1
|
Virosome, a promising delivery vehicle for siRNA delivery and its novel preparation method. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
2
|
Costello DA, Lee DW, Drewes J, Vasquez KA, Kisler K, Wiesner U, Pollack L, Whittaker GR, Daniel S. Influenza virus-membrane fusion triggered by proton uncaging for single particle studies of fusion kinetics. Anal Chem 2012; 84:8480-9. [PMID: 22974237 DOI: 10.1021/ac3006473] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report a method for studying membrane fusion, focusing on influenza virus fusion to lipid bilayers, which provides high temporal resolution through the rapid and coordinated initiation of individual virus fusion events. Each fusion event proceeds through a series of steps, much like multistep chemical reaction. Fusion is initiated by a rapid decrease in pH that accompanies the "uncaging" of an effector molecule from o-nitrobenzaldehyde, a photoisomerizable compound that releases a proton to the surrounding solution within microseconds of long-wave ultraviolet irradiation. In order to quantify pH values upon UV irradiation and uncaging, we introduce a simple silica nanoparticle pH sensor, useful for reporting the pH in homogeneous nanoliter volumes under conditions where traditional organic dye-type pH probes fail. Subsequent single-virion fusion events are monitored using total internal reflection fluorescence microscopy. Statistical analysis of these stochastic events uncovers kinetic information about the fusion reaction. This approach reveals that the kinetic parameters obtained from the data are sensitive to the rate at which protons are delivered to the bound viruses. Higher resolution measurements can enhance fundamental fusion studies and aid antiviral antifusogenic drug development.
Collapse
Affiliation(s)
- Deirdre A Costello
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Hamilton BS, Whittaker GR, Daniel S. Influenza virus-mediated membrane fusion: determinants of hemagglutinin fusogenic activity and experimental approaches for assessing virus fusion. Viruses 2012; 4:1144-68. [PMID: 22852045 PMCID: PMC3407899 DOI: 10.3390/v4071144] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 07/11/2012] [Accepted: 07/17/2012] [Indexed: 12/15/2022] Open
Abstract
Hemagglutinin (HA) is the viral protein that facilitates the entry of influenza viruses into host cells. This protein controls two critical aspects of entry: virus binding and membrane fusion. In order for HA to carry out these functions, it must first undergo a priming step, proteolytic cleavage, which renders it fusion competent. Membrane fusion commences from inside the endosome after a drop in lumenal pH and an ensuing conformational change in HA that leads to the hemifusion of the outer membrane leaflets of the virus and endosome, the formation of a stalk between them, followed by pore formation. Thus, the fusion machinery is an excellent target for antiviral compounds, especially those that target the conserved stem region of the protein. However, traditional ensemble fusion assays provide a somewhat limited ability to directly quantify fusion partly due to the inherent averaging of individual fusion events resulting from experimental constraints. Inspired by the gains achieved by single molecule experiments and analysis of stochastic events, recently-developed individual virion imaging techniques and analysis of single fusion events has provided critical information about individual virion behavior, discriminated intermediate fusion steps within a single virion, and allowed the study of the overall population dynamics without the loss of discrete, individual information. In this article, we first start by reviewing the determinants of HA fusogenic activity and the viral entry process, highlight some open questions, and then describe the experimental approaches for assaying fusion that will be useful in developing the most effective therapies in the future.
