1
|
Lamacova L, Jansova D, Jiang Z, Dvoran M, Aleshkina D, Iyyappan R, Jindrova A, Fan HY, Jiao Y, Susor A. CPEB3 Maintains Developmental Competence of the Oocyte. Cells 2024; 13:850. [PMID: 38786074 PMCID: PMC11119423 DOI: 10.3390/cells13100850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Mammalian oocyte development depends on the temporally controlled translation of maternal transcripts, particularly in the coordination of meiotic and early embryonic development when transcription has ceased. The translation of mRNA is regulated by various RNA-binding proteins. We show that the absence of cytoplasmic polyadenylation element-binding protein 3 (CPEB3) negatively affects female reproductive fitness. CPEB3-depleted oocytes undergo meiosis normally but experience early embryonic arrest due to a disrupted transcriptome, leading to aberrant protein expression and the subsequent failure of embryonic transcription initiation. We found that CPEB3 stabilizes a subset of mRNAs with a significantly longer 3'UTR that is enriched in its distal region with cytoplasmic polyadenylation elements. Overall, our results suggest that CPEB3 is an important maternal factor that regulates the stability and translation of a subclass of mRNAs that are essential for the initiation of embryonic transcription and thus for embryonic development.
Collapse
Affiliation(s)
- Lucie Lamacova
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, IAPG CAS, Rumburska 89, 277 21 Libechov, Czech Republic
| | - Denisa Jansova
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, IAPG CAS, Rumburska 89, 277 21 Libechov, Czech Republic
| | - Zongliang Jiang
- Department of Animal Sciences, Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Michal Dvoran
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, IAPG CAS, Rumburska 89, 277 21 Libechov, Czech Republic
| | - Daria Aleshkina
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, IAPG CAS, Rumburska 89, 277 21 Libechov, Czech Republic
| | - Rajan Iyyappan
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, IAPG CAS, Rumburska 89, 277 21 Libechov, Czech Republic
| | - Anna Jindrova
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, IAPG CAS, Rumburska 89, 277 21 Libechov, Czech Republic
| | - Heng-Yu Fan
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Yuxuan Jiao
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Andrej Susor
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, IAPG CAS, Rumburska 89, 277 21 Libechov, Czech Republic
| |
Collapse
|
2
|
Esencan E, Kallen A, Zhang M, Seli E. Translational activation of maternally derived mRNAs in oocytes and early embryos and the role of embryonic poly(A) binding protein (EPAB). Biol Reprod 2020; 100:1147-1157. [PMID: 30806655 DOI: 10.1093/biolre/ioz034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/23/2019] [Accepted: 02/23/2019] [Indexed: 12/20/2022] Open
Abstract
Transcription ceases upon stimulation of oocyte maturation and gene expression during oocyte maturation, fertilization, and early cleavage relies on translational activation of maternally derived mRNAs. Two key mechanisms that mediate translation of mRNAs in oocytes have been described in detail: cytoplasmic polyadenylation-dependent and -independent. Both of these mechanisms utilize specific protein complexes that interact with cis-acting sequences located on 3'-untranslated region (3'-UTR), and both involve embryonic poly(A) binding protein (EPAB), the predominant poly(A) binding protein during early development. While mechanistic details of these pathways have primarily been elucidated using the Xenopus model, their roles are conserved in mammals and targeted disruption of key regulators in mouse results in female infertility. Here, we provide a detailed account of the molecular mechanisms involved in translational activation during oocyte and early embryo development, and the role of EPAB in this process.
Collapse
Affiliation(s)
- Ecem Esencan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Amanda Kallen
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Man Zhang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Emre Seli
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
3
|
Yang CR, Lowther KM, Lalioti MD, Seli E. Embryonic Poly(A)-Binding Protein (EPAB) Is Required for Granulosa Cell EGF Signaling and Cumulus Expansion in Female Mice. Endocrinology 2016; 157:405-16. [PMID: 26492470 PMCID: PMC4701890 DOI: 10.1210/en.2015-1135] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Embryonic poly(A)-binding protein (EPAB) is the predominant poly(A)-binding protein in Xenopus, mouse, and human oocytes and early embryos before zygotic genome activation. EPAB is required for translational activation of maternally stored mRNAs in the oocyte and Epab(-/-) female mice are infertile due to impaired oocyte maturation, cumulus expansion, and ovulation. The aim of this study was to characterize the mechanism of follicular somatic cell dysfunction in Epab(-/-) mice. Using a coculture system of oocytectomized cumulus oophorus complexes (OOXs) with denuded oocytes, we found that when wild-type OOXs were cocultured with Epab(-/-) oocytes, or when Epab(-/-) OOXs were cocultured with WT oocytes, cumulus expansion failed to occur in response to epidermal growth factor (EGF). This finding suggests that oocytes and cumulus cells (CCs) from Epab(-/-) mice fail to send and receive the necessary signals required for cumulus expansion. The abnormalities in Epab(-/-) CCs are not due to lower expression of the oocyte-derived factors growth differentiation factor 9 or bone morphogenetic protein 15, because Epab(-/-) oocytes express these proteins at comparable levels with WT. Epab(-/-) granulosa cells (GCs) exhibit decreased levels of phosphorylated MEK1/2, ERK1/2, and p90 ribosomal S6 kinase in response to lutenizing hormone and EGF treatment, as well as decreased phosphorylation of the EGF receptor. In conclusion, EPAB, which is oocyte specific, is required for the ability of CCs and GCs to become responsive to LH and EGF signaling. These results emphasize the importance of oocyte-somatic communication for GC and CC function.
