of the cantilever. Here we investigate a technique based on the combination of integrated silicon photonics and microelectromechanical systems (MEMS) to create an optically resonant microcavity and demonstrate its use for monitoring of the position of cantilevers on the picometer scale under ambient conditions with dynamic range extending over several microns. The technique is interferometric, and we show it to be sufficiently sensitive to measure both the first and second modes of cantilever Brownian motion. We anticipate that application of this technique will provide a physically robust, picometer precision, integrated cantilever movement read-out technology which can take cantilever sensors from laboratory controlled environments into real world conditions, allowing everyday applications.
Collapse
Affiliation(s)
- Gino Putrino
- The University of Western Australia, School of Electrical, Electronic and Computer Engineering, University of Western Australia, Perth, WA 6009, Australia.
| | | | | | | | | |
Collapse
|
25
|
Manai R, Scorsone E, Rousseau L, Ghassemi F, Possas Abreu M, Lissorgues G, Tremillon N, Ginisty H, Arnault JC, Tuccori E, Bernabei M, Cali K, Persaud K, Bergonzo P. Grafting odorant binding proteins on diamond bio-MEMS. Biosens Bioelectron 2014; 60:311-7. [DOI: 10.1016/j.bios.2014.04.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/05/2014] [Accepted: 04/12/2014] [Indexed: 12/01/2022]
|
26
|
Lim YC, Kouzani AZ, Duan W, Dai XJ, Kaynak A, Mair D. A surface-stress-based microcantilever aptasensor. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2014; 8:15-24. [PMID: 24681916 DOI: 10.1109/tbcas.2013.2286255] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Biosensors based on microcantilevers convert biological recognition events into measurable mechanical displacements. They offer advantages such as small size, low sample volume, label-free detection, ease of integration, high-throughput analysis, and low development cost. The design and development of a microcantilever-based aptasensor employing SU-8 polymer as the fabrication material is presented in this paper. Aptamers are employed as bioreceptor elements because they exhibit superior specificity compared to antibodies due to their small size and physicochemical stability. To immobilise thrombin DNA aptamer on the bare SU-8 surface of the aptasensor, a combined plasma mode treatment method is implemented which modifies the surface of the aptasensor. Label-free detection of thrombin molecules using the fabricated aptasensor is successfully demonstrated. The measured deflection is one order of magnitude higher than that of a silicon nitride microcantilever biosensor. The developed aptasensor also demonstrates high specificity.
Collapse
|
27
|
Ndieyira JW, Watari M, McKendry RA. Nanomechanics of drug-target interactions and antibacterial resistance detection. J Vis Exp 2013:e50719. [PMID: 24192763 PMCID: PMC3963422 DOI: 10.3791/50719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cantilever sensor, which acts as a transducer of reactions between model bacterial cell wall matrix immobilized on its surface and antibiotic drugs in solution, has shown considerable potential in biochemical sensing applications with unprecedented sensitivity and specificity1-5. The drug-target interactions generate surface stress, causing the cantilever to bend, and the signal can be analyzed optically when it is illuminated by a laser. The change in surface stress measured with nano-scale precision allows disruptions of the biomechanics of model bacterial cell wall targets to be tracked in real time. Despite offering considerable advantages, multiple cantilever sensor arrays have never been applied in quantifying drug-target binding interactions. Here, we report on the use of silicon multiple cantilever arrays coated with alkanethiol self-assembled monolayers mimicking bacterial cell wall matrix to quantitatively study antibiotic binding interactions. To understand the impact of vancomycin on the mechanics of bacterial cell wall structures1,6,7. We developed a new model1 which proposes that cantilever bending can be described by two independent factors; i) namely a chemical factor, which is given by a classical Langmuir adsorption isotherm, from which we calculate the thermodynamic equilibrium dissociation constant (Kd) and ii) a geometrical factor, essentially a measure of how bacterial peptide receptors are distributed on the cantilever surface. The surface distribution of peptide receptors (p) is used to investigate the dependence of geometry and ligand loading. It is shown that a threshold value of p ~10% is critical to sensing applications. Below which there is no detectable bending signal while above this value, the bending signal increases almost linearly, revealing that stress is a product of a local chemical binding factor and a geometrical factor combined by the mechanical connectivity of reacted regions and provides a new paradigm for design of powerful agents to combat superbug infections.