Collapse
Affiliation(s)
- Brian S. Hamilton
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA;
| | - Gary R. Whittaker
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA;
| | - Susan Daniel
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA;
| |
Collapse
|
4
|
Antosiewicz JM, Shugar D. Poisson–Boltzmann continuum-solvation models: applications to pH-dependent properties of biomolecules. MOLECULAR BIOSYSTEMS 2011; 7:2923-49. [DOI: 10.1039/c1mb05170a] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
5
|
Piłat Z, Antosiewicz JM. pKa’s of Ionizable Groups and Energetics of Protein Conformational Transitions. J Phys Chem B 2010; 114:1393-406. [DOI: 10.1021/jp9040056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zofia Piłat
- Division of Biophysics, Institute of Experimental Physics, Department of Physics, University of Warsaw Zwirki i Wigury 93 Street, Warsaw 02-089, Poland
| | - Jan M. Antosiewicz
- Division of Biophysics, Institute of Experimental Physics, Department of Physics, University of Warsaw Zwirki i Wigury 93 Street, Warsaw 02-089, Poland
| |
Collapse
|
6
|
Kalashnikova I, Ivanova N, Tennikova T. Development of a Strategy of Influenza Virus Separation Based on Pseudoaffinity Chromatography on Short Monolithic Columns. Anal Chem 2008; 80:2188-98. [DOI: 10.1021/ac702258t] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- I. Kalashnikova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg, Russia
| | - N. Ivanova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg, Russia
| | - T. Tennikova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
7
|
Su Y, Yang H, Zhang B, Qi X, Tien P. A dual reporter gene based system to quantitate the cell fusion of avian influenza virus H5N1. Biotechnol Lett 2007; 30:73-9. [PMID: 17823774 DOI: 10.1007/s10529-007-9521-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Revised: 08/09/2007] [Accepted: 08/15/2007] [Indexed: 12/01/2022]
Abstract
Membrane fusion is central to the entry of influenza virus into host cells. To quantitatively determine the fusion activity of hemagglutinin (HA) of avian influenza virus H5N1, we established a cell fusion assay based on a dual luciferase reporter gene. The HA fusion activity was assayed by measuring luciferase expression in fused cells, allowing a rapid, sensitive, and quantitative comparison of HA fusion activities at various pHs and in different cells types. The simplicity and the quantitative nature of this novel assay are ideally suited for identifying viral receptors or screening for inhibitors of viral entry in the future.
Collapse
Affiliation(s)
- Yan Su
- Molecular Virology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | | | | | | | | |
Collapse
|
8
|
Heiman MG, Engel A, Walter P. The Golgi-resident protease Kex2 acts in conjunction with Prm1 to facilitate cell fusion during yeast mating. ACTA ACUST UNITED AC 2007; 176:209-22. [PMID: 17210951 PMCID: PMC2063940 DOI: 10.1083/jcb.200609182] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The molecular machines that mediate cell fusion are unknown. Previously, we identified a multispanning transmembrane protein, Prm1 (pheromone-regulated membrane protein 1), that acts during yeast mating (Heiman, M.G., and P. Walter. 2000. J. Cell Biol. 151:719-730). Without Prm1, a substantial fraction of mating pairs arrest with their plasma membranes tightly apposed yet unfused. In this study, we show that lack of the Golgi-resident protease Kex2 strongly enhances the cell fusion defect of Prm1-deficient mating pairs and causes a mild fusion defect in otherwise wild-type mating pairs. Lack of the Kex1 protease but not the Ste13 protease results in similar defects. Deltakex2 and Deltakex1 fusion defects were suppressed by osmotic support, a trait shared with mutants defective in cell wall remodeling. In contrast, other cell wall mutants do not enhance the Deltaprm1 fusion defect. Electron microscopy of Deltakex2-derived mating pairs revealed novel extracellular blebs at presumptive sites of fusion. Kex2 and Kex1 may promote cell fusion by proteolytically processing substrates that act in parallel to Prm1 as an alternative fusion machine, as cell wall components, or both.
Collapse
Affiliation(s)
- Maxwell G Heiman
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | |
Collapse
|
9
|
Yang X, Kurteva S, Ren X, Lee S, Sodroski J. Stoichiometry of envelope glycoprotein trimers in the entry of human immunodeficiency virus type 1. J Virol 2005; 79:12132-47. [PMID: 16160141 PMCID: PMC1211524 DOI: 10.1128/jvi.79.19.12132-12147.2005] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins (Envs) function as a trimer, mediating virus entry by promoting the fusion of the viral and target cell membranes. HIV-1 Env trimers induce membrane fusion through a pH-independent pathway driven by the interaction between an Env trimer and its cellular receptors, CD4 and CCR5/CXCR4. We studied viruses with mixed heterotrimers of wild-type and dominant-negative Envs to determine the number (T) of Env trimers required for HIV-1 entry. To our surprise, we found that a single Env trimer is capable of supporting HIV-1 entry; i.e., T = 1. A similar approach was applied to investigate the entry stoichiometry of envelope glycoproteins from amphotropic murine leukemia virus (A-MLV), avian sarcoma/leukosis virus type A (ASLV-A), and influenza A virus. When pseudotyped on HIV-1 virions, the A-MLV and ASLV-A Envs also exhibit a T = 1 entry stoichiometry. In contrast, eight to nine influenza A virus hemagglutinin trimers function cooperatively to achieve membrane fusion and virus entry, using a pH-dependent pathway. The different entry requirements for cooperativity among Env trimers for retroviruses and influenza A virus may influence viral strategies for replication and evasion of the immune system.