Collapse
Affiliation(s)
- Cai-Rong Yang
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut 06510
| | - Katie M Lowther
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut 06510
| | - Maria D Lalioti
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut 06510
| | - Emre Seli
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut 06510
| |
Collapse
|
4
|
Mommens M, Fernandes JMO, Tollefsen KE, Johnston IA, Babiak I. Profiling of the embryonic Atlantic halibut (Hippoglossus hippoglossus L.) transcriptome reveals maternal transcripts as potential markers of embryo quality. BMC Genomics 2014; 15:829. [PMID: 25269745 PMCID: PMC4246526 DOI: 10.1186/1471-2164-15-829] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 09/25/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Commercial Atlantic halibut (Hippoglossus hippoglossus) farming is restricted by variable oocyte quality, slow growth, and early maturation of male fish. Maternally transferred components regulate early developmental processes; therefore, they have an effect on the future viability of the embryo. Using a newly developed Agilent 10 k custom-made oligonucleotide array, we profiled components of the transcriptome involved in immune defence as well as germline and muscle development during early developmental stages: 8-cell embryos (8CS), germ ring stage (GR), 10-somite stage (10SS), and hatched embryos (HT). In addition, we identified differentially expressed transcripts in low (≤9 ± 3% hatching) and high (≥86 ± 3°% hatching) quality eggs at 8CS to identify potential maternal markers for embryo quality. RESULTS Out of 2066 differentially expressed transcripts, 160 were identified as maternal transcripts being specifically expressed at 8CS only. Twenty transcripts were differentially expressed in 8-cell embryos between low and high quality egg groups. Several immune-related transcripts were identified as promising molecular markers of hatching success including interferon regulatory factor 7 and mhc class 2A chain. Differential expression was positively validated with quantitative real-time PCR. CONCLUSIONS We have demonstrated maternal transfer of innate and adaptive immune system transcripts into Atlantic halibut embryos and their relation with future embryo developmental potential. We identified several transcripts as potential molecular markers of embryo quality. The developed microarray represents a useful resource for improving the commercial production of Atlantic halibut.
Collapse
Affiliation(s)
| | | | | | | | - Igor Babiak
- Faculty of Biosciences and Aquaculture, University of Nordland, N-8049 Bodø, Norway.
| |
Collapse
|
5
|
Mommens M, Fernandes JM, Bizuayehu TT, Bolla SL, Johnston IA, Babiak I. Maternal gene expression in Atlantic halibut (Hippoglossus hippoglossus L.) and its relation to egg quality. BMC Res Notes 2010; 3:138. [PMID: 20497529 PMCID: PMC2897799 DOI: 10.1186/1756-0500-3-138] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 05/24/2010] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The commercial production of Atlantic halibut (Hippoglossus hippoglossus L.) suffers from a major bottleneck due to the low success of producing juveniles for on-growing. Atlantic halibut females are routinely hand-stripped and incorrect timing of stripping can result in low quality eggs due to post-ovulatory aging. Post-ovulatory aging leads to compositional changes in eggs that include maternally provided proteins and RNAs. There have been few studies of the maternally provided mRNA transcripts that control early development in commercially important fish species. The present study aimed to study maternal gene expression in Atlantic halibut and its relation to egg quality parameters including blastomere symmetry and hatching success. RESULTS A maternal EST library containing 2341 sequences was constructed by suppressive subtractive hybridisation. Thirty genes were selected for expression studies; 23 novel genes and 7 genes with documented roles in early development. The expressions of twenty-one selected genes were measured by qPCR from fertilization to the 10-somite stage. Three genes were identified as strictly maternal genes that were expressed until the start of gastrulation; askopos (kop), si:dkey-30j22.9 (Tudor family member), and Tudor 5 protein (Tdrd5). The expressions of 18 genes at the 8-cell stage were correlated with egg quality parameters. The majority of genes showed either no or very minor correlations with egg quality parameter. However, two genes correlated positively with hatching success (r> 0.50, HHC00353: r = 0.58, p < 0.01; HHC01517: r = 0.56, p < 0.01) and one gene (HHC00255) was negatively correlated with the percentage of normal blastomeres (r = -0.62, p < 0.05). CONCLUSIONS During this study we have related maternal levels of gene expression to hatching success in fish. Poor hatching success was not correlated with a general decrease in transcript abundance but with low transcript levels of some specific genes. Thus, the molecular mechanisms leading to low Atlantic halibut egg quality cannot be entirely explained by post-ovulatory aging.