Collapse
Affiliation(s)
- Joseph W Ndieyira
- London Centre for Nanotechnology and Departments of Medicine, University College London
| | | | | |
Collapse
|
28
|
Urwyler P, Köser J, Schift H, Gobrecht J, Müller B. Nano-Mechanical Transduction of Polymer Micro-Cantilevers to Detect Bio-Molecular Interactions. Biointerphases 2012; 7:6. [DOI: 10.1007/s13758-011-0006-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 11/18/2011] [Indexed: 10/14/2022] Open
|
29
|
Chen Y, Xu P, Li X. Axial-Stressed Piezoresistive Nanobeam for Ultrahigh Chemomechanical Sensitivity to Molecular Adsorption. Anal Chem 2012; 84:8184-9. [DOI: 10.1021/ac301388k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ying Chen
- State Key
Lab of Transducer Technology, and Science
and Technology on Microsystem Lab, Shanghai Institute of Microsystem
and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050, China
| | - Pengcheng Xu
- State Key
Lab of Transducer Technology, and Science
and Technology on Microsystem Lab, Shanghai Institute of Microsystem
and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050, China
| | - Xinxin Li
- State Key
Lab of Transducer Technology, and Science
and Technology on Microsystem Lab, Shanghai Institute of Microsystem
and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050, China
| |
Collapse
|
30
|
Atomic force microscopy as a tool applied to nano/biosensors. SENSORS 2012; 12:8278-300. [PMID: 22969400 PMCID: PMC3436029 DOI: 10.3390/s120608278] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 06/01/2012] [Accepted: 06/05/2012] [Indexed: 11/17/2022]
Abstract
This review article discusses and documents the basic concepts and principles of nano/biosensors. More specifically, we comment on the use of Chemical Force Microscopy (CFM) to study various aspects of architectural and chemical design details of specific molecules and polymers and its influence on the control of chemical interactions between the Atomic Force Microscopy (AFM) tip and the sample. This technique is based on the fabrication of nanomechanical cantilever sensors (NCS) and microcantilever-based biosensors (MC-B), which can provide, depending on the application, rapid, sensitive, simple and low-cost in situ detection. Besides, it can provide high repeatability and reproducibility. Here, we review the applications of CFM through some application examples which should function as methodological questions to understand and transform this tool into a reliable source of data. This section is followed by a description of the theoretical principle and usage of the functionalized NCS and MC-B technique in several fields, such as agriculture, biotechnology and immunoassay. Finally, we hope this review will help the reader to appreciate how important the tools CFM, NCS and MC-B are for characterization and understanding of systems on the atomic scale.
Collapse
|
31
|
|
32
|
Park J, Kim H, Blick RH. Quasi-dynamic mode of nanomembranes for time-of-flight mass spectrometry of proteins. NANOSCALE 2012; 4:2543-2548. [PMID: 22378023 DOI: 10.1039/c2nr11779g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Mechanical resonators realized on the nano-scale by now offer applications in mass-sensing of biomolecules with extraordinary sensitivity. The general idea is that perfect mechanical biosensors should be of extremely small size to achieve zeptogram sensitivity in weighing single molecules similar to a balance. However, the small scale and long response time of weighing biomolecules with a cantilever restrict their usefulness as a high-throughput method. Commercial mass spectrometry (MS) such as electro-spray ionization (ESI)-MS and matrix-assisted laser desorption/ionization (MALDI)-time of flight (TOF)-MS are the gold standards to which nanomechanical resonators have to live up to. These two methods rely on the ionization and acceleration of biomolecules and the following ion detection after a mass selection step, such as time-of-flight (TOF). Hence, the spectrum is typically represented in m/z, i.e. the mass to ionization charge ratio. Here, we describe the feasibility and mass range of detection of a new mechanical approach for ion detection in time-of-flight mass spectrometry, the principle of which is that the impinging ion packets excite mechanical oscillations in a silicon nitride nanomembrane. These mechanical oscillations are henceforth detected via field emission of electrons from the nanomembrane. Ion detection is demonstrated in MALDI-TOF analysis over a broad range with angiotensin, bovine serum albumin (BSA), and an equimolar protein mixture of insulin, BSA, and immunoglobulin G (IgG). We find an unprecedented mass range of operation of the nanomembrane detector.
