1
|
Kajikawa M, Imaizumi N, Machii S, Nakamura T, Harigane N, Kimura M, Miyano K, Ishido S, Kanamoto T. Kaposi's sarcoma-associated herpesvirus ubiquitin ligases downregulate cell surface expression of l-selectin. J Gen Virol 2021; 102. [PMID: 34726593 DOI: 10.1099/jgv.0.001678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic etiological factor for Kaposi's sarcoma and primary effusion lymphoma in immunocompromised patients. KSHV utilizes two immune evasion E3 ubiquitin ligases, namely K3 and K5, to downregulate the expression of antigen-presenting molecules and ligands of natural killer (NK) cells in the host cells through an ubiquitin-dependent endocytic mechanism. This allows the infected cells to evade surveillance and elimination by cytotoxic lymphocytes and NK cells. The number of host cell molecular substrates reported for these ubiquitin ligases is limited. The identification of novel substrates for these ligases will aid in elucidating the mechanism underlying immune evasion of KSHV. This study demonstrated that K5 downregulated the cell surface expression of l-selectin, a C-type lectin-like adhesion receptor expressed in the lymphocytes. Tryptophan residue located at the centre of the E2-binding site in the K5 RINGv domain was essential to downregulate l-selectin expression. Additionally, the lysine residues located at the cytoplasmic tail of l-selectin were required for the K5-mediated downregulation of l-selectin. K5 promoted the degradation of l-selectin through polyubiquitination. These results suggest that K5 downregulates l-selectin expression on the cell surface by promoting polyubiquitination and ubiquitin-dependent endocytosis, which indicated that l-selectin is a novel substrate for K5. Additionally, K3 downregulated l-selectin expression. The findings of this study will aid in the elucidation of a novel immune evasion mechanism in KSHV.
Collapse
Affiliation(s)
- Mizuho Kajikawa
- Laboratory of Microbiology, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Nanae Imaizumi
- Laboratory of Microbiology, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Shiho Machii
- Laboratory of Microbiology, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Tomoka Nakamura
- Laboratory of Microbiology, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Nana Harigane
- Laboratory of Microbiology, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Minako Kimura
- Laboratory of Microbiology, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Kei Miyano
- Department of Biochemistry, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | - Satoshi Ishido
- Department of Microbiology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Taisei Kanamoto
- Laboratory of Microbiology, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| |
Collapse
|
2
|
Wedepohl S, Kaup M, Riese SB, Berger M, Dernedde J, Tauber R, Blanchard V. N-glycan analysis of recombinant L-Selectin reveals sulfated GalNAc and GalNAc-GalNAc motifs. J Proteome Res 2010; 9:3403-11. [PMID: 20469932 DOI: 10.1021/pr100170c] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The leukocytic adhesion receptor L-selectin plays a crucial role in the first step of the adhesion cascade, enabling leukocytes to migrate into surrounding tissues during inflammation and immune surveillance. We analyzed the site-specific N-glycosylation of the lectin and EGF-like domain of L-selectin using recombinant variants ("LEHis"). The three glycosylation sites of LEHis were mutated to obtain singly glycosylated variants that were expressed in HEK293F cells. alpha1-Acid glycoprotein (AGP), expressed in the same system, was used to distinguish between cell type- and protein-specific glycosylation. Using mass spectrometry and exoglycosidase digestions, we established that LEHis was mostly bearing multifucosylated diantennary N-glycans with a major fraction terminating with GalNAc residues replacing the more common Gal. We could also show that parts of the GalNAc residues were sulfated. Furthermore, we identified novel diantennary glycan structures terminating with the motif GalNAc-GalNAc or SO(4)-GalNAc-GalNAc, which have not been described for N-glycans yet. Interestingly, none of these specific features were found in the N-glycan profile of AGP. This indicates that protein intrinsic information of L-selectin leads to decoration with specific N-glycans, which in turn may be related to L-selectin function.