Collapse
Affiliation(s)
- Xinzhen Yang
- Dana-Farber Cancer Institute, Department of Cancer Immunology and AIDS, 44 Binney Street, JFB 824, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
10
|
Nomura F, Inaba T, Ishikawa S, Nagata M, Takahashi S, Hotani H, Takiguchi K. Microscopic observations reveal that fusogenic peptides induce liposome shrinkage prior to membrane fusion. Proc Natl Acad Sci U S A 2004; 101:3420-5. [PMID: 14988507 PMCID: PMC373477 DOI: 10.1073/pnas.0304660101] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To study the mechanisms involved in membrane fusion, we visualized the fusion process of giant liposomes in real time by optical dark-field microscopy. To induce membrane fusion, we used (i) influenza hemagglutinin peptide (HA), a 20-aa peptide derived from the N-terminal fusion peptide region of the HA2 subunit, and (ii) two synthetic analogue peptides of HA, a negatively (E5) and positively (K5) charged analogue. We were able to visualize membrane fusion caused by E5 or by K5 alone, as well as by the mixture of these two peptides. The HA peptide however, did not induce membrane fusion, even at an acidic pH, which has been described as the optimal condition for the fusion of large unilamellar vesicles. Surprisingly, before membrane fusion, the shrinkage of liposomes was always observed. Our results suggest that a perturbation of lipid bilayers, which probably resulted from alterations in the bending folds of membranes, is a critical factor in fusion efficiency.
Collapse
Affiliation(s)
- Fumimasa Nomura
- Department of Molecular Biology, School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | | | | | | | | | | | | |
Collapse
|
11
|
Nunes-Correia I, Nir S, Pedroso de Lima MC. Kinetics of influenza virus fusion with the endosomal and plasma membranes of cultured cells. Effect of temperature. J Membr Biol 2003; 195:21-6. [PMID: 14502422 DOI: 10.1007/s00232-003-2040-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2003] [Indexed: 10/27/2022]
Abstract
We performed a detailed kinetic analysis of influenza virus fusion with the endosomal and plasma membranes of Madin Darby canine kidney (MDCK) cells and provided a comparison of the kinetic parameters obtained for both cases at 20 degrees C and 37 degrees C. Using our mass action kinetic model, we determined that the fusion rate constant, f, for influenza virus with the endosomal membrane was 0.02 s(-1) at 37 degrees C and 0.0035 s(-1) at 20 degrees C. The analysis of the fusion kinetics of influenza virus with the plasma membrane yielded that the fusion rate constants were close to those deduced with the endosomal membrane. The systematic kinetic analysis performed in this study provides for the first time a biophysical support for studies on influenza virus-cell fusion where the acidic endosomal internal environment is simulated artificially by lowering the pH of the medium.
Collapse
Affiliation(s)
- I Nunes-Correia
- Department of Biochemistry, University of Coimbra, Apartado 3126, 3000 Coimbra, Portugal
| | | | | |
Collapse
|
12
|
Ohuchi M, Ohuchi R, Sakai T, Matsumoto A. Tight binding of influenza virus hemagglutinin to its receptor interferes with fusion pore dilation. J Virol 2002; 76:12405-13. [PMID: 12438566 PMCID: PMC136675 DOI: 10.1128/jvi.76.24.12405-12413.2002] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Deletion of oligosaccharide side chains near the receptor binding site of influenza virus A/USSR/90/77 (H1N1) hemagglutinin (HA) enhanced the binding of HA to erythrocyte receptors, as was also observed with A/FPV/Rostock/34 (H7N1). Correlated with the enhancement of binding activity, the cell fusion activity of HA was reduced. A mutant HA in which three oligosaccharide side chains were deleted showed the highest level of binding and the lowest level of fusion among the HAs tested. The cell fusion activity of the oligosaccharide deletion mutant of HA, however, was drastically elevated when the binding activity was reduced by deletion of four amino acids adjacent to the receptor binding site. Thus, a reciprocal relationship was observed between the receptor binding and the cell fusion activities of H1/USSR HA. No difference was observed, however, in lipid mixing activity, so-called hemifusion, between wild-type (WT) and oligosaccharide deletion mutant HAs. Soluble dye transfer testing showed that even the HA with the lowest cell fusion activity was able to form fusion pores through which a small molecule such as calcein could pass. However, electron microscopic studies revealed that a large molecule such as hemoglobin hardly passed through the fusion pores formed by the mutant HA, whereas hemoglobin did efficiently pass through those formed by the WT HA. These results suggested that interference in the process of dilation of fusion pores occurs when the binding of HA to the receptor is too tight. Since the viral nucleocapsid is far larger than hemoglobin, appropriate receptor binding affinity is important for virus entry.