Collapse
Affiliation(s)
- Maren Mommens
- Faculty of Biosciences and Aquaculture, Bodø University College, N-8049 Bodø, Norway.
| | | | | | | | | | | |
Collapse
|
6
|
Silvestre F, Tosti E. Impact of marine drugs on animal reproductive processes. Mar Drugs 2009; 7:539-64. [PMID: 20098597 PMCID: PMC2810222 DOI: 10.3390/md7040539] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 11/03/2009] [Accepted: 11/06/2009] [Indexed: 01/09/2023] Open
Abstract
The discovery and description of bioactive substances from natural sources has been a research topic for the last 50 years. In this respect, marine animals have been used to extract many new compounds exerting different actions. Reproduction is a complex process whose main steps are the production and maturation of gametes, their activation, the fertilisation and the beginning of development. In the literature it has been shown that many substances extracted from marine organisms may have profound influence on the reproductive behaviour, function and reproductive strategies and survival of species. However, despite the central importance of reproduction and thus the maintenance of species, there are still few studies on how reproductive mechanisms are impacted by marine bioactive drugs. At present, studies in either marine and terrestrial animals have been particularly important in identifying what specific fine reproductive mechanisms are affected by marine-derived substances. In this review we describe the main steps of the biology of reproduction and the impact of substances from marine environment and organisms on the reproductive processes.
Collapse
Affiliation(s)
| | - Elisabetta Tosti
- Author to whom correspondence should be addressed; E-Mail:
; Tel.: +39 081 5833288; Fax: +39 081 7641355
| |
Collapse
|
7
|
SUZUKI T, ABE KI, INOUE A, AOKI F. Expression of c-MYC in Nuclear Speckles During Mouse Oocyte Growth and Preimplantation Development. J Reprod Dev 2009; 55:491-5. [DOI: 10.1262/jrd.09-069a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Tsukasa SUZUKI
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo
| | - Ken-ichiro ABE
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo
| | - Azusa INOUE
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo
| | - Fugaku AOKI
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo
| |
Collapse
|
8
|
Elis S, Batellier F, Couty I, Balzergue S, Martin-Magniette ML, Monget P, Blesbois E, Govoroun MS. Search for the genes involved in oocyte maturation and early embryo development in the hen. BMC Genomics 2008; 9:110. [PMID: 18312645 PMCID: PMC2322995 DOI: 10.1186/1471-2164-9-110] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Accepted: 02/29/2008] [Indexed: 01/01/2023] Open
Abstract
Background The initial stages of development depend on mRNA and proteins accumulated in the oocyte, and during these stages, certain genes are essential for fertilization, first cleavage and embryonic genome activation. The aim of this study was first to search for avian oocyte-specific genes using an in silico and a microarray approaches, then to investigate the temporal and spatial dynamics of the expression of some of these genes during follicular maturation and early embryogenesis. Results The in silico approach allowed us to identify 18 chicken homologs of mouse potential oocyte genes found by digital differential display. Using the chicken Affymetrix microarray, we identified 461 genes overexpressed in granulosa cells (GCs) and 250 genes overexpressed in the germinal disc (GD) of the hen oocyte. Six genes were identified using both in silico and microarray approaches. Based on GO annotations, GC and GD genes were differentially involved in biological processes, reflecting different physiological destinations of these two cell layers. Finally we studied the spatial and temporal dynamics of the expression of 21 chicken genes. According to their expression patterns all these genes are involved in different stages of final follicular maturation and/or early embryogenesis in the chicken. Among them, 8 genes (btg4, chkmos, wee, zpA, dazL, cvh, zar1 and ktfn) were preferentially expressed in the maturing occyte and cvh, zar1 and ktfn were also highly expressed in the early embryo. Conclusion We showed that in silico and Affymetrix microarray approaches were relevant and complementary in order to find new avian genes potentially involved in oocyte maturation and/or early embryo development, and allowed the discovery of new potential chicken mature oocyte and chicken granulosa cell markers for future studies. Moreover, detailed study of the expression of some of these genes revealed promising candidates for maternal effect genes in the chicken. Finally, the finding concerning the different state of rRNA compared to that of mRNA during the postovulatory period shed light on some mechanisms through which oocyte to embryo transition occurs in the hen.
Collapse
Affiliation(s)
- Sebastien Elis
- Physiologie de Reproduction et des Comportements, UMR 6175 INRA-CNRS-Université F, Rabelais de Tours, Haras Nationaux, 37380 Nouzilly, France.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Luckenbach JA, Iliev DB, Goetz FW, Swanson P. Identification of differentially expressed ovarian genes during primary and early secondary oocyte growth in coho salmon, Oncorhynchus kisutch. Reprod Biol Endocrinol 2008; 6:2. [PMID: 18205936 PMCID: PMC2262088 DOI: 10.1186/1477-7827-6-2] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 01/18/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The aim of this study was to identify differentially expressed ovarian genes during primary and early secondary oocyte growth in coho salmon, a semelparous teleost that exhibits synchronous follicle development. METHODS Reciprocal suppression subtractive hybridization (SSH) libraries were generated from ovaries with perinucleolus (P) or cortical alveolus (CA) stage follicles and selected genes were assessed with quantitative PCR (qPCR). An assessment of changes in RNA composition during oocyte growth and its relationship to transcript levels was also conducted. RESULTS SSH revealed several differentially expressed genes during early oogenesis, some which will not likely be utilized until 1-3 years later in salmon. Zona pellucida glycoprotein (zp) genes, vitellogenin receptor (vldlr) isoforms, cathepsin B (ctsba), cyclin E (ccne), a DnaJ transcript (dnaja2), and a ferritin subunit (fth3) were significantly elevated at the P stage, while a C-type lectin, retinol dehydrogenase (rdh1), and a coatomer protein subunit (cope) were upregulated at the CA stage. Putative follicle cell transcripts such as anti-Müllerian hormone (amh), lipoprotein lipase (lpl), apolipoprotein E (apoe), gonadal soma-derived growth factor (gsdf) and follicle-stimulating hormone receptor (fshr) also increased significantly at the CA stage. The analysis of RNA composition during oocyte growth showed that the total RNA yield and proportion of messenger RNA relative to non-polyadenylated RNAs declined as oogenesis progressed. This influenced apparent transcript levels depending on the type of RNA template used and normalization method. CONCLUSION In coho salmon, which exhibit a dramatic change in oocyte size and RNA composition during oogenesis, use of messenger RNA as template and normalization of qPCR data to a housekeeping gene, ef1a, yielded results that best reflected transcript abundance within the ovarian follicle. Synthesis of zp transcripts and proteins involved in yolk incorporation and processing occurred during primary growth, while increased expression of a CA component and genes related to lipid incorporation occurred concomitant with the appearance of CA, but prior to lipid accumulation. Significant increases in transcripts for fshr, gsdf, and amh at the CA stage suggest a role of FSH and TGFbeta peptides in previtellogenic oocyte growth and puberty onset in female salmon.
