1
|
Yin Y, Xie X, Zhou L, Yin X, Guo S, Zhou X, Li Q, Shi X, Peng C, Gao J. A chromosome-scale genome assembly of turmeric provides insights into curcumin biosynthesis and tuber formation mechanism. FRONTIERS IN PLANT SCIENCE 2022; 13:1003835. [PMID: 36226278 PMCID: PMC9549246 DOI: 10.3389/fpls.2022.1003835] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/06/2022] [Indexed: 06/01/2023]
Abstract
Curcuma longa, known as the 'golden spice' and 'life spice', is one of the most commonly utilized spices in the world and also has medicinal, cosmetic, dye and flavoring values. Herein, we present the chromosomal-level genome for turmeric to explore the differences between tubers and rhizomes in the regulation of curcumin biosynthesis and the mechanism of tuber formation. We assembled the turmeric genome into 21 pseudochromosomes using Pacbio long reads complemented with Hi-C technologies, which has a total length of 1.11 Gb with scaffold N50 of 50.12 Mb and contains 49,612 protein-coding genes. Genomic evolutionary analysis indicated that turmeric and ginger have shared a recent WGD event. Contraction analysis of gene families showed possible roles for transcription factors, phytohormone signaling, and plant-pathogen interactions associated genes in adaptation to harsh environments. Transcriptomic data from tubers at different developmental stages indicated that candidate genes related to phytohormone signaling and carbohydrate metabolic responses may be associated with the induction of tuber formation. The difference in curcumin content between rhizomes and tubers reflected the remodeling of secondary metabolites under environmental stress, which was associated with plant defense in response to abiotic stresses. Overall, the availability of the C. longa genome provides insight into tuber formation and curcumin biosynthesis in turmeric as well as facilitating the understanding of other Curcuma species.
Collapse
Affiliation(s)
- Yanpeng Yin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiaofang Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Luojing Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianmei Yin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuai Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianjian Zhou
- Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Sichuan Academy of Traditional Chinese Medicine Sciences, Chengdu, China
| | - Qingmiao Li
- Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Sichuan Academy of Traditional Chinese Medicine Sciences, Chengdu, China
| | - Xiaodong Shi
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jihai Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Hypoxia-Induced Aquaporins and Regulation of Redox Homeostasis by a Trans-Plasma Membrane Electron Transport System in Maize Roots. Antioxidants (Basel) 2022; 11:antiox11050836. [PMID: 35624700 PMCID: PMC9137787 DOI: 10.3390/antiox11050836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/06/2022] [Accepted: 04/13/2022] [Indexed: 02/06/2023] Open
Abstract
In plants, flooding-induced oxygen deficiency causes severe stress, leading to growth reduction and yield loss. It is therefore important to understand the molecular mechanisms for adaptation to hypoxia. Aquaporins at the plasma membrane play a crucial role in water uptake. However, their role during hypoxia and membrane redox changes is still not fully understood. The influence of 24 h hypoxia induction on hydroponically grown maize (Zea mays L.) was investigated using an oil-based setup. Analyses of physiological parameters revealed typical flooding symptoms such as increased ethylene and H2O2 levels, an increased alcohol dehydrogenase activity, and an increased redox activity at the plasma membrane along with decreased oxygen of the medium. Transcriptomic analysis and shotgun proteomics of plasma membranes and soluble fractions were performed to determine alterations in maize roots. RNA-sequencing data confirmed the upregulation of genes involved in anaerobic metabolism, biosynthesis of the phytohormone ethylene, and its receptors. Transcripts of several antioxidative systems and other oxidoreductases were regulated. Mass spectrometry analysis of the plasma membrane proteome revealed alterations in redox systems and an increased abundance of aquaporins. Here, we discuss the importance of plasma membrane aquaporins and redox systems in hypoxia stress response, including the regulation of plant growth and redox homeostasis.
Collapse
|
3
|
Chen Y, Zhang B, Li C, Lei C, Kong C, Yang Y, Gong M. A comprehensive expression analysis of the expansin gene family in potato (Solanum tuberosum) discloses stress-responsive expansin-like B genes for drought and heat tolerances. PLoS One 2019; 14:e0219837. [PMID: 31318935 PMCID: PMC6638956 DOI: 10.1371/journal.pone.0219837] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/02/2019] [Indexed: 12/11/2022] Open
Abstract
Expansin is a type of cell wall elongation and stress relaxation protein involved in various developmental processes and stress resistances in plant. In this study, we identified 36 potato (Solanum tuberosum L.) genes belonging to the expansin (StEXP) gene family from the genome reference. These genes included 24 α-expansins (StEXPAs), five β-expansins (StEXPBs), one expansin-like A (StEXLA) and six expansin-like B (StEXLBs). The RNA-Seq analysis conducted from a variety of tissue types showed 34 expansins differentially expressed among tissues, some of which only expressed in specific tissues. Most of the StEXPAs and StEXPB2 transcripts were more abundant in young tuber compared with other tissues, suggesting they likely play a role in tuber development. There were 31 genes, especially StEXLB6, showed differential expression under the treatments of ABA, IAA and GA3, as well as under the drought and heat stresses, indicating they were likely involved in potato stress resistance. In addition, the gene co-expression analysis indicated the StEXLBs likely contribute to a wider range of stress resistances compared with other genes. We found the StEXLA and six StEXLBs expressed differently under a range of abiotic stresses (salt, alkaline, heavy metals, drought, heat, and cold stresses), which likely participated in the associated signaling pathways. Comparing with the control group, potato growing under the drought or heat stresses exhibited up-regulation of the all six StEXLB genes in leaves, whereas, the StEXLB3, StEXLB4, StEXLB5 and StEXLB6 showed relatively higher expression levels in roots. This suggested these genes likely played a role in the drought and heat tolerance. Overall, this study has shown the potential role of the StEXP genes in potato growth and stress tolerance, and provided fundamental resources for the future studies in potato breeding.
Collapse
Affiliation(s)
- Yongkun Chen
- School of Life Science, Yunnan Normal University, Kunming, China
| | - Bo Zhang
- Joint Academy of Potato Science, Yunnan Normal University, Kunming, China
| | - Canhui Li
- Joint Academy of Potato Science, Yunnan Normal University, Kunming, China
| | - Chunxia Lei
- School of Life Science, Yunnan Normal University, Kunming, China
| | - Chunyan Kong
- School of Life Science, Yunnan Normal University, Kunming, China
| | - Yu Yang
- School of Life Science, Yunnan Normal University, Kunming, China
| | - Ming Gong
- School of Life Science, Yunnan Normal University, Kunming, China
- * E-mail:
| |
Collapse
|
4
|
Rudnicka M, Ludynia M, Karcz W. The Effect of Naphthazarin on the Growth, Electrogenicity, Oxidative Stress, and Microtubule Array in Z. mays Coleoptile Cells Treated With IAA. FRONTIERS IN PLANT SCIENCE 2019; 9:1940. [PMID: 30671078 PMCID: PMC6331528 DOI: 10.3389/fpls.2018.01940] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/12/2018] [Indexed: 06/09/2023]
Abstract
Naphthazarin (5,8-dihydroxy-1,4-naphthoquinone, DHNQ) is a naturally occurring 1,4-naphthoquinone derivative. In this study, we focused on elucidating the toxic effect of this secondary metabolite on the growth of plant cells. The dose-response curves that were obtained for the effects of DHNQ on endogenous and IAA-induced growth in maize coleoptile segments differ in shape; in the first case, it is linear, while in the presence of auxin it is bell-shaped with the maximum at 1 μM. It was found that DHNQ at almost all concentrations studied, when added to the incubation medium inhibited endogenous growth (excluding naphthazarin at 0.001 μM) as well as growth in the presence of IAA. Simultaneous measurements of the growth and external medium pH of coleoptile segments indicated that DHNQ diminished or eliminated proton extrusion at all of the concentrations that were used. Interestingly, the oxidative stress in maize coleoptile cells, which was measured as hydrogen peroxide (H2O2) production, catalase activity, redox activity and malondialdehyde (MDA) content, increased at the lower concentrations of DHNQ (<1 μM), thus suggesting a specific character of its action. It was also found that naphthazarin at concentration higher than 0.1 μM caused the depolarization of the membrane potential (E m). An analysis of the organization and anisotropy of the cortical microtubules showed that naphthazarin at all of the concentrations that were studied changed the IAA-induced transverse microtubule reorientation to an oblique reorientation. Our results indicate that naphthazarin diminished the growth of maize coleoptile cells by a broad spectrum of its toxic effects, thereby suggesting that naphthazarin might be a hypothetical component of new bioherbicides and biopesticides.