Collapse
Affiliation(s)
- Jonghoo Park
- Electrical and Computer Engineering, University of Wisconsin, Madison, WI 53706, USA
| | | | | |
Collapse
|
33
|
Zagnoni M. Miniaturised technologies for the development of artificial lipid bilayer systems. LAB ON A CHIP 2012; 12:1026-1039. [PMID: 22301684 DOI: 10.1039/c2lc20991h] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Artificially reproducing cellular environments is a key aim of synthetic biology, which has the potential to greatly enhance our understanding of cellular mechanisms. Microfluidic and lab-on-a-chip (LOC) techniques, which enable the controlled handling of sub-microlitre volumes of fluids in an automated and high-throughput manner, can play a major role in achieving this by offering alternative and powerful methodologies in an on-chip format. Such techniques have been successfully employed over the last twenty years to provide innovative solutions for chemical analysis and cell-, molecular- and synthetic- biology. In the context of the latter, the formation of artificial cell membranes (or artificial lipid bilayers) that incorporate membrane proteins within miniaturised LOC architectures offers huge potential for the development of highly sensitive molecular sensors and drug screening applications. The aim of this review is to give a comprehensive and critical overview of the field of microsystems for creating and exploiting artificial lipid bilayers. Advantages and limitations of three of the most popular approaches, namely suspended, supported and droplet-based lipid bilayers, are discussed. Examples are reported that show how artificial cell membrane microsystems, by combining together biological procedures and engineering techniques, can provide novel methodologies for basic biological and biophysical research and for the development of biotechnology tools.
Collapse
Affiliation(s)
- Michele Zagnoni
- Centre for Microsystems and Photonics, University of Strathclyde, Glasgow, UK.
| |
Collapse
|
34
|
Loizeau F, Akiyama T, Gautsch S, Vettiger P, Yoshikawa G, de Rooij N. Membrane-Type Surface Stress Sensor with Piezoresistive Readout. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.proeng.2012.09.339] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Liu T, Pihan S, Roth M, Retsch M, Jonas U, Gutmann JS, Koynov K, Butt HJ, Berger R. Frequency Response of Polymer Films Made from a Precursor Colloidal Monolayer on a Nanomechanical Cantilever. Macromolecules 2011. [DOI: 10.1021/ma202396h] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ting Liu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz,
Germany
| | - Sascha Pihan
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz,
Germany
| | - Marcel Roth
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz,
Germany
| | - Markus Retsch
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz,
Germany
- Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts
02139, United States
| | - Ulrich Jonas
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz,
Germany
- Macromolecular Chemistry, Department
Chemistry−Biology, University of Siegen, Adolf-Reichwein-Strasse 2, AR-G 213, D-57076 Siegen, Germany
| | - Jochen Stefan Gutmann
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz,
Germany
- Department
of Chemistry and Center
for Nanointegration Duisburg-Essen (CeNIDE), University Duisburg-Essen, Universitätsstr. 5, D-45117 Essen,
Germany
- Deutsches Textilforschungszentrum Nord-West e.V., Adlerstr. 1, D-47798 Krefeld, Germany
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz,
Germany
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz,
Germany
| | - Rüdiger Berger
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz,
Germany
| |
Collapse
|
36
|
Nieradka K, Małozięć G, Kopiec D, Grabiec P, Janus P, Sierakowski A, Gotszalk T. Expanded beam deflection method for simultaneous measurement of displacement and vibrations of multiple microcantilevers. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2011; 82:105112. [PMID: 22047334 DOI: 10.1063/1.3652977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Here we present an extension of optical beam deflection (OBD) method for measuring displacement and vibrations of an array of microcantilevers. Instead of focusing on the cantilever, the optical beam is either focused above or below the cantilever array, or focused only in the axis parallel to the cantilevers length, allowing a wide optical line to span multiple cantilevers in the array. Each cantilever reflects a part of the incident beam, which is then directed onto a photodiode array detector in a manner allowing distinguishing between individual beams. Each part of reflected beam behaves like a single beam of roughly the same divergence angle in the bending sensing axis as the incident beam. Since sensitivity of the OBD method depends on the divergence angle of deflected beam, high sensitivity is preserved in proposed expanded beam deflection (EBD) method. At the detector, each spot's position is measured at the same time, without time multiplexing of light sources. This provides real simultaneous readout of entire array, unavailable in most of competitive methods, and thus increases time resolution of the measurement. Expanded beam can also span another line of cantilevers allowing monitoring of specially designed two-dimensional arrays. In this paper, we present first results of application of EBD method to cantilever sensors. We show how thermal noise resolution can be easily achieved and combined with thermal noise based resonance frequency measurement.