Collapse
Affiliation(s)
- John A Luckenbach
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington 98195, USA
- Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration-National Marine Fisheries Service, Seattle, Washington 98112, USA
| | - Dimitar B Iliev
- Great Lakes WATER Institute, University of Wisconsin, Milwaukee, Wisconsin 53204, USA
| | - Frederick W Goetz
- Great Lakes WATER Institute, University of Wisconsin, Milwaukee, Wisconsin 53204, USA
| | - Penny Swanson
- Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration-National Marine Fisheries Service, Seattle, Washington 98112, USA
- Center of Reproductive Biology, Washington State University, Pullman, Washington 98164, USA
| |
Collapse
|
10
|
Abstract
During maturation, the last phase of oogenesis, the oocyte undergoes several changes which prepare it to be ovulated and fertilized. Immature oocytes are arrested in the first meiotic process prophase, that is morphologically identified by a germinal vesicle. The removal of the first meiotic block marks the initiation of maturation. Although a large number of molecules are involved in complex sequences of events, there is evidence that a calcium increase plays a pivotal role in meiosis re-initiation. It is well established that, during this process, calcium is released from the intracellular stores, whereas less is known on the role of external calcium entering the cell through the plasma membrane ion channels. This review is focused on the functional role of calcium currents during oocyte maturation in all the species, from invertebrates to mammals. The emerging role of specific L-type calcium channels will be discussed.
Collapse
|
11
|
Soto M, Iborra S, Quijada L, Folgueira C, Alonso C, Requena JM. Cell-cycle-dependent translation of histone mRNAs is the key control point for regulation of histone biosynthesis in Leishmania infantum. Biochem J 2004; 379:617-25. [PMID: 14766017 PMCID: PMC1224130 DOI: 10.1042/bj20031522] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2003] [Revised: 02/02/2004] [Accepted: 02/09/2004] [Indexed: 11/17/2022]
Abstract
The cell-cycle-dependent expression of the four core histones (H2A, H2B, H3 and H4) has been studied in the protozoan parasite Leishmania infantum. For that purpose, the cell cycle was arrested by incubation of promastigotes with the DNA synthesis inhibitor hydroxyurea, which induced an accumulation of cells stalled in G1 phase. Hydroxyurea release resulted in a semi-synchronous entry into the cell cycle, as determined by flow cytometry. The steady-state levels of histone mRNAs in the G1, S and G2/M phases were found to be constant along the cell cycle. However, the levels of histone synthesis increased when parasites enter the S phase, in agreement with previous results showing that histone synthesis in Leishmania is tightly coupled with DNA replication. In addition, we analysed the distribution of histone mRNAs on polyribosomes at different stages of the cell cycle by separation of cytoplasmic RNAs in sucrose gradients. Remarkably, a drastic change in the polysome profiles of histone mRNAs was observed during the progression from G1 to S phase. Thus, in the S phase, histone mRNAs are present in ribosome-bound fractions, but in the G1 phase, the histone transcripts are exclusively found in the ribosome-free fractions. These results support a regulatory model in which the cell-cycle-regulated synthesis of histones in Leishmania is controlled through a reversible interaction between translational repressors and histone mRNAs.
Collapse
Affiliation(s)
- Manuel Soto
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
12
|
Sánchez R, Marzluff WF. The oligo(A) tail on histone mRNA plays an active role in translational silencing of histone mRNA during Xenopus oogenesis. Mol Cell Biol 2004; 24:2513-25. [PMID: 14993288 PMCID: PMC355835 DOI: 10.1128/mcb.24.6.2513-2525.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Metazoan replication-dependent histone mRNAs end in a stem-loop sequence. The one known exception is the histone mRNA in amphibian oocytes, which has a short oligo(A) tail attached to the stem-loop sequence. Amphibian oocytes also contain two proteins that bind the 3' end of histone mRNA: xSLBP1, the homologue of the mammalian SLBP, and xSLBP2, which is present only in oocytes. xSLBP2 is an inhibitor of histone mRNA translation, while xSLBP1 activates translation. The short A tail on histone mRNAs appears at stage II to III of oogenesis and is present on histone mRNAs throughout the rest of oogenesis. At oocyte maturation, the oligo(A) tail is removed and the xSLBP2 is degraded, resulting in the activation of translation of histone mRNA. Both SLBPs bind to the stem-loop with the oligo(A) tail with similar affinities. Reporter mRNAs ending in the stem-loop with or without the oligo(A) tail are translated equally well in a reticulocyte lysate, and their translation is stimulated by the presence of xSLBP1. In contrast, translation of the reporter mRNA with an oligo(A) tail is not activated in frog oocytes in response to the presence of xSLBP1. These results suggest that the oligo(A) tail is an active part of the translation repression mechanism that silences histone mRNA during oogenesis and that its removal is part of the mechanism that activates translation.