Collapse
Affiliation(s)
- Masanobu Ohuchi
- Department of Microbiology, Kawasaki Medical School, Kurashiki 701-0192, Japan.
| | | | | | | |
Collapse
|
13
|
Abstract
Morphological and topological changes of biological membranes play essential roles in cellular activities. It has been thought that these transformations are made possible through interactions with proteins. However, direct observation of giant liposomes by optical dark-field microscopy reveals that the lipid bilayer itself possesses the ability to undergo topological transformation.
Collapse
Affiliation(s)
- Kingo Takiguchi
- Department of Molecular Biology, School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
Viral envelope glycoproteins promote viral infection by mediating the fusion of the viral membrane with the host-cell membrane. Structural and biochemical studies of two viral glycoproteins, influenza hemagglutinin and HIV-1 envelope protein, have led to a common model for viral entry. The fusion mechanism involves a transient conformational species that can be targeted by therapeutic strategies. This mechanism of infectivity is likely utilized by a wide variety of enveloped viruses for which similar therapeutic interventions should be possible.
Collapse
Affiliation(s)
- D M Eckert
- Howard Hughes Medical Institute, Whitehead Institute for Biomedical Research, Department of Biology, M.I.T., Cambridge, Massachusetts 02142, USA.
| | | |
Collapse
|
15
|
Duman JG, Singh G, Lee GY, Machen TE, Forte JG. Ca(2+) and Mg(2+)/ATP independently trigger homotypic membrane fusion in gastric secretory membranes. Traffic 2002; 3:203-17. [PMID: 11886591 DOI: 10.1034/j.1600-0854.2002.030306.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Exocytic activation of gastric parietal cells represents a massive transformation. We studied a step in this process, homotypic fusion of H,K-ATPase-containing tubulovesicles, using R18 dequenching. Ca(2+) and Mg(2+)/ATP each caused dramatic dequenching, reflecting a change in R18 distribution from 5% to 65-90% of the assay's membranes in 2.5 min. These stimuli also triggered fusion between tubulovesicles and liposomes. Independent confirmation that dequenching represented membrane fusion was established by separating tubulovesicle-liposome fusion products on density gradients. Only agents that trigger fusion allowed the transmembrane H,K-ATPase to move to low-density fractions along with R18. EC(50) for Ca(2+)-triggered fusion was 150 nm and for Mg(2+)/ATP-triggered fusion 1 mm, the latter having a Hill coefficient of 2.5. ATP-triggered fusion was specific for Mg(2+)/ATP, required ATP hydrolysis, and was insensitive to inhibition of NSF and/or H,K-ATPase. Fusion initiated by either trigger caused tubulovesicles to become resistant to subsequent challenge by either trigger. Ca(2+) and Mg(2+)/ATP-triggered fusion required protein component(s) in tubulovesicles, though this was required in only one of the fusing membranes since tubulovesicles fused well with liposomes containing no proteins. Our data suggest that exocytosis in parietal cells is triggered by separate but interacting pathways and is regulated by self-inhibition.