Collapse
Affiliation(s)
| | | | - Waldemar Karcz
- Department of Plant Physiology, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| |
Collapse
|
5
|
Proteomic characterization of hempseed (Cannabis sativa L.). J Proteomics 2016; 147:187-196. [PMID: 27265319 DOI: 10.1016/j.jprot.2016.05.033] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 05/17/2016] [Accepted: 05/31/2016] [Indexed: 02/08/2023]
Abstract
UNLABELLED This paper presents an investigation on hempseed proteome. The experimental approach, based on combinatorial peptide ligand libraries (CPLLs), SDS-PAGE separation, nLC-ESI-MS/MS identification, and database search, permitted identifying in total 181 expressed proteins. This very large number of identifications was achieved by searching in two databases: Cannabis sativa L. (56 gene products identified) and Arabidopsis thaliana (125 gene products identified). By performing a protein-protein association network analysis using the STRING software, it was possible to build the first interactomic map of all detected proteins, characterized by 137 nodes and 410 interactions. Finally, a Gene Ontology analysis of the identified species permitted to classify their molecular functions: the great majority is involved in the seed metabolic processes (41%), responses to stimulus (8%), and biological process (7%). BIOLOGICAL SIGNIFICANCE Hempseed is an underexploited non-legume protein-rich seed. Although its protein is well known for its digestibility, essential amino acid composition, and useful techno-functional properties, a comprehensive proteome characterization is still lacking. The objective of this work was to fill this knowledge gap and provide information useful for a better exploitation of this seed in different food products.
Collapse
|
6
|
Živanović BD, Shabala LI, Elzenga TJM, Shabala SN. Dissecting blue light signal transduction pathway in leaf epidermis using a pharmacological approach. PLANTA 2015; 242:813-827. [PMID: 25968467 DOI: 10.1007/s00425-015-2316-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 04/28/2015] [Indexed: 06/04/2023]
Abstract
Blue light signalling pathway in broad bean leaf epidermal cells includes key membrane transporters: plasma- and endomembrane channels and pumps of H (+) , Ca (2+) and K (+) ions, and plasma membrane redox system. Blue light signalling pathway in epidermal tissue isolated from the abaxial side of fully developed Vicia faba leaves was dissected by measuring the effect of inhibitors of second messengers on net K(+), Ca(2+) and H(+) fluxes using non-invasive ion-selective microelectrodes (the MIFE system). Switching the blue light on-off caused transient changes of the ion fluxes. The effects of seven groups of inhibitors were tested in this study: CaM antagonists, ATPase inhibitors, Ca(2+) anatagonists or chelators, agents affecting IP3 formation, redox system inhibitors, inhibitors of endomembrane Ca(2+) transport systems and an inhibitor of plasma membrane Ca(2+)-permeable channels. Most of the inhibitors had a significant effect on steady-state (basal) net fluxes, as well as on the magnitude of the transient ion flux responses to blue light fluctuations. The data presented in this study suggest that redox signalling and, specifically, plasma membrane NADPH oxidase and coupled Ca(2+) and K(+) fluxes play an essential role in blue light signal transduction.
Collapse
Affiliation(s)
- Branka D Živanović
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, TAS, 7001, Australia,
| | | | | | | |
Collapse
|
7
|
Jakubowska D, Janicka-Russak M, Kabała K, Migocka M, Reda M. Modification of plasma membrane NADPH oxidase activity in cucumber seedling roots in response to cadmium stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 234:50-9. [PMID: 25804809 DOI: 10.1016/j.plantsci.2015.02.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/16/2015] [Accepted: 02/11/2015] [Indexed: 05/21/2023]
Abstract
The aim of this study was to investigate the effect of cadmium on plasma membrane (PM) NADPH oxidase activity in cucumber roots. Plants were treated with cadmium for 1, 3 or 6 days. Some of the plants after 3-day exposure to cadmium were transferred to a medium without the heavy metal for the next 3 days. Treatment of plants with cadmium for 6 days stimulated the activity of NADPH oxidase. The highest stimulation of O2(•-) production by NADPH oxidase was observed in post-stressed plants, which was correlated with the stimulation of activity of PM H(+)-ATPase in the same conditions. In order to examine the effects of cadmium stresses on the expression level of genes encoding NADPH oxidase, putative cucumber homologs encoding RBOH proteins were selected and a real-time PCR assay was performed. NADPH is a substrate for oxidase; thus alterations in the activity of glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, NADP-isocitrate dehydrogenase and NADP-malic enzyme under cadmium stress were studied. The activity of NADPH dehydrogenases was increased under cadmium stress. The results indicate that PM NADPH oxidase could be involved in plants' response to cadmium stress by affecting the activity of PM H(+)-ATPase, and NADPH-generating enzymes could play important roles in this process.
Collapse
Affiliation(s)
- Dagmara Jakubowska
- Department of Plant Molecular Physiology, Institute of Experimental Biology, University of Wrocław, Kanonia Street 6/8, 50-328 Wrocław, Poland.
| | - Małgorzata Janicka-Russak
- Department of Plant Molecular Physiology, Institute of Experimental Biology, University of Wrocław, Kanonia Street 6/8, 50-328 Wrocław, Poland.
| | - Katarzyna Kabała
- Department of Plant Molecular Physiology, Institute of Experimental Biology, University of Wrocław, Kanonia Street 6/8, 50-328 Wrocław, Poland.
| | - Magdalena Migocka
- Department of Plant Molecular Physiology, Institute of Experimental Biology, University of Wrocław, Kanonia Street 6/8, 50-328 Wrocław, Poland.
| | - Małgorzata Reda
- Department of Plant Molecular Physiology, Institute of Experimental Biology, University of Wrocław, Kanonia Street 6/8, 50-328 Wrocław, Poland.