Collapse
Affiliation(s)
- K Nieradka
- Faculty of Microsystem Electronics and Photonics, Wrocław University of Technology, Wrocław 50-372, Poland.
| | | | | | | | | | | | | |
Collapse
|
37
|
Peptide receptor-based selective dinitrotoluene detection using a microcantilever sensor. Biosens Bioelectron 2011; 30:249-54. [PMID: 22000759 DOI: 10.1016/j.bios.2011.09.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 09/14/2011] [Accepted: 09/16/2011] [Indexed: 11/22/2022]
Abstract
We reported that peptide could be utilized as receptor molecule in the gas phase for application in micro/nano sensors by using a specific peptide that recognizes 2,4-dinitrotoluene at room temperature and in an atmospheric environment and measuring changes in the resonant frequency of the peptide immobilized microcantilevers. By using these peptides as receptors on a microcantilever sensor, we were able to experimentally detect 2,4-dinitrotoluene (DNT) vapor at concentrations as low as parts per billion (ppb) in the gas phase. While resonant frequency changes after binding between 2,4-DNT and the specific peptide receptor that was immobilized on microcantilevers were observed, the resonant frequency of DNT nonspecific peptide immobilized microcantilever did not change when exposed to 2,4-DNT vapor. The limit of detection (LOD) was calculated to be 431 ppt of limit of detection is numerically expected by experimental based on an equation that describes the relationship between the noise-equivalent analyte concentration. These results indicate that the peptide receptors hold great promise for use in the development of an artificial olfactory system and electronic nose based on micro/nanotechnology for monitoring various chemical vapors in the gas phase such as explosive mixtures of chemicals and/or volatile organic compounds.
Collapse
|
38
|
Gavan KB, Rector JH, Heeck K, Chavan D, Gruca G, Oosterkamp TH, Iannuzzi D. Top-down approach to fiber-top cantilevers. OPTICS LETTERS 2011; 36:2898-2900. [PMID: 21808351 DOI: 10.1364/ol.36.002898] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Taking inspiration from conventional top-down micromachining techniques, we have fabricated a low mass gold fiber-top cantilever via align-and-shine photolithography. The cantilever is characterized by measuring its resonance frequency and mechanical quality factor. Our results show that the device grants mass sensitivity comparable to that reported for similar standard cantilevers. This proof-of-concept paves the way to series production of highly sensitive fiber-top devices for remote detection of biochemical substances.
Collapse
Affiliation(s)
- Khashayar Babaei Gavan
- Department of Physics and Astronomy and LaserLaB, VU Amsterdam, Amsterdam, 1081HV, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
39
|
Smith CLC, Lind JU, Nielsen CH, Christiansen MB, Buss T, Larsen NB, Kristensen A. Enhanced transduction of photonic crystal dye lasers for gas sensing via swelling polymer film. OPTICS LETTERS 2011; 36:1392-1394. [PMID: 21499367 DOI: 10.1364/ol.36.001392] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We present the enhanced transduction of a photonic crystal dye laser for gas sensing via deposition of an additional swelling polymer film. Device operation involves swelling of the polymer film during exposure to specific gases, leading to a change in total effective refractive index. Experimental results show an enhancement of 16.09 dB in sensing ethanol vapor after deposition of a polystyrene film. We verify different responses of the polystyrene film when exposed to either ethanol vapor or increased humidity, indicating selectivity. The concept is generic and, in principle, straightforward in its application to other intracavity-based detection schemes to enable gas sensing.