Collapse
Affiliation(s)
- Ricardo Sánchez
- Program in Molecular Biology and Biotechnology, Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | |
Collapse
|
13
|
Han B, Zhang JT. Regulation of gene expression by internal ribosome entry sites or cryptic promoters: the eIF4G story. Mol Cell Biol 2002; 22:7372-84. [PMID: 12370285 PMCID: PMC135655 DOI: 10.1128/mcb.22.21.7372-7384.2002] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As an alternative to the scanning mechanism of initiation, the direct-internal-initiation mechanism postulates that the translational machinery assembles at the AUG start codon without traversing the entire 5' untranslated region (5'-UTR) of the mRNA. Although the existence of internal ribosome entry sites (IRESs) in viral mRNAs is considered to be well established, the existence of IRESs in cellular mRNAs has recently been challenged, in part because when testing is carried out using a conventional dicistronic vector, Northern blot analyses might not be sensitive enough to detect low levels of monocistronic transcripts derived via a cryptic promoter or splice site. To address this concern, we created a new promoterless dicistronic vector to test the putative IRES derived from the 5'-UTR of an mRNA that encodes the translation initiation factor eIF4G. Our analysis of this 5'-UTR sequence unexpectedly revealed a strong promoter. The activity of the internal promoter relies on the integrity of a polypyrimidine tract (PPT) sequence that had been identified as an essential component of the IRES. The PPT sequence overlaps with a binding site for transcription factor C/EBPbeta. Two other transcription factors, Sp1 and Ets, were also found to bind to and mediate expression from the promoter in the 5'-UTR of eIF4G mRNA. The biological significance of the internal promoter in the eIF4G mRNA might lie in the production of an N-terminally truncated form of the protein. Consistent with the idea that the cryptic promoter we identified underlies the previously reported IRES activity, we found no evidence of IRES function when a dicistronic mRNA containing the eIF4G sequence was translated in vitro or in vivo. Using the promoterless dicistronic vector, we also found promoter activities in the long 5'-UTRs of human Sno and mouse Bad mRNAs although monocistronic transcripts were not detectable on Northern blot analyses. The promoterless dicistronic vector might therefore prove useful in future studies to examine more rigorously the claim that there is IRES activity in cellular mRNAs.
Collapse
Affiliation(s)
- Baoguang Han
- Department of Pharmacology and Toxicology, Walther Oncology Center/Walther Cancer Institute and I.U. Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | |
Collapse
|
14
|
Niessing D, Blanke S, Jäckle H. Bicoid associates with the 5'-cap-bound complex of caudal mRNA and represses translation. Genes Dev 2002; 16:2576-82. [PMID: 12368268 PMCID: PMC187448 DOI: 10.1101/gad.240002] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Translational control plays a key role in many biological processes including pattern formation during early Drosophila embryogenesis. In this process, the anterior determinant Bicoid (BCD) acts not only as a transcriptional activator of segmentation genes but also causes specific translational repression of ubiquitously distributed caudal (cad) mRNA in the anterior region of the embryo. We show that translational repression of cad mRNA is dependent on a functional eIF4E-binding motif. The results suggest a novel mode of translational repression, which combines the strategy of target-specific binding to 3'-untranslated sequences and interference with 5'-cap-dependent translation initiation in one protein.
Collapse
Affiliation(s)
- Dierk Niessing
- Max-Planck-Institut für biophysikalische Chemie, Abteilung Molekulare Entwicklungsbiologie, 37077 Göttingen, Germany
| | | | | |
Collapse
|
15
|
Amiri A, Keiper BD, Kawasaki I, Fan Y, Kohara Y, Rhoads RE, Strome S. An isoform of eIF4E is a component of germ granules and is required for spermatogenesis inC. elegans. Development 2001; 128:3899-912. [PMID: 11641215 PMCID: PMC2430591 DOI: 10.1242/dev.128.20.3899] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Control of gene expression at the translational level is crucial for many developmental processes. The mRNA cap-binding protein, eIF4E, is a key player in regulation of translation initiation; appropriate levels of eIF4E are essential for normal cell-cycle regulation and tissue differentiation. The observation that eIF4E levels are elevated during gametogenesis in several organisms suggests that eIF4E might have a specific role in gamete formation as well. We show that one of the five isoforms of C. elegans eIF4E, IFE-1, is enriched in the germline and is a component of germ granules (P granules). The association of IFE-1 with P granules requires the P-granule protein PGL-1. In vitro PGL-1 interacts directly with IFE-1, but not with the other four isoforms of eIF4E. Analysis of animals depleted of IFE-1 by RNAi shows that IFE-1 is required for spermatogenesis, specifically for efficient progression through the meiotic divisions and for the production of functional sperm, in both hermaphrodites and males. The requirement for IFE-1 is highly sensitive to temperature. IFE-1 is not required for oogenesis, as ife-1(RNAi) hermaphrodites produce viable progeny when normal sperm are supplied. Consistent with a primary role in spermatogenesis, ife-1 mRNA levels are highest in regions of the gonad undergoing spermatogenesis. Our results suggest that C. elegans spermatogenesis requires either this specific isoform of eIF4E or an elevated level of eIF4E.