| |
Collapse
|
8
|
Kärkönen A, Meisrimler CN, Takahashi J, Väisänen E, Laitinen T, Jiménez Barboza LA, Holmström S, Salonvaara S, Wienkoop S, Fagerstedt KV, Lüthje S. Isolation of cellular membranes from lignin-producing tissues of Norway spruce and analysis of redox enzymes. PHYSIOLOGIA PLANTARUM 2014; 152:599-616. [PMID: 24730578 DOI: 10.1111/ppl.12209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 03/12/2014] [Accepted: 03/13/2014] [Indexed: 06/03/2023]
Abstract
There are no earlier reports with successful isolation of plasma membranes from lignin-forming tissues of conifers. A method to isolate cellular membranes from extracellular lignin-producing tissue-cultured cells and developing xylem of Norway spruce was optimized. Modifications to the homogenization buffer were needed to obtain membranes from these phenolics-rich tissues. Membranes were separated by aqueous polymer two-phase partitioning. Chlorophyll a determination, marker enzyme assays and western blot analyses using antibodies for each membrane type showed that mitochondrial, chloroplastic and to a certain extent also ER and Golgi membranes were efficiently diminished from the upper phase, but tonoplast and plasma membranes distributed evenly between the upper and lower phases. Redox enzymes present in the partially purified membrane fractions were assayed in order to reveal the origin of H(2)O(2) needed for lignification. The membranes of spruce contained enzymes able to generate superoxide in the presence of NAD(P)H. Besides members of the flavodoxin and flavodoxin-like family proteins, cytochrome b5, cytochrome P450 and several stress responsive proteins were identified by nitroblue tetrazolium staining of isoelectric focusing gels and by mass spectrometry. Naphthoquinones juglone and menadione increased superoxide production in activity-stained gels. Some juglone-activated enzymes were preferentially using NADH. With NADH, menadione activated only some of the enzymes that juglone did, whereas with NADPH the activation patterns were identical. Duroquinone, a benzoquinone, did not affect superoxide production. Superoxide dismutase, ascorbate peroxidase, catalase and an acidic class III peroxidase isoenzyme were detected in partially purified spruce membranes. The possible locations and functions of these enzymes are discussed.
Collapse
Affiliation(s)
- Anna Kärkönen
- Department of Agricultural Sciences, University of Helsinki, FIN-00014, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Zauber H, Burgos A, Garapati P, Schulze WX. Plasma membrane lipid-protein interactions affect signaling processes in sterol-biosynthesis mutants in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2014; 5:78. [PMID: 24672530 PMCID: PMC3957024 DOI: 10.3389/fpls.2014.00078] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/18/2014] [Indexed: 05/06/2023]
Abstract
The plasma membrane is an important organelle providing structure, signaling and transport as major biological functions. Being composed of lipids and proteins with different physicochemical properties, the biological functions of membranes depend on specific protein-protein and protein-lipid interactions. Interactions of proteins with their specific sterol and lipid environment were shown to be important factors for protein recruitment into sub-compartmental structures of the plasma membrane. System-wide implications of altered endogenous sterol levels for membrane functions in living cells were not studied in higher plant cells. In particular, little is known how alterations in membrane sterol composition affect protein and lipid organization and interaction within membranes. Here, we conducted a comparative analysis of the plasma membrane protein and lipid composition in Arabidopsis sterol-biosynthesis mutants smt1 and ugt80A2;B1. smt1 shows general alterations in sterol composition while ugt80A2;B1 is significantly impaired in sterol glycosylation. By systematically analyzing different cellular fractions and combining proteomic with lipidomic data we were able to reveal contrasting alterations in lipid-protein interactions in both mutants, with resulting differential changes in plasma membrane signaling status.
Collapse
Affiliation(s)
- Henrik Zauber
- Max Planck Institute of Molecular Plant PhysiologyGolm, Germany
- Max-Delbrück-Centrum für Molekulare MedizinBerlin-Buch, Germany
| | - Asdrubal Burgos
- Max Planck Institute of Molecular Plant PhysiologyGolm, Germany
| | | | - Waltraud X. Schulze
- Max Planck Institute of Molecular Plant PhysiologyGolm, Germany
- Plant Systems Biology, University of HohenheimStuttgart, Germany
- *Correspondence: Waltraud X. Schulze, Plant Systems Biology, University of Hohenheim, Garbenstrasse 30, Stuttgart 70593, Germany e-mail:
| |
Collapse
|
10
|
Zauber H, Burgos A, Garapati P, Schulze WX. Plasma membrane lipid-protein interactions affect signaling processes in sterol-biosynthesis mutants in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2014; 5:78. [PMID: 24672530 DOI: 10.3389/fpls.2014.00078014.00078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/18/2014] [Indexed: 05/22/2023]
Abstract
The plasma membrane is an important organelle providing structure, signaling and transport as major biological functions. Being composed of lipids and proteins with different physicochemical properties, the biological functions of membranes depend on specific protein-protein and protein-lipid interactions. Interactions of proteins with their specific sterol and lipid environment were shown to be important factors for protein recruitment into sub-compartmental structures of the plasma membrane. System-wide implications of altered endogenous sterol levels for membrane functions in living cells were not studied in higher plant cells. In particular, little is known how alterations in membrane sterol composition affect protein and lipid organization and interaction within membranes. Here, we conducted a comparative analysis of the plasma membrane protein and lipid composition in Arabidopsis sterol-biosynthesis mutants smt1 and ugt80A2;B1. smt1 shows general alterations in sterol composition while ugt80A2;B1 is significantly impaired in sterol glycosylation. By systematically analyzing different cellular fractions and combining proteomic with lipidomic data we were able to reveal contrasting alterations in lipid-protein interactions in both mutants, with resulting differential changes in plasma membrane signaling status.
Collapse
Affiliation(s)
- Henrik Zauber
- Max Planck Institute of Molecular Plant Physiology Golm, Germany ; Max-Delbrück-Centrum für Molekulare Medizin Berlin-Buch, Germany
| | - Asdrubal Burgos
- Max Planck Institute of Molecular Plant Physiology Golm, Germany
| | | | - Waltraud X Schulze
- Max Planck Institute of Molecular Plant Physiology Golm, Germany ; Plant Systems Biology, University of Hohenheim Stuttgart, Germany
| |
Collapse
|
11
|
Lüthje S, Möller B, Perrineau FC, Wöltje K. Plasma membrane electron pathways and oxidative stress. Antioxid Redox Signal 2013; 18:2163-83. [PMID: 23265437 DOI: 10.1089/ars.2012.5130] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
SIGNIFICANCE Several redox compounds, including respiratory burst oxidase homologs (Rboh) and iron chelate reductases have been identified in animal and plant plasma membrane (PM). Studies using molecular biological, biochemical, and proteomic approaches suggest that PM redox systems of plants are involved in signal transduction, nutrient uptake, transport, and cell wall-related processes. Function of PM-bound redox systems in oxidative stress will be discussed. RECENT ADVANCES Present knowledge about the properties, structures, and functions of these systems are summarized. Judging from the currently available data, it is likely that electrons are transferred from cytosolic NAD(P)H to the apoplast via quinone reductases, vitamin K, and a cytochrome b561. In tandem with these electrons, protons might be transported to the apoplastic space. CRITICAL ISSUES Recent studies suggest localization of PM-bound redox systems in microdomains (so-called lipid or membrane rafts), but also organization of these compounds in putative and high molecular mass protein complexes. Although the plant flavocytochrome b family is well characterized with respect to its function, the molecular mechanism of an electron transfer reaction by these compounds has to be verified. Localization of Rboh in other compartments needs elucidation. FUTURE DIRECTIONS Plant members of the flavodoxin and flavodoxin-like protein family and the cytochrome b561 protein family have been characterized on the biochemical level, postulated localization, and functions of these redox compounds need verification. Compositions of single microdomains and interaction partners of PM redox systems have to be elucidated. Finally, the hypothesis of an electron transfer chain in the PM needs further proof.