Collapse
Affiliation(s)
- Stefanie Wedepohl
- Central Institute of Laboratory Medicine and Pathobiochemistry, Charité Berlin, Hindenburgdamm 30, 12200 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
3
|
Alpha-1,2-mannosidase and hence N-glycosylation are required for regulatory T cell migration and allograft tolerance in mice. PLoS One 2010; 5:e8894. [PMID: 20126660 PMCID: PMC2811199 DOI: 10.1371/journal.pone.0008894] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Accepted: 12/11/2009] [Indexed: 11/19/2022] Open
Abstract
Background Specific immunological unresponsiveness to alloantigens can be induced in vivo by treating mice with a donor alloantigen in combination with a non-depleting anti-CD4 antibody. This tolerance induction protocol enriches for alloantigen reactive regulatory T cells (Treg). We previously demonstrated that alpha-1,2-mannosidase, an enzyme involved in the synthesis and processing of N-linked glycoproteins, is highly expressed in tolerant mice, in both graft infiltrating leukocytes and peripheral blood lymphocytes. Principal Findings In this study we have identified that alpha-1,2-mannosidase expression increases in CD25+CD4+ Treg when they encounter alloantigen in vivo. When alpha-1,2-mannosidase enzyme activity was blocked, Treg retained their capacity to suppress T cell proliferation in vitro but were unable to bind to physiologically relevant ligands in vitro. Further in vivo analysis demonstrated that blocking alpha-1,2-mannosidase in Treg resulted in the migration of significantly lower numbers to the peripheral lymph nodes in skin grafted mice following adoptive transfer, where they were less able to inhibit the proliferation of naïve T cells responding to donor alloantigen and hence unable prevent allograft rejection in vivo. Significance Taken together, our results suggest that activation of alloantigen reactive Treg results in increased alpha-1,2-mannosidase expression and altered N-glycosylation of cell surface proteins. In our experimental system, altered N-glycosylation is not essential for intrinsic Treg suppressive capacity, but is essential in vivo as it facilitates Treg migration to sites where they can regulate immune priming. Migration of Treg is central to their role in regulating in vivo immune responses and may require specific changes in N-glycosylation upon antigen encounter.
Collapse
|
4
|
|
5
|
Enders S, Bernhard G, Zakrzewicz A, Tauber R. Inhibition of L-selectin binding by polyacrylamide-based conjugates under defined flow conditions. Biochim Biophys Acta Gen Subj 2007; 1770:1441-9. [PMID: 17707590 DOI: 10.1016/j.bbagen.2007.06.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Revised: 05/31/2007] [Accepted: 06/27/2007] [Indexed: 11/25/2022]
Abstract
Selectins mediate tethering and rolling of leukocytes along the endothelium in a shear force-dependent manner. This key step in the cellular immune response is a target for experimental anti-inflammatory therapies. In the present paper we have examined the inhibitory activity of the minimal selectin ligand sialyl Lewis x (SiaLe(x)), its isomer sialyl Lewis a (SiaLe(a)) and sulfated tyrosine (sTyr) residues under dynamic flow reflecting the rheological conditions in the blood stream. The monomeric ligands were compared to multivalent polyacrylamide (PAA)-based conjugates under defined flow conditions on the molecular level, using surface plasmon resonance (SPR) technology, and on the cellular level, using a parallel-plate flow chamber. SPR measurements showed that a spatial arrangement of binding epitopes mimicking the selectin binding motif of the natural ligand PSGL-1 inhibits L-selectin binding successfully with IC(50) values in the nanomolar range. Using a flow chamber adhesion assay it could be shown that the multivalent inhibitors efficiently blocked rolling and tethering of NALM-6 pre-B cells transfected with human L-selectin to activated endothelium and that the inhibitory activity increased with rising shear stress. While PAA-conjugates were almost not inhibitory at low shear stress, NALM-6 cell rolling was nearly completely inhibited at high shear stress. The results indicate that multimeric conjugates of SiaLe(x), SiaLe(a) and sTyr are highly effective inhibitors of L-selectin-mediated cell adhesion particularly under flow conditions. Consequently, SiaLe(x), SiaLe(a) and/or sTyr on macromolecular carriers may be promising candidates for anti-inflammatory therapy.