Collapse
Affiliation(s)
- Cameron L C Smith
- Department of Micro- and Nanotechnology, DTU Nanotech, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
| | | | | | | | | | | | | |
Collapse
|
40
|
Tothill I. Biosensors and nanomaterials and their application for mycotoxin determination. WORLD MYCOTOXIN J 2011. [DOI: 10.3920/wmj2011.1318] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mycotoxin analysis and detection in food and drinks is vital for ensuring food quality and safety, eliminating and controlling the risk of consuming contaminated foods, and complying with the legislative limits set by food authorities worldwide. Most analysis of these toxins is still conducted using conventional methods; however, biosensor methods are currently being developed as screening tools for use in field analysis. Biosensors have demonstrated their ability to provide rapid, sensitive, robust and cost-effective quantitative methods for on-site testing. The development of biosensor devices for different mycotoxins has attracted much research interest in recent years with a range of devices being designed and reported in the scientific literature. However, with the advent of nanotechnology and its impact on the evolution of ultrasensitive devices, mycotoxin analysis is also benefiting from the advances taking place in applying nanomaterials in sensors development. This paper reviews the developments in the area of biosensors and their applications for mycotoxin analysis, as well as the development of micro/nanoarray transducers and nanoparticles and their use in the development of new rapid devices.
Collapse
Affiliation(s)
- I. Tothill
- Cranfield University, Cranfield Health, Vincent Building, Cranfield, Bedfordshire MK 43 0AL, United Kingdom
| |
Collapse
|
41
|
Yao L, Yung KY, Khan R, Chodavarapu VP, Bright FV. CMOS Imaging of Pin-Printed Xerogel-Based Luminescent Sensor Microarrays. IEEE SENSORS JOURNAL 2010; 10:1824-1832. [PMID: 24489484 PMCID: PMC3908789 DOI: 10.1109/jsen.2010.2047497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We present the design and implementation of a luminescence-based miniaturized multisensor system using pin-printed xerogel materials which act as host media for chemical recognition elements. We developed a CMOS imager integrated circuit (IC) to image the luminescence response of the xerogel-based sensor array. The imager IC uses a 26 × 20 (520 elements) array of active pixel sensors and each active pixel includes a high-gain phototransistor to convert the detected optical signals into electrical currents. The imager includes a correlated double sampling circuit and pixel address/digital control circuit; the image data is read-out as coded serial signal. The sensor system uses a light-emitting diode (LED) to excite the target analyte responsive luminophores doped within discrete xerogel-based sensor elements. As a prototype, we developed a 4 × 4 (16 elements) array of oxygen (O2) sensors. Each group of 4 sensor elements in the array (arranged in a row) is designed to provide a different and specific sensitivity to the target gaseous O2 concentration. This property of multiple sensitivities is achieved by using a strategic mix of two oxygen sensitive luminophores ([Ru(dpp)3]2+ and ([Ru(bpy)3]2+) in each pin-printed xerogel sensor element. The CMOS imager consumes an average power of 8 mW operating at 1 kHz sampling frequency driven at 5 V. The developed prototype system demonstrates a low cost and miniaturized luminescence multisensor system.