Collapse
Affiliation(s)
- Joseph G Duman
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720-3200, USA
| | | | | | | | | |
Collapse
|
16
|
Mastrobattista E, Crommelin DJA, Wilschut J, Storm G. Targeted liposomes for delivery of protein-based drugs into the cytoplasm of tumor cells. J Liposome Res 2002; 12:57-65. [PMID: 12604039 DOI: 10.1081/lpr-120004777] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Our goal was to deliver therapeutically active macromolecules into the cytosol of target cells. First, attempts were made to prepare virosomes that specifically interact with OVCAR-3 cells (human ovarian cancer cells). Detergent solubilized influenza virus envelopes were reconstituted forming virosomes. Cell specificity was introduced by incorporating PEG-derivatized lipids with mAB 323/A3 (Fab' fragments) connected to their distal PEG end. These cell-specific, modified virosomes maintained their fusogenic activity when lowering the pH. Most importantly, antibody-mediated binding was a prerequisite for low-pH induced membrane fusion. However, basically, there are two problems with this approach: (1) these virosomes are quite leaky and (2) virosomes can be expected to be immunogenic. A solution to tackle leakage and potential immunogenicity of these site-specific liposomal structures is to use immuno-PEG-liposomes with a pH-dependent fusogen inside the liposome. The system that we designed to test this concept consisted of (1) the fusogenic di-peptide dINF-7, (2) the monoclonal antibody 425 connected to the distal end of PEG-PE (for site specific binding and endosomal uptake), (3) diphtheria toxin chain A (DTA, as carrier-dependent active compound) and phosphatidylcholine/cholesterol as 'bilayer backbone'. A series of tests were performed to show that selective binding and pH-dependent destabilization of (endosomal) membranes indeed occurred. To test the cytotoxic activity of these DTA loaded liposomes, OVCAR-3 cells were used for testing. OVCAR-3 cells express the epidermal growth factor receptor, which is the ligand for antibody 425. In vitro, these site specific and fusogenic liposomes showed a remarkable, cell specific cytotoxic effect.
Collapse
Affiliation(s)
- Enrico Mastrobattista
- Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
17
|
Huang Q, Opitz R, Knapp EW, Herrmann A. Protonation and stability of the globular domain of influenza virus hemagglutinin. Biophys J 2002; 82:1050-8. [PMID: 11806944 PMCID: PMC1301911 DOI: 10.1016/s0006-3495(02)75464-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A partial dissociation of the HA1 subunits of influenza virus hemagglutinin (HA) is considered to be the initial step of conformational changes of the HA ectodomain leading to a membrane fusion active conformation (L. Godley, J. Pfeifer, D. Steinhauer, B. Ely, G. Shaw, R. Kaufman, E. Suchanek, C. Pabo, J.J. Skehel, D.C. Wiley, and S. Wharton, 1992, Cell 68:635-645; G.W. Kemble, D.L.Bodian, J. Rose, I.A. Wilson, and J.M. White, 1992, J. Virol. 66:4940-4950). Here, we explore a mechanism that provides an understanding of the physical and chemical basis for such dissociation and relies on two essential observations. First, based on the x-ray structure of HA from X31 (I.A. Wilson, J.J. Skehel, and D.C. Wiley, 1981, Nature 289:366-373), and by employing techniques of molecular modeling, we show that the protonation of the HA1 subunits is enhanced at the conditions known to trigger conformational changes of the HA ectodomain. Second, we found that the dependence of the calculated relative degree of protonation of the HA1 domain on temperature and pH is similar to that observed experimentally for the conformational change of HA assessed by proteinase K sensitivity. We suggest that at the pH-temperature conditions typical for the conformational change of HA and membrane fusion, dissociation of the HA1 subunits is caused by the enhanced protonation of the HA1 subunits leading to an increase in the positive net charge of these subunits and, in turn, to a weakened attraction between them.
Collapse
Affiliation(s)
- Qiang Huang
- Institute of Biology, Molecular Biophysics, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | | | | | | |
Collapse
|
18
|
Maresova L, Pasieka TJ, Grose C. Varicella-zoster Virus gB and gE coexpression, but not gB or gE alone, leads to abundant fusion and syncytium formation equivalent to those from gH and gL coexpression. J Virol 2001; 75:9483-92. [PMID: 11533210 PMCID: PMC114515 DOI: 10.1128/jvi.75.19.9483-9492.2001] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Varicella-zoster virus (VZV) is distinguished from herpes simplex virus type 1 (HSV-1) by the fact that cell-to-cell fusion and syncytium formation require only gH and gL within a transient-expression system. In the HSV system, four glycoproteins, namely, gH, gL, gB, and gD, are required to induce a similar fusogenic event. VZV lacks a gD homologous protein. In this report, the role of VZV gB as a fusogen was investigated and compared to the gH-gL complex. First of all, the VZV gH-gL experiment was repeated under a different set of conditions; namely, gH and gL were cloned into the same vaccinia virus (VV) genome. Surprisingly, the new expression system demonstrated that a recombinant VV-gH+gL construct was even more fusogenic than seen in the prior experiment with two individual expression plasmids containing gH and gL (K. M. Duus and C. Grose, J. Virol. 70:8961-8971, 1996). Recombinant VV expressing VZV gB by itself, however, effected the formation of only small syncytia. When VZV gE and gB genes were cloned into one recombinant VV genome and another fusion assay was performed, extensive syncytium formation was observed. The degree of fusion with VZV gE-gB coexpression was comparable to that observed with VZV gH-gL: in both cases, >80% of the cells in a monolayer were fused. Thus, these studies established that VZV gE-gB coexpression greatly enhanced the fusogenic properties of gB. Control experiments documented that the fusion assay required a balance between the fusogenic potential of the VZV glycoproteins and the fusion-inhibitory effect of the VV infection itself.