Collapse
Affiliation(s)
- Anahita Amiri
- Department of Biology, Jordan Hall, 1001 E. Third St., Indiana University, Bloomington, IN 47405-3700, USA
| | - Brett D. Keiper
- Louisiana State University Health Sciences Center, Department of Biochemistry and Molecular Biology, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| | - Ichiro Kawasaki
- Department of Biology, Jordan Hall, 1001 E. Third St., Indiana University, Bloomington, IN 47405-3700, USA
- Genome Biology Laboratory, Center for Genetic Resource Information, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Yuan Fan
- Department of Biology, Jordan Hall, 1001 E. Third St., Indiana University, Bloomington, IN 47405-3700, USA
| | - Yuji Kohara
- Genome Biology Laboratory, Center for Genetic Resource Information, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Robert E. Rhoads
- Louisiana State University Health Sciences Center, Department of Biochemistry and Molecular Biology, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| | - Susan Strome
- Department of Biology, Jordan Hall, 1001 E. Third St., Indiana University, Bloomington, IN 47405-3700, USA
- *Author for correspondence (e-mail: )
| |
Collapse
|
16
|
de Moor CH, Richter JD. Translational control in vertebrate development. INTERNATIONAL REVIEW OF CYTOLOGY 2001; 203:567-608. [PMID: 11131527 DOI: 10.1016/s0074-7696(01)03017-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Translational control plays a large role in vertebrate oocyte maturation and contributes to the induction of the germ layers. Translational regulation is also observed in the regulation of cell proliferation and differentiation. The features of an mRNA that mediate translational control are found both in the 5' and in the 3' untranslated regions (UTRs). In the 5' UTR, secondary structure, the binding of proteins, and the presence of upstream open reading frames can interfere with the association of initiation factors with the cap, or with scanning of the initiation complex. The 3' UTR can mediate translational activation by directing cytoplasmic polyadenylation and can confer translational repression by interference with the assembly of initiation complexes. Besides mRNA-specific translational control elements, the nonspecific RNA-binding proteins contribute to the modulation of translation in development. This review discusses examples of translational control and their relevance for developmental regulation.
Collapse
Affiliation(s)
- C H de Moor
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester 01655, USA
| | | |
Collapse
|
17
|
de Moor CH, Richter JD. Cytoplasmic polyadenylation elements mediate masking and unmasking of cyclin B1 mRNA. EMBO J 1999; 18:2294-303. [PMID: 10205182 PMCID: PMC1171312 DOI: 10.1093/emboj/18.8.2294] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
During oocyte maturation, cyclin B1 mRNA is translationally activated by cytoplasmic polyadenylation. This process is dependent on cytoplasmic polyadenylation elements (CPEs) in the 3' untranslated region (UTR) of the mRNA. To determine whether a titratable factor might be involved in the initial translational repression (masking) of this mRNA, high levels of cyclin B1 3' UTR were injected into oocytes. While this treatment had no effect on the poly(A) tail length of endogenous cyclin B1 mRNA, it induced cyclin B1 synthesis. A mutational analysis revealed that the most efficient unmasking element in the cyclin 3' UTR was the CPE. However, other U-rich sequences that resemble the CPE in structure, but which do not bind the CPE-binding polyadenylation factor CPEB, failed to induce unmasking. When fused to the chloramphenical acetyl transferase (CAT) coding region, the cyclin B1 3' UTR inhibited CAT translation in injected oocytes. In addition, a synthetic 3' UTR containing multiple copies of the CPE also inhibited translation, and did so in a dose-dependent manner. Furthermore, efficient CPE-mediated masking required cap-dependent translation. During the normal course of progesterone-induced maturation, cytoplasmic polyadenylation was necessary for mRNA unmasking. A model to explain how cyclin B1 mRNA masking and unmasking could be regulated by the CPE is presented.
Collapse
Affiliation(s)
- C H de Moor
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | |
Collapse
|
18
|
Niessing D, Dostatni N, Jäckle H, Rivera-Pomar R. Sequence interval within the PEST motif of Bicoid is important for translational repression of caudal mRNA in the anterior region of the Drosophila embryo. EMBO J 1999; 18:1966-73. [PMID: 10202159 PMCID: PMC1171281 DOI: 10.1093/emboj/18.7.1966] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Drosophila body organizer Bicoid (Bcd) is a maternal homeodomain protein. It forms a concentration gradient along the longitudinal axis of the preblastoderm embryo and activates early zygotic segmentation genes in a threshold-dependent fashion. In addition, Bcd acts as a translational repressor of maternal caudal (cad) mRNA in the anterior region of the embryo. This process involves a distinct Bcd-binding region (BBR) in the 3' untranslated region (UTR) of cad mRNA. Using cotransfection assays, we found that Bcd represses translation in a cap-dependent manner. Bcd-dependent translational repression involves a portion of the PEST motif of Bcd, a conserved protein motif best known for its function in protein degradation. Rescue experiments with Bcd-deficient embryos expressing transgene-derived Bcd mutants indicate that amino acid replacements within the C-terminal portion of the PEST motif prevent translational repression of cad mRNA but allow for Bcd-dependent transcriptional activation. Thus, Bcd contains separable protein domains for transcriptional and translational regulation of target genes. Maternally-derived cad protein in the anterior region of embryos interferes with head morphogenesis, showing that cad mRNA suppression by Bcd is an important control event during early Drosophila embryogenesis.
