1
|
Koga A, Goto M, Hayashi S, Yamamoto S, Miyasaka H. Probiotic Effects of a Marine Purple Non-Sulfur Bacterium, Rhodovulum sulfidophilum KKMI01, on Kuruma Shrimp (Marsupenaeus japonicus). Microorganisms 2022; 10:microorganisms10020244. [PMID: 35208699 PMCID: PMC8876596 DOI: 10.3390/microorganisms10020244] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 12/04/2022] Open
Abstract
Purple non-sulfur bacteria (PNSB) are used as probiotics in shrimp aquaculture; however, no studies have examined the probiotic effects of PNSB in shrimp at the gene expression level. In this study, we examined the effects of a marine PNSB, Rhodovulum sulfidophilum KKMI01, on the gene expression of kuruma shrimp (Marsupenaeus japonicus). Short-term (3 days) effects of R. sulfidophilum KKMI01 on the gene expression in shrimp were examined using small-scale laboratory aquaria experiments, while long-term (145 days) effects of R. sulfidophilum KKMI01 on the growth performance and gene expression were examined using 200-ton outdoor aquaria experiments. Gene expression levels were examined using qRT-PCR. Results of the short-term experiments showed the upregulation of several molting-related genes, including cuticle proteins, calcification proteins, and cuticle pigment protein, suggesting that PNSB stimulated the growth of shrimp. The upregulation of several immune genes, such as prophenoloxidase, antimicrobial peptides, and superoxide dismutase, was also observed. In the 145-day outdoor experiments, the average body weight at harvest time, survival rate, and feed conversion ratio were significantly improved in PNSB-treated shrimp, and upregulation of molting and immune-related genes were also observed. When PNSB cells were added to the rearing water, the effective dosage of PNSB was as low as 103 cfu/mL, which was more than a million times dilution of the original PNSB culture (2–3 × 109 cfu/mL), indicating that R. sulfidophilum KKMI01 provides a feasible and cost-effective application as a probiotic candidate in shrimp aquaculture.
Collapse
|
2
|
Chen YL, Kumar R, Liu CH, Wang HC. In Litopenaeus vannamei, the cuticular chitin-binding proteins LvDD9A and LvDD9B retard AHPND pathogenesis but facilitate WSSV infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 120:103999. [PMID: 33444644 DOI: 10.1016/j.dci.2021.103999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Acute hepatopancreatic necrosis disease (AHPND) is a serious bacterial disease caused by V. parahaemolyticus strains which contain a virulent plasmid that encodes a binary pore-forming Pir toxin. Typically, these AHPND-causing bacteria first colonize in the shrimp stomach and then later cross to the hepatopancreas. To do this, they must pass through structural barriers which include the pliant cuticular lining of the stomach lumen. A previous transcriptomic study of shrimp challenged with the virulent 5HP strain of V. parahaemolyticus found significant upregulation of a contig associated with the cuticular proteins LvDD9A and LvDD9B. Here, we confirmed that the mRNA levels of these two genes were significantly upregulated not only in 5HP-infected shrimp, but also in the stomach of shrimp challenged with the white spot syndrome virus (WSSV). Using dsRNA-mediated gene silencing, we found that AHPND-causing bacteria migrated to the hepatopancreas within 3 h of AHPND infection in LvDD9A/B-silenced shrimp. Shrimp shell hardness of LvDD9A/B-silenced shrimp was also significantly decreased. Conversely, we found that silencing of LvDD9A/B significantly inhibited both WSSV gene expression and genome replication. Taken together, our data suggests that LvDD9A and LvDD9B are involved in both AHPND and WSSV infection. However, in AHPND, these cuticular proteins help to prevent bacterial migration from the stomach to the hepatopancreas, whereas in WSSV infection, they facilitate viral gene expression and genome replication.
Collapse
Affiliation(s)
- Yi-Lun Chen
- Department of Biotechnology and Bioindustry Sciences, College of Biosciences and Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ramya Kumar
- Department of Biotechnology and Bioindustry Sciences, College of Biosciences and Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan; International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, 701, Taiwan
| | - Chun-Hung Liu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Han-Ching Wang
- Department of Biotechnology and Bioindustry Sciences, College of Biosciences and Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan; International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
3
|
Shaked SA, Abehsera S, Levy T, Chalifa-Caspi V, Sagi A. From sporadic single genes to a broader transcriptomic approach: Insights into the formation of the biomineralized exoskeleton in decapod crustaceans. J Struct Biol 2020; 212:107612. [PMID: 32896659 DOI: 10.1016/j.jsb.2020.107612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/27/2020] [Accepted: 08/29/2020] [Indexed: 01/01/2023]
Abstract
One fundamental character common to pancrustaceans (Crustacea and Hexapoda) is a mineralized rigid exoskeleton whose principal organic components are chitin and proteins. In contrast to traditional research in the field that has been devoted to the structural and physicochemical aspects of biomineralization, the present study explores transcriptomic aspects of biomineralization as a first step towards adding a complementary molecular layer to this field. The rigidity of the exoskeleton in pancrustaceans dictates essential molt cycles enabling morphological changes and growth. Thus, formation and mineralization of the exoskeleton are concomitant to the timeline of the molt cycle. Skeletal proteinaceous toolkit elements have been discovered in previous studies using innovative molt-related binary gene expression patterns derived from transcriptomic libraries representing the major stages comprising the molt cycle of the decapod crustacean Cherax quadricarinatus. Here, we revisited some prominent exoskeleton-related structural proteins encoding and, using the above molt-related binary pattern methodology, enlarged the transcriptomic database of C. quadricarinatus. The latter was done by establishing a new transcriptomic library of the cuticle forming epithelium and molar tooth at four different molt stages (i.e., inter-molt, early pre-molt, late pre-molt and post-molt) and incorporating it to a previous transcriptome derived from the gastroliths and mandible. The wider multigenic approach facilitated by the newly expanded transcriptomic database not only revisited single genes of the molecular toolkit, but also provided both scattered and specific information that broaden the overview of proteins and gene clusters which are involved in the construction and biomineralization of the exoskeleton in decapod crustaceans.