Collapse
Affiliation(s)
- L Maresova
- Department of Microbiology, University of Iowa, Iowa City, Iowa, USA
| | | | | |
Collapse
|
19
|
Heiman MG, Walter P. Prm1p, a pheromone-regulated multispanning membrane protein, facilitates plasma membrane fusion during yeast mating. J Cell Biol 2000; 151:719-30. [PMID: 11062271 PMCID: PMC2185589 DOI: 10.1083/jcb.151.3.719] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cell fusion occurs throughout development, from fertilization to organogenesis. The molecular mechanisms driving plasma membrane fusion in these processes remain unknown. While yeast mating offers an excellent model system in which to study cell fusion, all genes previously shown to regulate the process act at or before cell wall breakdown; i.e., well before the two plasma membranes have come in contact. Using a new strategy in which genomic data is used to predict which genes may possess a given function, we identified PRM1, a gene that is selectively expressed during mating and that encodes a multispanning transmembrane protein. Prm1p localizes to sites of cell-cell contact where fusion occurs. In matings between Deltaprm1 mutants, a large fraction of cells initiate zygote formation and degrade the cell wall separating mating partners but then fail to fuse. Electron microscopic analysis reveals that the two plasma membranes in these mating pairs are tightly apposed, remaining separated only by a uniform gap of approximately 8 nm. Thus, the phenotype of Deltaprm1 mutants defines a new step in the mating reaction in which membranes are juxtaposed, possibly through a defined adherence junction, yet remain unfused. This phenotype suggests a role for Prm1p in plasma membrane fusion.
Collapse
Affiliation(s)
- M G Heiman
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94143-0448, USA
| | | |
Collapse
|
20
|
Abstract
Membrane fusion involves the merger of two phospholipid bilayers in an aqueous environment. In artificial lipid bilayers, fusion proceeds by means of defined transition states, including hourglass-shaped intermediates in which the proximal leaflets of the fusing membranes are merged whereas the distal leaflets are separate (fusion stalk), followed by the reversible opening of small aqueous fusion pores. Fusion of biological membranes requires the action of specific fusion proteins. Best understood are the viral fusion proteins that are responsible for merging the viral with the host cell membrane during infection. These proteins undergo spontaneous and dramatic conformational changes upon activation. In the case of the paradigmatic fusion proteins of the influenza virus and of the human immunodeficiency virus, an amphiphilic fusion peptide is inserted into the target membrane. The protein then reorients itself, thus forcing the fusing membranes together and inducing lipid mixing. Fusion of intracellular membranes in eukaryotic cells involves several protein families including SNAREs, Rab proteins, and Sec1/Munc-18 related proteins (SM-proteins). SNAREs form a novel superfamily of small and mostly membrane-anchored proteins that share a common motif of about 60 amino acids (SNARE motif). SNAREs reversibly assemble into tightly packed helical bundles, the core complexes. Assembly is thought to pull the fusing membranes closely together, thus inducing fusion. SM-proteins comprise a family of soluble proteins that bind to certain types of SNAREs and prevent the formation of core complexes. Rab proteins are GTPases that undergo highly regulated GTP-GDP cycles. In their GTP form, they interact with specific proteins, the effector proteins. Recent evidence suggests that Rab proteins function in the initial membrane contact connecting the fusing membranes but are not involved in the fusion reaction itself.