Collapse
Affiliation(s)
- Sabine Lüthje
- Biocenter Klein Flottbek, University of Hamburg, Hamburg, Germany.
| | | | | | | |
Collapse
|
12
|
Janicka-Russak M, Kabała K, Burzynski M. Different effect of cadmium and copper on H+-ATPase activity in plasma membrane vesicles from Cucumis sativus roots. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:4133-42. [PMID: 22451724 PMCID: PMC3398447 DOI: 10.1093/jxb/ers097] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 03/06/2012] [Accepted: 03/07/2012] [Indexed: 05/20/2023]
Abstract
The effect of heavy metals on plasma membrane (PM) H(+)-ATPase (EC 3.6.3.14) activity in cucumber (Cucumis sativus) roots was studied. The aim of this work was to explain the mechanism of modification of the PM H(+)-ATPase activity in plants subjected to heavy metals. Plants were treated with 10 μM Cd or Cu for 6 d. After 3 d exposure to the heavy metals, some of the plants were transferred to control conditions for a further 3 d (3/3 plants). The activity of PM H(+)-ATPase was found to be increased in plants treated with heavy metals. The highest activity measured as proton transport was observed in 3/3 plants. Estimation of transcript levels of C. sativus PM H(+)-ATPase in roots indicated that the action of Cd, but not Cu, affected the gene expression level. Transcript levels of C. sativus PM H(+)-ATPase (CsHA2, CsHA3, CsHA4, CsHA8, and CsHA9) genes increased in roots treated with Cd. Moreover, Western blot analysis with antibody against phosphothreonine and 14-3-3 protein indicated that increased activity of PM H(+)-ATPase under heavy-metal stress resulted from phosphorylation of the enzyme. It was found that Cu markedly increased the activity of catalase and ascorbate peroxidase and reduced the level of H(2)O(2) in cucumber roots. In contrast, Cd did not affect these parameters. These results indicate that Cd and Cu can, in different ways, lead to modification of PM H(+)-ATPase activity. Additionally, it was observed that treatment of plants with heavy metals led to an increased level of heat-shock proteins in the tissues. This suggests that the plants had started adaptive processes to survive adverse conditions, and increased PM H(+)-ATPase activity could further enhance the repair processes in heavy-metal-stressed plants.
Collapse
Affiliation(s)
- Małgorzata Janicka-Russak
- Department of Plant Physiology, Institute of Plant Biology, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland.
| | | | | |
Collapse
|
13
|
Janicka-Russak M, Kabała K, Wdowikowska A, Kłobus G. Response of plasma membrane H(+)-ATPase to low temperature in cucumber roots. JOURNAL OF PLANT RESEARCH 2012; 125:291-300. [PMID: 21638005 DOI: 10.1007/s10265-011-0438-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 05/01/2011] [Indexed: 05/23/2023]
Abstract
The effect of low temperature (LT, 10°C) on modification of plasma membrane (PM) H(+)-ATPase (EC 3.6.3.14) activity in cucumber roots was studied. Plants were grown under LT for 3 or 6 days. Some of the plants after 3 days exposure to LT were transferred to control conditions for another 3 days (post-cold, PC). The activity of PM-H(+)-ATPase was decreased in plants treated for 3 days with LT. However, the activity of PM-H(+)-ATPase was higher in plants treated with LT for a longer time and in PC plants as well. Estimation of transcript levels of cucumber PM-H(+)-ATPase in roots indicates that the action of LT involves the gene expression level. The level of PM-H(+)-ATPase mRNA was markedly decreased in roots exposed to LT for 3 days. Moreover, the increased H(+)-ATPase activity in PM isolated from plants treated for 6 days with LT and from PC plants was positively correlated with higher levels of CsHA transcripts. Western blot analysis with an anti-phosphothreonine antibody showed that modification of the activity of PM-H(+)-ATPase under LT stress did not result from phosphorylation/dephosphorylation of the enzyme protein. However, the stimulation of PM-H(+)-ATPase activity in the case of PC plants could partially have emanated from increased activity of PM NAD(P)H oxidoreductase. In addition, modification of the transcript level of proton pump genes could have resulted from the action of H(2)O(2). In PC plants, an increase in H(2)O(2) level was observed. Moreover, treatment of plants with H(2)O(2) induced expression of PM H(+)-ATPase genes.
Collapse
Affiliation(s)
- Małgorzata Janicka-Russak
- Department of Plant Physiology, Institute of Plant Biology, University of Wrocław, Kanonia 6/8, 50-328, Wrocław, Poland.
| | | | | | | |
Collapse
|
14
|
Abstract
The key role of coenzyme Q (ubiquinone or Q) is in mitochondrial and prokaryotic energetics. Less well investigated is the basis for its presence in eukaryotic membrane locations other than mitochondria and in plasma where both antioxidant and potentially more targeted roles are indicated. Included in the latter is that of a lipid-soluble electron transfer intermediate that serves as the transmembrane component of plasma membrane and Golgi apparatus electron transport, which regulates cytosolic NAD(+) /NADH ratios and is involved in vectorial membrane displacements and in the regulation of cell growth. Important protective effects on circulating lipoproteins and in the prevention of coronary artery disease ensue not only from the antioxidant role of CoQ(10) but also from its ability to directly block protein oxidation and superoxide generation of the TM-9 family of membrane proteins known as age-related NADH oxidase or arNOX (ENOX3) and their shed forms that appear after age 30 and some of which associate specifically with low-density lipoprotein particles to catalyze protein oxidation and crosslinking.
Collapse
Affiliation(s)
- D James Morré
- NOX Technologies, Purdue Research Park, West Lafayette, IN, USA.
| | | |
Collapse
|
15
|
Hunting for low abundant redox proteins in plant plasma membranes. J Proteomics 2009; 72:475-83. [DOI: 10.1016/j.jprot.2008.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 10/27/2008] [Accepted: 11/01/2008] [Indexed: 01/17/2023]
|
16
|
Lüthje S. Plasma Membrane Redox Systems: Lipid Rafts and Protein Assemblies. PROGRESS IN BOTANY 2008. [DOI: 10.1007/978-3-540-72954-9_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
17
|
Vuletić M, Sukalović VHT, Vucinić Z. The coexistence of the oxidative and reductive systems in roots: the role of plasma membranes. Ann N Y Acad Sci 2006; 1048:244-58. [PMID: 16154937 DOI: 10.1196/annals.1342.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Different components of the plasma membrane bound and associated redox system, which participate in the energy transfer from the predominantly reducing intercellular environment to the extracellular oxidizing environment, are reviewed. Special attention is given to plant root cells. An analysis of the plasma membrane-associated redox components, such as the cytochromes, quinones, and different types of oxidoreductases (dehydrogenases, oxidases, peroxidases, and superoxide dismutases), is made, as well as their coupling with naturally occurring extracellular substrates, such as oxygen and its reactive forms, phenols, ascorbate, nitrate, ferric ion, and organic acids. The participation of different free radical species in most of the plasma membrane-bound redox reactions is documented.