Collapse
Affiliation(s)
- D Niessing
- Max-Planck-Institut für biophysikalische Chemie, Abt. Molekulare Entwicklungsbiologie, Am Fassberg, D-37077 Göttingen, Germany
| | | | | | | |
Collapse
|
19
|
Howard EL, Charlesworth A, Welk J, MacNicol AM. The mitogen-activated protein kinase signaling pathway stimulates mos mRNA cytoplasmic polyadenylation during Xenopus oocyte maturation. Mol Cell Biol 1999; 19:1990-9. [PMID: 10022886 PMCID: PMC83992 DOI: 10.1128/mcb.19.3.1990] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Mos protein kinase is a key regulator of vertebrate oocyte maturation. Oocyte-specific Mos protein expression is subject to translational control. In the frog Xenopus, the translation of Mos protein requires the progesterone-induced polyadenylation of the maternal Mos mRNA, which is present in the oocyte cytoplasm. Both the Xenopus p42 mitogen-activated protein kinase (MAPK) and maturation-promoting factor (MPF) signaling pathways have been proposed to mediate progesterone-stimulated oocyte maturation. In this study, we have determined the relative contributions of the MAPK and MPF signaling pathways to Mos mRNA polyadenylation. We report that progesterone-induced Mos mRNA polyadenylation was attenuated in oocytes expressing the MAPK phosphatase rVH6. Moreover, inhibition of MAPK signaling blocked progesterone-induced Mos protein accumulation. Activation of the MAPK pathway by injection of RNA encoding Mos was sufficient to induce both the polyadenylation of synthetic Mos mRNA substrates and the accumulation of endogenous Mos protein in the absence of MPF signaling. Activation of MPF, by injection of cyclin B1 RNA or purified cyclin B1 protein, also induced both Mos protein accumulation and Mos mRNA polyadenylation. However, this action of MPF required MAPK activity. By contrast, the cytoplasmic polyadenylation of maternal cyclin B1 mRNA was stimulated by MPF in a MAPK-independent manner, thus revealing a differential regulation of maternal mRNA polyadenylation by the MAPK and MPF signaling pathways. We propose that MAPK-stimulated Mos mRNA cytoplasmic polyadenylation is a key component of the positive-feedback loop, which contributes to the all-or-none process of oocyte maturation.
Collapse
Affiliation(s)
- E L Howard
- Department of Medicine, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
20
|
Kerekatte V, Keiper BD, Badorff C, Cai A, Knowlton KU, Rhoads RE. Cleavage of Poly(A)-binding protein by coxsackievirus 2A protease in vitro and in vivo: another mechanism for host protein synthesis shutoff? J Virol 1999; 73:709-17. [PMID: 9847377 PMCID: PMC103878 DOI: 10.1128/jvi.73.1.709-717.1999] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/1998] [Accepted: 09/25/1998] [Indexed: 12/16/2022] Open
Abstract
Infection of cells by picornaviruses of the rhinovirus, aphthovirus, and enterovirus groups results in the shutoff of host protein synthesis but allows viral protein synthesis to proceed. Although considerable evidence suggests that this shutoff is mediated by the cleavage of eukaryotic translation initiation factor eIF4G by sequence-specific viral proteases (2A protease in the case of coxsackievirus), several experimental observations are at variance with this view. Thus, the cleavage of other cellular proteins could contribute to the shutoff of host protein synthesis and stimulation of viral protein synthesis. Recent evidence indicates that the highly conserved 70-kDa cytoplasmic poly(A)-binding protein (PABP) participates directly in translation initiation. We have now found that PABP is also proteolytically cleaved during coxsackievirus infection of HeLa cells. The cleavage of PABP correlated better over time with the host translational shutoff and onset of viral protein synthesis than did the cleavage of eIF4G. In vitro experiments with purified rabbit PABP and recombinant human PABP as well as in vivo experiments with Xenopus oocytes and recombinant Xenopus PABP demonstrate that the cleavage is catalyzed by 2A protease directly. N- and C-terminal sequencing indicates that cleavage occurs uniquely in human PABP at 482VANTSTQTM downward arrowGPRPAAAAAA500, separating the four N-terminal RNA recognition motifs (80%) from the C-terminal homodimerization domain (20%). The N-terminal cleavage product of PABP is less efficient than full-length PABP in restoring translation to a PABP-dependent rabbit reticulocyte lysate translation system. These results suggest that the cleavage of PABP may be another mechanism by which picornaviruses alter the rate and spectrum of protein synthesis.