Collapse
Affiliation(s)
- Lei Yao
- Department of Electrical and Computer Engineering, McGill University, Montreal, QB, H3A2A7 Canada
| | - Ka Yi Yung
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260 USA
| | - Rifat Khan
- Department of Electrical and Computer Engineering, McGill University, Montreal, QB, H3A2A7 Canada
| | - Vamsy P. Chodavarapu
- Department of Electrical and Computer Engineering, McGill University, Montreal, QB, H3A2A7 Canada
| | - Frank V. Bright
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260 USA
| |
Collapse
|
42
|
Martínez NF, Kosaka PM, Tamayo J, Ramírez J, Ahumada O, Mertens J, Hien TD, Rijn CV, Calleja M. High throughput optical readout of dense arrays of nanomechanical systems for sensing applications. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2010; 81:125109. [PMID: 21198053 DOI: 10.1063/1.3525090] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
We present an instrument based on the scanning of a laser beam and the measurement of the reflected beam deflection that enables the readout of arrays of nanomechanical systems without limitation in the geometry of the sample, with high sensitivity and a spatial resolution of few micrometers. The measurement of nanoscale deformations on surfaces of cm(2) is performed automatically, with minimal need of user intervention for optical alignment. To exploit the capability of the instrument for high throughput biological and chemical sensing, we have designed and fabricated a two-dimensional array of 128 cantilevers. As a proof of concept, we measure the nanometer-scale bending of the 128 cantilevers, previously coated with a thin gold layer, induced by the adsorption and self-assembly on the gold surface of several self-assembled monolayers. The instrument is able to provide the static and dynamic responses of cantilevers with subnanometer resolution and at a rate of up to ten cantilevers per second. The instrumentation and the fabricated chip enable applications for the analysis of complex biological systems and for artificial olfaction.
Collapse
Affiliation(s)
- N F Martínez
- Mecwins S.L. Santiago Grisolía 2 (PTM), Tres Cantos, 28760 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Karabacak DM, Brongersma SH, Crego-Calama M. Enhanced sensitivity volatile detection with low power integrated micromechanical resonators. LAB ON A CHIP 2010; 10:1976-1982. [PMID: 20485770 DOI: 10.1039/b926170b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Very high aspect (length/thickness) ratio doubly clamped beams with integrated piezoelectric transducers are demonstrated for low power sensing of volatiles. The described approach allows for high yield fabrication of a dense array of suspended resonators that can be individually functionalized. Upon polymer coating, the resonators become highly sensitive to absorption of volatile compounds, allowing for detection at ppm-level concentrations of low-molecular weight analytes. The determined sensitivity enhancement is due to the significant contribution of vapor absorption-induced polymer swelling that results in axial stress formation in length restricted high aspect ratio beams.
Collapse
Affiliation(s)
- Devrez M Karabacak
- Holst Centre/IMEC, High Tech Campus 31, 5656 AE Eindhoven, The Netherlands.
| | | | | |
Collapse
|
44
|
Godin M, Tabard-Cossa V, Miyahara Y, Monga T, Williams PJ, Beaulieu LY, Bruce Lennox R, Grutter P. Cantilever-based sensing: the origin of surface stress and optimization strategies. NANOTECHNOLOGY 2010; 21:75501. [PMID: 20081290 DOI: 10.1088/0957-4484/21/7/075501] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Many interactions drive the adsorption of molecules on surfaces, all of which can result in a measurable change in surface stress. This article compares the contributions of various possible interactions to the overall induced surface stress for cantilever-based sensing applications. The surface stress resulting from adsorption-induced changes in the electronic density of the underlying surface is up to 2-4 orders of magnitude larger than that resulting from intermolecular electrostatic or Lennard-Jones interactions. We reveal that the surface stress associated with the formation of high quality alkanethiol self-assembled monolayers on gold surfaces is independent of the molecular chain length, supporting our theoretical findings. This provides a foundation for the development of new strategies for increasing the sensitivity of cantilever-based sensors for various applications.
Collapse
Affiliation(s)
- Michel Godin
- Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, ON, K1N 6N5, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Microfabricated cantilever sensors have attracted much interest in recent years as devices for the fast and reliable detection of small concentrations of molecules in air and solution. In addition to application of such sensors for gas and chemical-vapor sensing, for example as an artificial nose, they have also been employed to measure physical properties of tiny amounts of materials in miniaturized versions of conventional standard techniques such as calorimetry, thermogravimetry, weighing, photothermal spectroscopy, as well as for monitoring chemical reactions such as catalysis on small surfaces. In the past few years, the cantilever-sensor concept has been extended to biochemical applications and as an analytical device for measurements of biomaterials. Because of the label-free detection principle of cantilever sensors, their small size and scalability, this kind of device is advantageous for diagnostic applications and disease monitoring, as well as for genomics or proteomics purposes. The use of microcantilever arrays enables detection of several analytes simultaneously and solves the inherent problem of thermal drift often present when using single microcantilever sensors, as some of the cantilevers can be used as sensor cantilevers for detection, and other cantilevers serve as passivated reference cantilevers that do not exhibit affinity to the molecules to be detected.