Collapse
Affiliation(s)
- Sven Enders
- Zentralinstitut für Laboratoriumsmedizin und Pathobiochemie, Charité - Universitätsmedizin, Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, D-12200 Berlin, Germany
| | | | | | | |
Collapse
|
6
|
Rowland JG, Robson JL, Simon WJ, Leung HY, Slabas AR. Evaluation of an in vitro model of androgen ablation and identification of the androgen responsive proteome in LNCaP cells. Proteomics 2007; 7:47-63. [PMID: 17152098 DOI: 10.1002/pmic.200600697] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Indexed: 11/08/2022]
Abstract
Proteins responsive to androgen and anti-androgen may be involved in the development and progression of prostate cancer and the ultimate failure of androgen-ablation therapy. These proteins represent potential diagnostic and therapeutic targets for improved management of prostate cancer. We have investigated the effect of androgen (R1881) and anti-androgen (bicalutamide) on the androgen-responsive prostate cancer LNCaP cell line using a quantitative gel-based proteomic approach. Prior to analysis, the in vitro system was evaluated for reproducibility and validated by appropriate molecular responses to treatment. Six replicate samples were independently generated and analysed by 2-D DIGE. According to strict statistical criteria, 197 spots were differentially expressed, of which we have successfully identified 165 spots corresponding to 125 distinct proteins. Following androgen supplementation, 108 spots (68 proteins) were increased and 57 spots (39 proteins) were decreased. Essentially no difference was observed between control and anti-androgen-treated samples, confirming the absence of "off-target" effects of bicalutamide. Identified proteins were involved in diverse processes including the stress response and intracellular signalling. The potential contribution to disease of these processes and identified constituent proteins are discussed. This rigorous, statistically supported study of androgen responses has provided a number of potential candidates for development as diagnostic/prognostic markers and drug targets.
Collapse
Affiliation(s)
- John G Rowland
- Northern Institute for Cancer Research, University of Newcastle, Newcastle-upon-Tyne, UK
| | | | | | | | | |
Collapse
|
7
|
Stibenz D, Gräfe M, Debus N, Hasbach M, Bahr I, Graf K, Fleck E, Thanabalasingam U, Bührer C. Binding of human serum amyloid P componentto L-selectin. Eur J Immunol 2006; 36:446-56. [PMID: 16421944 DOI: 10.1002/eji.200425360] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Serum concentrations of soluble L-selectin by far exceed those of other soluble adhesion molecules, and serum soluble L-selectin concentrations are remarkably stable upon prolonged storage. We present evidence for Ca(2+)-dependent binding interactions between human serum amyloid P (SAP), a proteolysis-resistant pentraxin glycoprotein, and L-selectin, as shown by surface plasmon resonance measurements, protein band shift assays in a native PAGE system, and after SDS-PAGE and membrane transfer. Monoclonal antibodies to L-selectin strongly reduced binding of biotinylated SAP to L-selectin-IgG chimeras immobilized on microtiter plates. As binding was reduced by prior glycopeptidase F treatment of L-selectin but not of SAP, it appears to be based on SAP lectin domain interactions with N-linked L-selectin carbohydrates. In freshly prepared human lymphocytes, SAP incubation induced expression of a beta2 integrin neoepitope associated with high-affinity binding. This was partially blocked by pre-incubation with Fab fragments of two anti-L-selectin antibodies. In flow chamber experiments, SAP inhibited the adherence of human neutrophils to activated endothelium under shear stress. Thus, SAP binds to human L-selectin and affects L-selectin-dependent leukocyte-endothelial interactions.