Collapse
Affiliation(s)
- R Jahn
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany.
| | | |
Collapse
|
21
|
Zhou Z, Macosko JC, Hughes DW, Sayer BG, Hawes J, Epand RM. 15N NMR study of the ionization properties of the influenza virus fusion peptide in zwitterionic phospholipid dispersions. Biophys J 2000; 78:2418-25. [PMID: 10777737 PMCID: PMC1300830 DOI: 10.1016/s0006-3495(00)76785-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Influenza virus hemagglutinin (HA)-mediated membrane fusion involves insertion into target membranes of a stretch of amino acids located at the N-terminus of the HA(2) subunit of HA at low pH. The pK(a) of the alpha-amino group of (1)Gly of the fusion peptide was measured using (15)N NMR. The pK(a) of this group was found to be 8.69 in the presence of DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine). The high value of this pK(a) is indicative of stabilization of the protonated form of the amine group through noncovalent interactions. The shift reagent Pr(3+) had large effects on the (15)N resonance from the alpha-amino group of Gly(1) of the fusion peptide in DOPC vesicles, indicating that the terminal amino group was exposed to the bulk solvent, even at low pH. Furthermore, electron paramagnetic resonance studies on the fusion peptide region of spin-labeled derivatives of a larger HA construct are consistent with the N-terminus of this peptide being at the depth of the phosphate headgroups. We conclude that at both neutral and acidic pH, the N-terminal of the fusion peptide is close to the aqueous phase and is protonated. Thus neither a change in the state of ionization nor a significant increase in membrane insertion of this group is associated with increased fusogenicity at low pH.
Collapse
Affiliation(s)
- Z Zhou
- Department of Biochemistry, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | | | | | | | | | | |
Collapse
|
22
|
Shmulevitz M, Duncan R. A new class of fusion-associated small transmembrane (FAST) proteins encoded by the non-enveloped fusogenic reoviruses. EMBO J 2000; 19:902-12. [PMID: 10698932 PMCID: PMC305630 DOI: 10.1093/emboj/19.5.902] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/1999] [Revised: 01/04/2000] [Accepted: 01/12/2000] [Indexed: 11/13/2022] Open
Abstract
The non-enveloped fusogenic avian and Nelson Bay reoviruses encode homologous 10 kDa non-structural transmembrane proteins. The p10 proteins localize to the cell surface of transfected cells in a type I orientation and induce efficient cell-cell fusion. Mutagenic studies revealed the importance of conserved sequence-predicted structural motifs in the membrane association and fusogenic properties of p10. These motifs included a centrally located transmembrane domain, a conserved cytoplasmic basic region, a small hydrophobic motif in the N-terminal domain and four conserved cysteine residues. Functional analysis indicated that the extreme C-terminus of p10 functions in a sequence-independent manner to effect p10 membrane localization, while the N-terminal domain displays a sequence-dependent effect on the fusogenic property of p10. The small size, unusual arrangement of structural motifs and lack of any homologues in previously described membrane fusion proteins suggest that the fusion-associated small transmembrane (FAST) proteins of reovirus represent a new class of membrane fusion proteins.
Collapse
Affiliation(s)
- M Shmulevitz
- Department of Microbiology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H7
| | | |
Collapse
|
23
|
Abstract
This chapter focuses on the work carried out with tick-borne encephalitis (TBE) virus, the structurally best characterized of the flaviviruses. The data is related to those obtained with other flaviviruses, which are assumed to have a conserved structural organization, and compare the characteristics of flavivirus fusion to those of other enveloped viruses. Fusion proteins from several different virus families, including Orthomyxoviridae , Paramyxoviridae , Retroviridae , and Filoviridae have been shown to exhibit striking structural similarities; they all use a common mechanism for inducing membrane fusion, and the same general model applies to all of these cases. The flavivirus genome is a positive-stranded RNA molecule consisting of a single, long open reading frame of more than 10,000 nucleotides flanked by noncoding regions at the 5′ and 3′ ends. The fusion properties of flaviviruses have been investigated using several different assay systems, including virus-induced cell–cell fusion and virus–liposome fusion. All of these studies indicate that flaviviruses require an acidic pH for fusion, consistent with their proposed mode of entry.