Collapse
Affiliation(s)
- Mirjana Vuletić
- Maize Research Institute Zemun Polje, Belgrade, Serbia and Montenegro.
| | | | | |
Collapse
|
18
|
Menckhoff M, Lüthje S. Transmembrane electron transport in sealed and NAD(P)H-loaded right-side-out plasma membrane vesicles isolated from maize (Zea mays L.) roots. JOURNAL OF EXPERIMENTAL BOTANY 2004; 55:1343-1349. [PMID: 15155782 DOI: 10.1093/jxb/erh155] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Electron transport across plasma membranes has been observed in vivo in several plant species and tissues after the application of ferricyanide (hexacyanoferrate III, HCF III). In the present work, a transmembrane electron flow was demonstrated in sealed and NAD(P)H-loaded right-side-out (apoplastic-side-out) plasma membrane vesicles isolated from maize (Zea mays L.) roots. HCF III was reduced at a rate of up to 126 nmol min(-1) mg(-1) protein by NADPH-loaded vesicles, while reduction rates with NADH-loaded vesicles were several-fold lower. Coincident with the reduction of HCF III, NAD(P)H oxidation was observed inside the vesicles. The dependence of reduction on K+ indicated an electrogenic transmembrane electron flow. Application of 100 microM calcium decreased HCF III reduction up to 66%, while pre-incubation with 200 microM warfarin or diphenylene iodonium inhibited transmembrane electron transport only weakly. Fe(3+)-EDTA was not reduced significantly by NADPH-loaded plasma membrane vesicles, whereas XTT was reduced at a rate of 765 pmol min(-1) mg(-1) protein. The results suggested a major function for NADPH in transmembrane electron flow and were discussed in conjunction with in vivo experiments.
Collapse
Affiliation(s)
- Mathias Menckhoff
- Universität Hamburg, Biozentrum Klein Flottbek und Botanischer Garten, Ohnhorststrabetae 18, D-22609 Hamburg, Germany
| | | |
Collapse
|
19
|
|
20
|
Affiliation(s)
- D James Morré
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, Lafayette, Indiana 47907, USA
| |
Collapse
|
21
|
Roustan JL, Sablayrolles JM. Feasibility of measuring ferricyanide reduction by yeasts to estimate their activity during alcoholic fermentation in wine-making conditions. J Biosci Bioeng 2003; 96:434-7. [PMID: 16233552 DOI: 10.1016/s1389-1723(03)70128-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2003] [Accepted: 08/08/2003] [Indexed: 11/26/2022]
Abstract
We assessed the feasibility of measuring the extracellular reduction of ferricyanide in the presence of an intermediate carrier (menadione) as a means of estimating the activity of yeasts during alcoholic fermentation. A spectrophotometric and a potentiometric approach were used. Comparison of specific reductase activity and gas production rate during the stationary phase indicated that measuring the menadione-catalyzed reduction of ferricyanide provides a good estimate of the total activity of the yeast cells in a fermenting must. The response observed following the addition of an electron acceptor (acetaldehyde) confirmed that the reductase activity of menadione is dependent on the availability of NADH. The stability of menadione in the fermentation medium, as assessed by the potentiometric method, suggested that electrochemical reoxidation of the ferrocyanide can act as a substitute for the addition of an electron acceptor when studying the redox regulation of fermenting yeasts.
Collapse
Affiliation(s)
- Jean-Louis Roustan
- Unité Mixte de Recherche (UMR), Sciences pour l'oenologie, Institut National de la Recherche Agronomique (INRA), 2 place Viala, 34070 Montpellier Cedex 1, France
| | | |
Collapse
|
22
|
Abstract
The notion of transmembrane electron transport is usually associated with mitochondria and chloroplasts. However, since the early 1970s, it has been known that this phenomenon also occurs at the level of the plasma membrane. Ever since, evidence has accumulated for the existence of a plethora of transplasma membrane electron transport enzymes. In this review, we discuss the various enzymes known, their molecular characteristics and their biological functions.
Collapse
Affiliation(s)
- Jennifer D Ly
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Melbourne, Victoria, Australia
| | | |
Collapse
|
23
|
Berry S. Endosymbiosis and the design of eukaryotic electron transport. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2003; 1606:57-72. [PMID: 14507427 DOI: 10.1016/s0005-2728(03)00084-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The bioenergetic organelles of eukaryotic cells, mitochondria and chloroplasts, are derived from endosymbiotic bacteria. Their electron transport chains (ETCs) resemble those of free-living bacteria, but were tailored for energy transformation within the host cell. Parallel evolutionary processes in mitochondria and chloroplasts include reductive as well as expansive events: On one hand, bacterial complexes were lost in eukaryotes with a concomitant loss of metabolic flexibility. On the other hand, new subunits have been added to the remaining bacterial complexes, new complexes have been introduced, and elaborate folding patterns of the thylakoid and mitochondrial inner membranes have emerged. Some bacterial pathways were reinvented independently by eukaryotes, such as parallel routes for quinol oxidation or the use of various anaerobic electron acceptors. Multicellular organization and ontogenetic cycles in eukaryotes gave rise to further modifications of the bioenergetic organelles. Besides mitochondria and chloroplasts, eukaryotes have ETCs in other membranes, such as the plasma membrane (PM) redox system, or the cytochrome P450 (CYP) system. These systems have fewer complexes and simpler branching patterns than those in energy-transforming organelles, and they are often adapted to non-bioenergetic functions such as detoxification or cellular defense.
Collapse
Affiliation(s)
- Stephan Berry
- Plant Biochemistry, Faculty of Biology, Ruhr-University-Bochum, Universitätsstr. 150, D-44780 Bochum, Germany.
| |
Collapse
|
24
|
Abstract
The plant plasma membrane contains redox proteins able to mediate a trans-membrane electron flow. This electron flow might be responsible for the generation of the active oxygen species observed as a reaction to pathogen attack or stress. Vitamin K1 could be identified as a possible lipid soluble electron carrier in plant plasma membrane preparations. Such a function would be analogous to coenzyme Q in animal plasma membranes. What we are going to outline in this contribution is a concept of how the electron transport system of the plant plasma membrane could interact with quinones, thus contributing to the metabolism of free radicals in plants.
Collapse
Affiliation(s)
- K Lochner
- Biozentrum Klein Flottbek, University of Hamburg, Ohnhorstrasse 18, D-22609 Hamburg, Germany
| | | | | |
Collapse
|
25
|
Kim C, Crane FL, Faulk WP, Morré DJ. Purification and characterization of a doxorubicin-inhibited NADH-quinone (NADH-ferricyanide) reductase from rat liver plasma membranes. J Biol Chem 2002; 277:16441-7. [PMID: 11875069 DOI: 10.1074/jbc.m112311200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plasma membrane-associated redox systems play important roles in regulation of cell growth, internal pH, signal transduction, apoptosis, and defense against pathogens. Stimulation of cell growth and stimulation of the redox system of plasma membranes are correlated. When cell growth is inhibited by antitumor agents such as doxorubicin, capsaicin, and antitumor sulfonylureas, redox activities of the plasma membrane also are inhibited. A doxorubicin-inhibited NADH-quinone reductase was characterized and purified from plasma membranes of rat liver. First, an NADH-cytochrome b(5) reductase, which was doxorubicin-insensitive, was removed from the plasma membranes by the lysosomal protease, cathepsin D. After removal of the NADH-cytochrome b(5) reductase, the plasma membranes retained a doxorubicin-inhibited NADH-quinone reductase activity. The enzyme, with an apparent molecular mass of 57 kDa, was purified 200-fold over the cathepsin D-treated plasma membranes. The purified enzyme had also an NADH-coenzyme Q(0) reductase (NADH: external acceptor (quinone) reductase; EC 1.6.5.) activity. Partial amino acid sequence of the enzyme showed that it was unique with no sequence homology to any known protein. Antibody against the enzyme (peptide sequence) was produced and affinity-purified. The purified antibody immunoprecipitated both the NADH-ferricyanide reductase activity and NADH-coenzyme Q(0) reductase activity of plasma membranes and cross-reacted with human chronic myelogenous leukemia K562 cells and doxorubicin-resistant human chronic myelogenous leukemia K562R cells. Localization by fluorescence microscopy showed that the reaction was with the external surface of the plasma membranes. The doxorubicin-inhibited NADH-quinone reductase may provide a target for the anthracycline antitumor agents and a candidate ferricyanide reductase for plasma membrane electron transport.