Collapse
Affiliation(s)
- Dietger Stibenz
- Department of Neonatology, Charité Virchow Hospital, Humboldt University, Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
MacKinnon JR, Knott RM, Forrester JV. Altered L-selectin expression in lymphocytes and increased adhesion to endothelium in patients with diabetic retinopathy. Br J Ophthalmol 2004; 88:1137-41. [PMID: 15317703 PMCID: PMC1772318 DOI: 10.1136/bjo.2003.040329] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
AIM To investigate L-selectin expression and shedding in patients with and without retinopathy and to determine if any observed changes are reflected by a functional change in the adhesion of leucocytes to an endothelial monolayer. METHODS Age matched diabetic patients (26 with retinopathy, 19 without retinopathy) were compared to 24 non-diabetic controls to determine L-selectin surface protein expression, L-selectin mRNA production, and serum L-selectin levels by flow cytometry, RT-PCR, and ELISA, respectively. An adhesion assay was used to determine the binding of lymphocytes from the respective test groups to a monolayer of human endothelial cells. RESULTS Significantly reduced (p = 0.004) L-selectin expression was demonstrated on lymphocytes (CD3+) from patients with diabetes compared to controls, the lowest levels being found in those with diabetic retinopathy (p = 0.004). L-selectin mRNA levels (p = 0.007) were significantly higher in the retinopathy group than in the no retinopathy group. Serum L-selectin levels were significantly higher (p = 0.04) in those with retinopathy compared to controls. Lymphocyte adhesion relative to control (100%) was essentially unchanged (84.0% (SD 27.7%), p = 0.15) for diabetic patients with no retinopathy and was markedly increased (192% (37.6%)) for those with retinopathy (p = 0.0001). CONCLUSION Lymphocyte activation, reduced surface L-selectin, increased circulating L-selectin, and a corresponding increase in adhesion of patients' cells using an in vitro assay, is evident in people with diabetic retinopathy. This suggests a role for lymphocyte activation in the pathogenesis of diabetic retinopathy.
Collapse
Affiliation(s)
- J R MacKinnon
- Department of Ophthalmology, Raigmore Hospital, Inverness IV2 3UJ, Scotland, UK.
| | | | | |
Collapse
|
9
|
Kilian K, Dernedde J, Mueller EC, Bahr I, Tauber R. The interaction of protein kinase C isozymes alpha, iota, and theta with the cytoplasmic domain of L-selectin is modulated by phosphorylation of the receptor. J Biol Chem 2004; 279:34472-80. [PMID: 15192100 DOI: 10.1074/jbc.m405916200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The leukocyte adhesion molecule L-selectin has an important role in the initial steps of leukocyte extravasation during inflammation and lymphocyte homing. Its cytoplasmic domain is involved in signal transduction after L-selectin cross-linking and in the regulation of receptor binding activity in response to intracellular signals. However, the signaling events occurring at the level of the receptor are largely unknown. This study therefore addressed the question of whether protein kinases associate with the cytoplasmic domain of the receptor and mediate its phosphorylation. Using a glutathione S-transferase fusion protein of the L-selectin cytoplasmic domain, we isolated a kinase activity from cellular extracts of the human leukemic Jurkat T-cell line that phosphorylated L-selectin on serine residues. This kinase showed characteristics of the protein kinase C (PKC) family. Moreover, the Ca(2+)-independent PKC isozymes theta and iota were found associated with the cytoplasmic domain of L-selectin. Pseudosubstrate inhibitors of these isozymes abolished phosphorylation of the cytoplasmic domain, demonstrating that these kinases are responsible for the phosphorylation. Analysis of proteins specifically bound to the phosphorylated cytoplasmic tail of L-selectin revealed that PKCalpha and -theta are strongly associated with the phosphorylated cytoplasmic domain of L-selectin. Binding of these isozymes to L-selectin was also found in intact cells after phorbol ester treatment inducing serine phosphorylation of the receptor. Furthermore, stimulation of Jurkat T-cells by CD3 cross-linking induced association of PKCalpha and -theta with L-selectin, indicating a role of these kinases in the regulation of L-selectin through the T-cell receptor complex. The phosphorylation-regulated association of PKC isozymes with the cytoplasmic domain of L-selectin indicates an important role of this kinase family in L-selectin signal transduction.