Collapse
Affiliation(s)
- V Kerekatte
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, Shreveport, Louisiana 71130, USA
| | | | | | | | | | | |
Collapse
|
21
|
Wang ZF, Ingledue TC, Dominski Z, Sanchez R, Marzluff WF. Two Xenopus proteins that bind the 3' end of histone mRNA: implications for translational control of histone synthesis during oogenesis. Mol Cell Biol 1999; 19:835-45. [PMID: 9858606 PMCID: PMC83940 DOI: 10.1128/mcb.19.1.835] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/1998] [Accepted: 10/12/1998] [Indexed: 11/20/2022] Open
Abstract
Translationally inactive histone mRNA is stored in frog oocytes, and translation is activated at oocyte maturation. The replication-dependent histone mRNAs are not polyadenylated and end in a conserved stem-loop structure. There are two proteins (SLBPs) which bind the 3' end of histone mRNA in frog oocytes. SLBP1 participates in pre-mRNA processing in the nucleus. SLBP2 is oocyte specific, is present in the cytoplasm, and does not support pre-mRNA processing in vivo or in vitro. The stored histone mRNA is bound to SLBP2. As oocytes mature, SLBP2 is degraded and a larger fraction of the histone mRNA is bound to SLBP1. The mechanism of activation of translation of histone mRNAs may involve exchange of SLBPs associated with the 3' end of histone mRNA.
Collapse
Affiliation(s)
- Z F Wang
- Program in Molecular Biology and Biotechnology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | |
Collapse
|
22
|
Hake LE, Mendez R, Richter JD. Specificity of RNA binding by CPEB: requirement for RNA recognition motifs and a novel zinc finger. Mol Cell Biol 1998; 18:685-93. [PMID: 9447964 PMCID: PMC108779 DOI: 10.1128/mcb.18.2.685] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
CPEB is an RNA binding protein that interacts with the maturation-type cytoplasmic polyadenylation element (CPE) (consensus UUUUUAU) to promote polyadenylation and translational activation of maternal mRNAs in Xenopus laevis. CPEB, which is conserved from mammals to invertebrates, is composed of three regions: an amino-terminal portion with no obvious functional motif, two RNA recognition motifs (RRMs), and a cysteine-histidine region that is reminiscent of a zinc finger. In this study, we investigated the physical properties of CPEB required for RNA binding. CPEB can interact with RNA as a monomer, and phosphorylation, which modifies the protein during oocyte maturation, has little effect on RNA binding. Deletion mutations of CPEB have been overexpressed in Escherichia coli and used in a series of RNA gel shift experiments. Although a full-length and a truncated CPEB that lacks 139 amino-terminal amino acids bind CPE-containing RNA avidly, proteins that have had either RRM deleted bind RNA much less efficiently. CPEB that has had the cysteine-histidine region deleted has no detectable capacity to bind RNA. Single alanine substitutions of specific cysteine or histidine residues within this region also abolish RNA binding, pointing to the importance of this highly conserved domain of the protein. Chelation of metal ions by 1,10-phenanthroline inhibits the ability of CPEB to bind RNA; however, RNA binding is restored if the reaction is supplemented with zinc. CPEB also binds other metals such as cobalt and cadmium, but these destroy RNA binding. These data indicate that the RRMs and a zinc finger region of CPEB are essential for RNA binding.
Collapse
Affiliation(s)
- L E Hake
- Worcester Foundation for Biomedical Research, Shrewsbury, Massachusetts 01545, USA
| | | | | |
Collapse
|
23
|
de Moor CH, Richter JD. The Mos pathway regulates cytoplasmic polyadenylation in Xenopus oocytes. Mol Cell Biol 1997; 17:6419-26. [PMID: 9343404 PMCID: PMC232494 DOI: 10.1128/mcb.17.11.6419] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cytoplasmic polyadenylation controls the translation of several maternal mRNAs during Xenopus oocyte maturation and requires two sequences in the 3' untranslated region (UTR), the U-rich cytoplasmic polyadenylation element (CPE), and the hexanucleotide AAUAAA. c-mos mRNA is polyadenylated and translated soon after the induction of maturation, and this protein kinase is necessary for a kinase cascade culminating in cdc2 kinase (MPF) activation. Other mRNAs are polyadenylated later, around the time of cdc2 kinase activation. To determine whether there is a hierarchy in the cytoplasmic polyadenylation of maternal mRNAs, we ablated c-mos mRNA with an antisense oligonucleotide. This prevented histone B4 and cyclin A1 and B1 mRNA polyadenylation, indicating that the polyadenylation of these mRNAs is Mos dependent. To investigate a possible role of cdc2 kinase in this process, cyclin B was injected into oocytes lacking c-mos mRNA. cdc2 kinase was activated, but mitogen-activated protein kinase was not. However, polyadenylation of cyclin B1 and histone B4 mRNA was still observed. This demonstrates that cdc2 kinase can induce cytoplasmic polyadenylation in the absence of Mos. Our data further indicate that although phosphorylation of the CPE binding protein may be involved in the induction of Mos-dependent polyadenylation, it is not required for Mos-independent polyadenylation. We characterized the elements conferring Mos dependence (Mos response elements) in the histone B4 and cyclin B1 mRNAs by mutational analysis. For histone B4 mRNA, the Mos response elements were in the coding region or 5' UTR. For cyclin B1 mRNA, the main Mos response element was a CPE that overlaps with the AAUAAA hexanucleotide. This indicates that the position of the CPE can have a profound influence on the timing of cytoplasmic polyadenylation.
Collapse
Affiliation(s)
- C H de Moor
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical Center, Worcester 01655, USA
| | | |
Collapse
|