Collapse
Affiliation(s)
- Chinpal Kim
- Department of Medicinal Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | |
Collapse
|
26
|
Abstract
In 1961, an inventive Englishman, named Peter Mitchell, proposed a radically novel hypothesis to explain how energy is conserved during respiration and photosynthesis, and applied to the generation of ATP and other kinds of functional work. The chemiosmotic hypothesis sparked an intense controversy that lasted for 15 years. Today, Mitchell's conception of proton currents and their role in phosphorylation and active transport is generally accepted, and has ramified into many corners of cellular physiology. His most profound contribution may have been to introduce spatial direction into biochemistry, and thereby transform our perception of the relationship between molecules and cells.
Collapse
Affiliation(s)
- F M Harold
- Department of Microbiology, University of Washington-Seattle, 98195 226th Street SW, Edmonds, WA 98020.
| |
Collapse
|
27
|
Katz A, Pick U. Plasma membrane electron transport coupled to Na(+) extrusion in the halotolerant alga Dunaliella. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1504:423-31. [PMID: 11245805 DOI: 10.1016/s0005-2728(01)00157-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The halotolerant alga Dunaliella adapts to exceptionally high salinity and maintains low [Na(+)](in) at hypersaline solutions, suggesting that it possesses efficient mechanisms for regulating intracellular Na(+). In this work we examined the possibility that Na(+) export in Dunaliella is linked to a plasma membrane electron transport (redox) system. Na(+) extrusion was induced in Dunaliella cells by elevation of intracellular Na(+) with Na(+)-specific ionophores. Elevation of intracellular Na(+) was found to enhance the reduction of an extracellular electron acceptor ferricyanide (FeCN). The quinone analogs NQNO and dicumarol inhibited FeCN reduction and led to accumulation of Na(+) by inhibition of Na(+) extrusion. These inhibitors also diminished the plasma membrane potential in Dunaliella. Anaerobic conditions elevated, whereas FeCN partially decreased intracellular Na(+) content. Cellular NAD(P)H level decreased upon enhancement of plasma membrane electron transport. These results are consistent with the operation of an electrogenic NAD(P)H-driven redox system coupled to Na(+) extrusion in Dunaliella plasma membrane. We propose that redox-driven Na(+) extrusion and recycling in Dunaliella evolved as means of adaptation to hypersaline environments.
Collapse
Affiliation(s)
- A Katz
- Department of Biological Chemistry, The Weizmann Institute of Science, 76100, Rehovot, Israel.
| | | |
Collapse
|
28
|
Crane FL. Humin and anthroquinone reduction by an anaerobic microbe. Redox Rep 2001; 5:311-2. [PMID: 11145107 DOI: 10.1179/135100000101535861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Affiliation(s)
- F L Crane
- Biology Department, Purdue University, Metamora, Illinois 61548, USA
| |
Collapse
|
29
|
Bohn M, Heinz E, Lüthje S. Lipid Composition and Fluidity of Plasma Membranes Isolated from Corn (Zea mays L.) Roots. Arch Biochem Biophys 2001; 387:35-40. [PMID: 11368181 DOI: 10.1006/abbi.2000.2224] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although the results of lipid analyses from several plant species have been available for many years a complete characterization of the corn root plasma membrane is still lacking. The present study provides a detailed analysis of individual lipids and a characterization of the membrane fluidity of corn (Zea mays L.) root plasma membranes isolated by phase-partitioning. Phospholipids (43.9 mol%), sterols (40.8 mol%), and sphingolipids in the form of glucocerebroside (6.8 mol%) constitute the major lipid classes. Stigmasterol (19.8 mol%), campesterol (13.0 mol%), phosphatidylcholine 15.8 mol%), and phosphatidylethanolamine (14.2 mol%) represent the most ubiquitous individual lipids. Hydroxy fatty acids make up 80.9 mol% and very long chain fatty acids are almost 78% of fatty acids in glucocerebroside. Hydroxy arachidic acid (20:0 h) and hydroxy lignoceric acid (24:0 h) are most prominent and glucocerebroside from corn root plasma membranes contains virtually no unsaturated fatty acids. Among the phospholipids only phosphatidylserine displayed a high proportion of very long chain fatty acids (e.g., behenic and lignoceric acid). Membrane fluidity was estimated by fluorescence anisotropy. Due to the high sterol content the plasma membrane of corn roots is relatively rigid.
Collapse
Affiliation(s)
- M Bohn
- Institut für Allgemeine Botanik, Universität Hamburg, Germany
| | | | | |
Collapse
|
30
|
Behzadipour M, Kluge M, Lüthje S. Changes in plasma membrane fluidity of corn (Zea mays L.) roots after Brij 58 treatment. PROTOPLASMA 2001; 217:65-69. [PMID: 11732340 DOI: 10.1007/bf01289415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The detergent Brij 58 has been introduced to reverse plasma membrane (PM) vesicles from the right-side-out to the inside-out form. The aim of the present work was to investigate the effect of Brij 58 on the formation of an ATP-dependent proton gradient and on the fluidity of the lipid phase of PM vesicles. PMs of corn (Zea mays L.) roots were isolated by phase-partitioning. The fluidity of PMs was estimated by measurement of fluorescence polarization with 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene (TMA-DPH) and 1,6-diphenyl-1,3,5-hexatriene (DPH). The PMs of corn roots were relatively rigid. The hydrophobic part of the lipid bilayer was more fluid than the hydrophilic part. After intercalation of Brij 58 into the lipid bilayer the membrane fluidity changed in a concentration-dependent manner. Treatment with the detergent Brij 58 increased the degree of fluorescence polarization for TMA-DPH, while it decreased it for DPH. This effect was saturated at a detergent-to-protein ratio of 1:4 for both fluorescence probes. Although the biophysical characteristics of the membrane were changed after Brij 58 treatment, the formation of ATP-dependent proton gradients could still be measured with those vesicles. The generation of an ATP-dependent proton gradient with Brij 58-treated PM vesicles suggests that the detergent treatment indeed turned the originally right-side-out vesicles to sealed inside-out vesicles. The limits of the effect caused by Brij 58 in the context of PM enzyme activities are discussed.