Collapse
Affiliation(s)
- Karin Kilian
- Institut für Klinische Chemie und Pathobiochemie, Charité, Berlin 12200, Germany.
| | | | | | | | | |
Collapse
|
10
|
de Coupade C, Solito E, Levine JD. Dexamethasone enhances interaction of endogenous annexin 1 with L-selectin and triggers shedding of L-selectin in the monocytic cell line U-937. Br J Pharmacol 2003; 140:133-45. [PMID: 12967943 PMCID: PMC1574011 DOI: 10.1038/sj.bjp.0705413] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
(1) L-selectin, constitutively expressed by leukocytes, is involved in the initial binding of leukocytes to activated endothelium. Anti-inflammatory drugs like glucocorticoids can induce shedding of L-selectin, but the mechanism is still unknown. Annexin 1, a protein whose synthesis and externalization/secretion are induced during the inflammatory response, has been proposed as a mediator of the anti-inflammatory actions of glucocorticoids. (2) The monocytic cell line U-937 strongly expresses Annexin 1 after 24 h of phorbol 12-myristate 13-acetate (PMA, 1 nm) treatment and externalizes/releases the protein after additional 16 h of dexamethasone (1 microm) treatment. (3) This study investigated the possible regulation of cell surface L-selectin shedding by endogenous Annexin 1, and its role in glucocorticoid-induced L-selectin shedding in the U-937 cell line. (4) PMA- and dexamethasone treatment-induced L-selectin shedding was potentially mediated by Annexin 1, since neutralizing antibodies against Annexin 1 reduced dexamethasone- and Annexin 1-induced shedding. (5) Immunoprecipitation and binding assays provided support for the suggestion that this effect could be mediated by an interaction between externalized Annexin 1 and L-selectin. Such interaction involved the N-terminal domain of Annexin 1 and was calcium-dependent. Confocal microscopy studies demonstrated increased colocalization of Annexin 1 and L-selectin on the cell surface. (6) Overall, our study provides new insights into the potential role of endogenous ANXA1 as a mediator of dexamethasone-induced L-selectin shedding, which may contribute to the anti-inflammatory activity of glucocorticoids.
Collapse
Affiliation(s)
- Catherine de Coupade
- Department of Medicine and Oral and Maxillofacial Surgery, NIH Pain Center, Box 0440, University of California at San Francisco, 521 Parnassus Avenue, San Francisco, CA 94143, U.S.A
| | - Egle Solito
- Department of Neuroendocrinology, Faculty of Medicine, Imperial College of Science, Technology and Medicine, Hammersmith Campus, Du Cane Road, London W12 ONN
| | - Jon D Levine
- Department of Medicine and Oral and Maxillofacial Surgery, NIH Pain Center, Box 0440, University of California at San Francisco, 521 Parnassus Avenue, San Francisco, CA 94143, U.S.A
- Author for correspondence:
| |
Collapse
|
11
|
Kieda C, Dus D. Endothelial Cell Glycosylation: Regulation and Modulation of Biological Processes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 535:79-94. [PMID: 14714890 DOI: 10.1007/978-1-4615-0065-0_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Claudine Kieda
- CNRS UPR 4301, Cell recognition group: endogenous lectins, Centre de Biophysique Moléculaire, 45071 Orléans Cedex 2, France
| | | |
Collapse
|
12
|
Harms G, Kraft R, Grelle G, Volz B, Dernedde J, Tauber R. Identification of nucleolin as a new L-selectin ligand. Biochem J 2001; 360:531-8. [PMID: 11736641 PMCID: PMC1222254 DOI: 10.1042/0264-6021:3600531] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Apart from leucocyte-endothelial interactions, the adhesion molecule L-selectin mediates the homotypic adhesion of leucocytes during recruitment at sites of acute inflammation, as well as intercellular adhesion of haematopoietic progenitor cells during haematopoiesis. There is evidence that, in addition to P-selectin glycoprotein ligand-1, other as-yet-unidentified proteins function as L-selectin ligands on human leucocytes and haematopoietic progenitor cells. In the present study, we show: (i) by affinity chromatography on L-selectin-agarose; (ii) by protein identification using MS; and (iii) by covalent cell-surface labelling with sulphosuccinimidyl-2-(biotinamido)ethyl-1,3-dithiopropionate that the multifunctional nuclear protein nucleolin is partly exposed on the cell surface, and is a ligand of L-selectin in human leucocytes and haematopoietic progenitor cells.
Collapse
Affiliation(s)
- G Harms
- Institut für Klinische Chemie und Pathobiochemie, Universitätsklinikum Benjamin Franklin, Freie Universität Berlin, Hindenburgdamm 30, 12200 Berlin, Germany
| | | | | | | | | | | |
Collapse
|