Collapse
Affiliation(s)
- Bharat Bhushan
- Ohio State University, Nanoprobe Laboratory for Bio- and Nanotechnology and Biomimetics (NLB2), 201 W. 19th Avenue, 43210-1142 Columbus, OH USA
| | | | | |
Collapse
|
46
|
Man G, Stoeber B, Walus K. An assessment of sensing technologies for the detection of clandestine methamphetamine drug laboratories. Forensic Sci Int 2009; 189:1-13. [DOI: 10.1016/j.forsciint.2009.03.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Revised: 03/26/2009] [Accepted: 03/26/2009] [Indexed: 11/16/2022]
|
47
|
Bhushan B. Biomimetics: lessons from nature--an overview. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2009; 367:1445-86. [PMID: 19324719 DOI: 10.1098/rsta.2009.0011] [Citation(s) in RCA: 462] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Nature has developed materials, objects and processes that function from the macroscale to the nanoscale. These have gone through evolution over 3.8 Gyr. The emerging field of biomimetics allows one to mimic biology or nature to develop nanomaterials, nanodevices and processes. Properties of biological materials and surfaces result from a complex interplay between surface morphology and physical and chemical properties. Hierarchical structures with dimensions of features ranging from the macroscale to the nanoscale are extremely common in nature to provide properties of interest. Molecular-scale devices, superhydrophobicity, self-cleaning, drag reduction in fluid flow, energy conversion and conservation, high adhesion, reversible adhesion, aerodynamic lift, materials and fibres with high mechanical strength, biological self-assembly, antireflection, structural coloration, thermal insulation, self-healing and sensory-aid mechanisms are some of the examples found in nature that are of commercial interest. This paper provides a broad overview of the various objects and processes of interest found in nature and applications under development or available in the marketplace.
Collapse
Affiliation(s)
- Bharat Bhushan
- Nanoprobe Laboratory for Bio- & Nanotechnology and Biomimetics, Ohio State University, 201 West 19th Avenue, Columbus, OH 43210-1142, USA.
| |
Collapse
|
48
|
Biosensors for cancer markers diagnosis. Semin Cell Dev Biol 2009; 20:55-62. [DOI: 10.1016/j.semcdb.2009.01.015] [Citation(s) in RCA: 249] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Accepted: 01/23/2009] [Indexed: 11/20/2022]
|
49
|
Yoshikawa G, Lang HP, Akiyama T, Aeschimann L, Staufer U, Vettiger P, Aono M, Sakurai T, Gerber C. Sub-ppm detection of vapors using piezoresistive microcantilever array sensors. NANOTECHNOLOGY 2009; 20:015501. [PMID: 19417252 DOI: 10.1088/0957-4484/20/1/015501] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The performance of microfabricated piezoresistive cantilever array sensors has been evaluated using various vapors of volatile organic compounds including alkanes with different chain length from 5 (n-pentane) to 14 (n-tetradecane). We demonstrate that piezoresistive microcantilever array sensors have the selectivity of discriminating individual alkanes in a homologous series as well as common volatile organic compounds according to principal component analysis. We developed a new method to evaluate the sensitivity, taking advantage of the low vapor pressures of alkanes with longer chains, such as n-dodecane, n-tridecane and n-tetradecane, under saturated vapor conditions. This method reveals sub-ppm sensitivity and the cantilever response is found to follow the mass of evaporated analytes as calculated using a quantitative model based on the Langmuir evaporation model.
Collapse
Affiliation(s)
- Genki Yoshikawa
- National Center of Competence for Research in Nanoscience (NCCR), Department of Physics, University of Basel, 4056 Basel, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Kiselev GA, Kudrinskii PV, Yaminskii IV, Vinogradova OI. Studying intermolecular processes in thin surface layers with microcantilever transducers. Formation of protein fibrils on a solid support. ACTA ACUST UNITED AC 2008. [DOI: 10.1134/s0033173208060015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|