Collapse
Affiliation(s)
- F X Heinz
- Institute of Virology, University of Vienna, Austria
| | | |
Collapse
|
24
|
Abstract
The TEC-2 epitope is a carbohydrate located on the plasma membrane (oolemma) of the oocyte and appears to be involved in bovine sperm-oolemma fusion. The carbohydrates N-acetylgalactosamine (GalNAc) and galactose are part of the TEC-2 epitope and this study investigated the involvement of these carbohydrates during bovine fertilization. Gametes were exposed to the carbohydrates GalNAc, galactose, and fructose, and the lectins DBA and Con A to determine whether there was an effect on fertilization. The DBA lectin recognizes the carbohydrate GalNAc, whereas Con A recognizes the carbohydrates glucose and mannose. Oocytes pretreated with the DBA lectin prior to fertilization showed a reduction in cleavage corresponding to an increase in lectin concentrations. There was a significant increase in sperm-oolemma binding although fusion was inhibited. Oocytes exposed to GalNAc prior to sperm insemination had no effect on fertilization, however, sperm pretreatment with the carbohydrate caused inhibition of fertilization, with a reduction in cleavage rates as the GalNAc concentration increased. There was also a significant decrease in sperm-oolemma fusion and a significant increase in sperm-oolemma binding. When gametes were exposed to GalNAc at the time of fertilization a similar response to that seen with sperm pretreatment was observed. The carbohydrates galactose and fructose and the lectin Con A did not affect fertilization. In conclusion, the carbohydrate GalNAc, which is associated with the TEC-2 epitope, has a specific role during bovine sperm-oolemma fusion. This study also suggests that there is a carbohydrate-binding molecule on the sperm that binds GalNAc.
Collapse
Affiliation(s)
- T Gougoulidis
- Centre for Early Human Development, Institute of Reproduction and Development, Monash University, Clayton, Victoria, Australia
| | | | | |
Collapse
|
25
|
Abstract
Charged lipids constitute a substantial fraction of all membrane lipids. Their charges vary in quantity and distribution within their headgroup regions. In long range interactions, their charges' value and electrostatic potential in the vicinity of the membrane surface can be approximated by the Guy-Chapman theory. This theory treats the interface as a charged structureless plain surrounded by uniform environments. However, if one considers intermolecular interactions, such assumptions need to be revised. The interface is in reality a thick region containing the residual charges of lipid headgroups. Their arrangement depends on the type of lipid present in the membrane. The variety of lipids and their biological functions suggests that charge distribution determines the extent and type of interaction with surface associated molecules. Numerous examples show that protein behavior at the lipid bilayer surface is determined by the type of lipid present, indicating protein specificity towards certain surface locations and local properties (determined by lipid composition) of a particular type. Such specificity is achieved by a combination of electrostatic, hydrophobic and enthropic effects. Comparing lipid biological activity, it can be stated that residual charge distribution is one of the factors of intermolecular recognition leading to the specific interaction of lipid molecules and selected proteins in various processes, particularly those involved with signal transduction pathways. Such specificity enables a variety of processes occurring simultaneously on the same membrane surface to function without cross-reaction interference.
Collapse
Affiliation(s)
- M Langner
- Department of Physics and Biophysics, Agricultural University, Wrocław, Poland.
| | | |
Collapse
|
26
|
Ramalho-Santos J, Pedroso De Lima MC. Role of a Transbilayer pH Gradient in the Membrane Fusion Activity of the Influenza Virus Hemagglutinin: Use of the R18 Assay to Monitor Membrane Merging. Biol Proced Online 1999; 1:107-113. [PMID: 12734597 PMCID: PMC140115 DOI: 10.1251/bpo13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/1998] [Indexed: 11/23/2022] Open
Abstract
It had been suggested that influenza virus-mediated membrane fusion might be dependent on a pH gradient across a target membrane. We have designed experiments in which this issue could be addressed. Two populations of liposomes were prepared, both simulating the plasma membrane of target cells, but with the pH of the internal aqueous medium buffered either at pH 7.4 (physiological cytosol pH) or at pH 5.0 (endosomal pH at which influenza virus displays maximal fusion activity). By monitoring fusion using the R18 assay, we found that the internal pH of the target liposomes did not influence membrane merging as mediated by the influenza virus hemagglutinin, thus demonstrating that a transmembrane pH gradient is not required in this fusion process.
Collapse
Affiliation(s)
- João Ramalho-Santos
- Center for Neuroscience of Coimbra and Department of Zoology. Oregon Regional Primate Research Center. Oregon Health Sciences University, Beaverton, OR. USA.Department of Biochemistry. Apartado 3126, University of Coimbra, 3000 Coimbra. Portugal.
| | | |
Collapse
|