Collapse
Affiliation(s)
- M Behzadipour
- Institut für Botanik, Technische Universität Darmstadt, Darmstadt, Federal Republic of Germany
| | | | | |
Collapse
|
31
|
Taylor AR, Assmann SM. Apparent absence of a redox requirement for blue light activation of pump current in broad bean guard cells. PLANT PHYSIOLOGY 2001; 125:329-38. [PMID: 11154340 PMCID: PMC61013 DOI: 10.1104/pp.125.1.329] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In guard cells, membrane hyperpolarization in response to a blue light (BL) stimulus is achieved by the activation of a plasma membrane H(+)-ATPase. Using the patch clamp technique on broad bean (Vicia faba) guard cells we demonstrate that both steady-state- and BL-induced pump currents require ATP and are blocked by vanadate perfused into the guard cell during patch clamp recording. Background-pump current and BL-activated currents are voltage independent over a wide range of membrane potentials. During BL-activated responses significant hyperpolarization is achieved that is sufficient to promote K(+) uptake. BL activation of pump current becomes desensitized by three or four pulses of 30 s x 100 micromol m(-2) s(-1) BL. This desensitization is not a result of pump inhibition as maximal responses to fusicoccin are observed after full BL desensitization. BL treatments prior to whole cell recording show that BL desensitization is not due to washout of a secondary messenger by whole cell perfusion, but appears to be an important feature of the BL-stimulated pump response. We found no evidence for an electrogenic BL-stimulated redox chain in the plasma membrane of guard cells as no steady-state- or BL-activated currents are detected with NADH or NADPH added to the cytosol in the absence of ATP. Steady-state- nor BL-activated currents are affected by the inclusion along with ATP of 1 mM NADH in the pipette under saturating red light or by including NADPH in the pipette under darkness or saturating red light. These data suggest that reduced products of photosynthesis do not significantly modulate plasma membrane pump currents and are unlikely to be critical regulators in BL-stimulation of the plasma membrane H(+)-ATPase in guard cells.
Collapse
Affiliation(s)
- A R Taylor
- Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth PL1 2PB, United Kingdom.
| | | |
Collapse
|
32
|
Asard H, Kapila J, Verelst W, Bérczi A. Higher-plant plasma membrane cytochrome b561: a protein in search of a function. PROTOPLASMA 2001; 217:77-93. [PMID: 11732342 DOI: 10.1007/bf01289417] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
During the past twenty years evidence has accumulated on the presence of a specific high-potential, ascorbate-reducible b-type cytochrome in the plasma membrane (PM) of higher plants. This cytochrome is named cytochrome b561 (cyt b561) according to the wavelength maximum of its alpha-band in the reduced form. More recent evidence suggests that this protein is homologous to a b-type cytochrome present in chromaffin granules of animal cells. The plant and animal cytochromes share a number of strikingly similar features, including the high redox potential, the ascorbate reducibility, and most importantly the capacity to transport electrons across the membrane they are located in. The PM cyt b561 is found in all plant species and in a variety of tissues tested so far. It thus appears to be a ubiquitous electron transport component of the PM. The cytochromes b561 probably constitute a novel class of transmembrane electron transport proteins present in a large variety of eukaryotic cells. Of particular interest is the recent discovery of a number of plant genes that show striking homologies to the genes coding for the mammalian cytochromes b561. A number of highly relevant structural features, including hydrophobic domains, heme ligation sites, and possible ascorbate and monodehydroascorbate binding sites are almost perfectly conserved in all these proteins. At the same time the plant gene products show interesting differences related to their specific location at the PM, such as potentially N-linked glycosylation sites. It is also clear that at least in several plants cyt b561 is represented by a multigene family. The current paper presents the first overview focusing exclusively on the plant PM cyt b561, compares it to the animal cyt b561, and discusses the possible physiological function of these proteins in plants.
Collapse
Affiliation(s)
- H Asard
- Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | | | | | | |
Collapse
|
33
|
Steffen D, Döring O, Busch MA, Böttger M, Lüthje S. Interaction between electron transport at the plasma membrane and nitrate uptake by maize (Zea mays L.) roots. PROTOPLASMA 2001; 217:70-76. [PMID: 11732341 DOI: 10.1007/bf01289416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In the present study nitrate uptake by maize (Zea mays L.) roots was investigated in the presence or absence of ferricyanide (hexacyanoferrate III) or dicumarol. Nitrate uptake caused an alkalization of the medium. Nitrate uptake of intact maize seedlings was inhibited by ferricyanide while the effect of dicumarol was not very pronounced. Nitrite was not detected in the incubation medium, neither with dicumarol-treated nor with control plants after application of 100 microM nitrate to the incubation solution. In a second set of experiments interactions between nitrate and ferricyanide were investigated in vivo and in vitro. Nitrate (1 or 3 mM) did neither influence ferricyanide reductase activity of intact maize roots nor NADH-ferricyanide oxidoreductase activity of isolated plasma membranes. Nitrate reductase activity of plasma-membrane-enriched fractions was slightly stimulated by 25 microM dicumarol but was not altered by 100 microM dicumarol, while NADH-ferricyanide oxidoreductase activity was inhibited in the presence of dicumarol. These data suggest that plasma-membrane-bound standard-ferricyanide reductase and nitrate reductase activities of maize roots may be different. A possible regulation of nitrate uptake by plasmalemma redox activity, as proposed by other groups, is discussed.
Collapse
Affiliation(s)
- D Steffen
- Institut für Allgemeine Botanik, Universität Hamburg, Ohnhorststrasse 18, 22609 Hamburg, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
34
|
Döring O, Lüthje S. Inhibition of trans-membrane hexacyanoferrate III reductase activity and proton secretion of maize (Zea mays L.) roots by thenoyltrifluoroacetone. PROTOPLASMA 2001; 217:3-8. [PMID: 11732334 DOI: 10.1007/bf01289406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Intact plants can reduce external oxidants by an appearingly trans-membrane electron transport. In vivo an increase in net medium acidification accompanies the reduction of the apoplastic substrate. Up to now, several NAD(P)H dehydrogenases, b-type cytochromes, and a phylloquinone have been identified and partially purified from plant plasma membranes. The occurrence of a quinone in the plasma membrane of maize roots supports the hypothetical model of a proton-transferring redox system, i.e., an electron transport chain with a quinone as mobile electron and proton carrier. In the present study the trans-membrane electron transport system of intact maize (Zea mays L.) roots was investigated. Flow-through and ionostat systems have been used to estimate the electron and proton transport activity of this material. Application of 4,4,4-trifluoro-1-(2-thienyl)-butane-1,3-dione (thenoyltrifluoroacetone) inhibited the reduction of ferricyanide in the incubation solution of intact maize roots up to 70%. This inhibition could not be washed off by rinsing the roots with fresh incubation medium. The acidification of the medium induced after ferricyanide application was inhibited to about 62%. The effects of thenoyltrifluoroacetone on proton fluxes in the absence of ferricyanide have been characterized in a pH-stat system. The net medium acidification by maize roots was inhibited up to 75% by thenoyltrifluoroacetone in the absence of ferricyanide, while dicumarol inhibited net acidification completely. The inhibition of H(+)-ATPase activity was estimated with plasma membrane vesicles isolated by phase partitioning and treated with 0.05% (w/v) Brij 58. ATP-dependent proton gradients and Pi release were measured after preincubation with the effectors. The proton pumping activity by those plasma membrane vesicles was inhibited by dicumarol (53.6%) and thenoyltrifluoroacctone (77.8%), while the release of Pi was unaffected by both inhibitors.
Collapse
Affiliation(s)
- O Döring
- Institut für Allgemeine Botanik, Universität Hamburg, Ohnhorststrasse 18, 22609 Hamburg, Federal Republic of Germany
| | | |
Collapse
|
35
|
Are Plants Stacked Neutrophiles? Comparison of Pathogen-Induced Oxidative Burst in Plants and Mammals. ACTA ACUST UNITED AC 2000. [DOI: 10.1007/978-3-642-57203-6_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
36
|
Roos W, Dordschbal B, Steighardt J, Hieke M, Weiss D, Saalbach G. A redox-dependent, G-protein-coupled phospholipase A of the plasma membrane is involved in the elicitation of alkaloid biosynthesis in Eschscholtzia californica. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1448:390-402. [PMID: 9990291 DOI: 10.1016/s0167-4889(98)00148-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In cultured cells of California poppy formation of benzophenanthridine alkaloids can be triggered by a yeast elicitor preparation independently of the hypersensitive reaction. A plasma membrane (PM) bound phospholipase A (PLA) is likely to play a role in the signalling process: PLA activity was detectable in individual cells, cell suspensions and PM vesicles with the fluorogenic phospholipid bis-BODIPY FL C11-PC and was sensitive to known inhibitors of PLA2. In microscopic assays, enzyme activity increased after elicitor contact of cells that were pretreated with non-saturating concentrations of PLA2 inhibitors. In PM vesicles a PLA2-like protein as well as G alpha- and G beta-proteins were detected immunologically. Anti-G alpha or anti-G beta antisera or mastoparan stimulated PLA activity thus indicating a G-protein-controlled enzyme. Elicitation of alkaloid production was sensitive to aristolochic acid and enhanced by PLA2 products such as lysophosphatidylcholine and linolenic acid. Pretreatment of the cells with the artificial electron acceptors hexabromoiridate(V) or ferricyanide(III) reversibly abolished the effect of subsequent elicitation and reduced the activity of PLA both in intact cells and in PM vesicles. It appears, therefore, that PLA2 is a point of interference of redox control with the signal path.
Collapse
Affiliation(s)
- W Roos
- Department of Cellular Physiology, Martin-Luther-University, Halle, Germany.
| | | | | | | | | | | |
Collapse
|
37
|
Leprince, Hoekstra. The responses of cytochrome redox state and energy metabolism to dehydration support a role for cytoplasmic viscosity in desiccation tolerance. PLANT PHYSIOLOGY 1998; 118:1253-64. [PMID: 9847099 PMCID: PMC34741 DOI: 10.1104/pp.118.4.1253] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/1998] [Accepted: 08/20/1998] [Indexed: 05/21/2023]
Abstract
To characterize the depression of metabolism in anhydrobiotes, the redox state of cytochromes and energy metabolism were studied during dehydration of soaked cowpea (Vigna unguiculata) cotyledons and pollens of Typha latifolia and Impatiens glandulifera. Between water contents (WC) of 1.0 and 0.6 g H2O/g dry weight (g/g), viscosity as measured by electron spin resonance spectroscopy increased from 0.15 to 0.27 poise. This initial water loss was accompanied by a 50% decrease in respiration rates, whereas the adenylate energy charge remained constant at 0.8, and cytochrome c oxidase (COX) remained fully oxidized. From WC of 0.6 to 0.2 g/g, viscosity increased exponentially. The adenylate energy charge declined to 0.4 in seeds and 0.2 in pollen, whereas COX became progressively reduced. At WC of less than 0.2 g/g, COX remained fully reduced, whereas respiration ceased. When dried under N2, COX remained 63% reduced in cotyledons until WC was 0.7 g/g and was fully reduced at 0.2 g/g. During drying under pure O2, the pattern of COX reduction was similar to that of air-dried tissues, although the maximum reduction was 70% in dried tissues. Thus, at WC of less than 0.6 g/g, the reduction of COX probably originates from a decreased O2 availability as a result of the increased viscosity and impeded diffusion. We suggest that viscosity is a valuable parameter to characterize the relation between desiccation and decrease in metabolism. The implications for desiccation tolerance are discussed.
Collapse
Affiliation(s)
- Leprince
- Department of Biomolecular Sciences, Laboratory of Plant Physiology, Wageningen Agricultural University, Arboretumlaan 4, 6703 BD Wageningen, The Netherlands
| | | |
Collapse
|
38
|
Morré DJ, Chueh PJ, Lawler J, Morré DM. The sulfonylurea-inhibited NADH oxidase activity of HeLa cell plasma membranes has properties of a protein disulfide-thiol oxidoreductase with protein disulfide-thiol interchange activity. J Bioenerg Biomembr 1998; 30:477-87. [PMID: 9932650 DOI: 10.1023/a:1020594214379] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Plasma membrane vesicles of HeLa cells are characterized by a drug-responsive oxidation of NADH. The NADH oxidation takes place in an argon or nitrogen atmosphere and in samples purged of oxygen. Direct assay of protein thiols by reaction with 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB; Ellman's reagent), suggests that protein disulfides may be the natural electron acceptors for NADH oxidation by the plasma membrane vesicles. In the presence of NADH, protein disulfides of the membranes were reduced with a concomitant stoichiometric increase in protein thiols. The increase in protein thiols was inhibited in parallel to the inhibition of NADH oxidation by the antitumor sulfonylurea LY181984 with an EC50 of ca. 30 nM. LY 181984, with an EC50 of 30 nM, also inhibited a protein disulfide-thiol interchange activity based on the restoration of activity to inactive (scrambled) RNase and thiol oxidation. The findings suggest that thiol oxidation, NADH-dependent disulfide reduction (NADH oxidation), and protein disulfide-thiol interchange in the absence of NADH all may be manifestations of the same sulfonylurea binding protein of the HeLa plasma membrane. A surface location of the thiols involved was demonstrated using detergents and the impermeant thiol reagent p-chloromercuriphenylsulfonic acid (PCMPS). The surface location precludes a physiological role of the protein in NADH oxidation. Rather, it may carry out some other role more closely related to a function in growth, such as protein disulfide-thiol interchange coupled to cell enlargement.
Collapse
Affiliation(s)
- D J Morré
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | |
Collapse
|
39
|
Brczi A, Mller IM. NADH-Monodehydroascorbate oxidoreductase is one of the redox enzymes in spinach leaf plasma membranes. PLANT PHYSIOLOGY 1998; 116:1029-36. [PMID: 9501135 PMCID: PMC35072 DOI: 10.1104/pp.116.3.1029] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/1997] [Accepted: 11/13/1997] [Indexed: 05/18/2023]
Abstract
Amino acid analysis of internal sequences of purified NADH-hexacyanoferrate(III) oxidoreductase (NFORase), obtained from highly purified plasma membranes (PM) of spinach (Spinacia oleracea L.) leaves, showed 90 to 100% homology to internal amino acid sequences of monodehydroascorbate (MDA) reductases (EC 1.6.5.4) from three different plant species. Specificity, kinetics, inhibitor sensitivity, and cross-reactivity with anti-MDA reductase antibodies were all consistent with this identification. The right-side-out PM vesicles were subjected to consecutive salt washing and detergent (polyoxyethylene 20 dodecylether and 3-[(3-cholamido-propyl)-dimethylammonio]-1-propane sulfonate [CHAPS]) treatments, and the fractions were analyzed for NFORase and MDA reductase activities. Similar results were obtained when the 300 mm sucrose in the homogenization buffer and in all steps of the salt-washing and detergent treatments had been replaced by 150 mm KCl to mimic the conditions in the cytoplasm. We conclude that (a) MDA reductase is strongly associated with the inner (cytoplasmic) surface of the PM under in vivo conditions and requires washing with 1.0 m KCl or CHAPS treatment for removal, (b) the PM-bound MDA reductase activity is responsible for the majority of PM NFORase activity, and (c) there is another redox enzyme(s) in the spinach leaf PM that cannot be released from the PM by salt-washing and/or CHAPS treatment. The PM-associated MDA reductase may have a role in reduction of ascorbate in both the cytosol and the apoplast.
Collapse
|
40
|
|