Collapse
Affiliation(s)
- Shai A Shaked
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Shai Abehsera
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Tom Levy
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Vered Chalifa-Caspi
- Bioinformatics Core Facility, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Amir Sagi
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
4
|
Wang Z, Luan S, Meng X, Cao B, Luo K, Kong J. Comparative transcriptomic characterization of the eyestalk in Pacific white shrimp (Litopenaeus vannamei) during ovarian maturation. Gen Comp Endocrinol 2019; 274:60-72. [PMID: 30611813 DOI: 10.1016/j.ygcen.2019.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 01/02/2019] [Accepted: 01/02/2019] [Indexed: 12/17/2022]
Abstract
In crustaceans, some of fundamental regulatory processes related to a range of physiological functions, including ovarian maturation, molting, glucose homeostasis, osmoregulation, etc., occur in the organs of the eyestalk. Additionally, reproduction is regulated by neuropeptide hormones and other proteins released from secretory sites (X-organ/sinus gland, XO/SG) within the eyestalk. As unilateral eyestalk ablation was the most common method used to artificially induce ovarian maturation for farmed Litopenaeus vannamei, to better understand the reproductive regulation mechanism in L. vannamei, we have investigated the transcriptomes of the eyestalk during five ovary developmental stages with or without eyestalk ablation by high-throughput Illumina sequencing technology. The raw reads were assembled and clustered into 127,031 unigenes. Meanwhile, the differentially expressed genes (DEGs) between ovarian development stages were identified. We examined, through DEG enrichment analysis, eyestalk gene expression patterns for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, comparing natural to artificially induced ovarian maturation. We also identified a variety of transcripts that appear to be differentially expressed throughout ovarian maturation. These include transcripts that encode G-protein coupled receptors (GPCRs) and neuropeptides, such as the crustacean hyperglycemic hormone (CHH), molt-inhibiting hormone (MIH), and crustacean female sex hormone (CFSH). Furthermore, numerous exoskeleton formation-related genes were found to be down-regulated during ovarian maturation, including cuticle-like proteins, eclosion hormone (EH), and gastrolith-like proteins, of which the latter are the first reported in L. vannamei. Our work is the first reproduction-related investigation of L. vannamei focusing on the eyestalk at the whole transcriptome level. These findings provide novel insight into the function of the eyestalk in reproduction regulation.
Collapse
Affiliation(s)
- Zhongkai Wang
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Sheng Luan
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Xianhong Meng
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Baoxiang Cao
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Kun Luo
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Jie Kong
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
5
|
Roer R, Abehsera S, Sagi A. Exoskeletons across the Pancrustacea: Comparative Morphology, Physiology, Biochemistry and Genetics. Integr Comp Biol 2015; 55:771-91. [DOI: 10.1093/icb/icv080] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
6
|
Kulkarni AD, Kiron V, Rombout JHWM, Brinchmann MF, Fernandes JMO, Sudheer NS, Singh BIS. Protein profiling in the gut of Penaeus monodon gavaged with oral WSSV-vaccines and live white spot syndrome virus. Proteomics 2014; 14:1660-73. [PMID: 24782450 DOI: 10.1002/pmic.201300405] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 03/23/2014] [Accepted: 04/25/2014] [Indexed: 11/12/2022]
Abstract
White spot syndrome virus (WSSV) is a pathogen that causes considerable mortality of the farmed shrimp, Penaeus monodon. Candidate 'vaccines', WSSV envelope protein VP28 and formalin-inactivated WSSV, can provide short-lived protection against the virus. In this study, P. monodon was orally intubated with the aforementioned vaccine candidates, and protein expression in the gut of immunised shrimps was profiled. The alterations in protein profiles in shrimps infected orally with live-WSSV were also examined. Seventeen of the identified proteins in the vaccine and WSSV-intubated shrimps varied significantly compared to those in the control shrimps. These proteins, classified under exoskeletal, cytoskeletal, immune-related, intracellular organelle part, intracellular calcium-binding or energy metabolism, are thought to directly or indirectly affect shrimp's immunity. The changes in the expression levels of crustacyanin, serine proteases, myosin light chain, and ER protein 57 observed in orally vaccinated shrimp may probably be linked to immunoprotective responses. On the other hand, altered expression of proteins linked to exoskeleton, calcium regulation and energy metabolism in WSSV-intubated shrimps is likely to symbolise disturbances in calcium homeostasis and energy metabolism.
Collapse
Affiliation(s)
- Amod D Kulkarni
- Faculty of Biosciences and Aquaculture, University of Nordland, Bodø, Norway
| | | | | | | | | | | | | |
Collapse
|
7
|
Structural and Functional Analyses of a Strong Chitin-Binding Protein-1 (SCBP-1) from the Exoskeleton of the Crayfish Procambarus clarkii. Biosci Biotechnol Biochem 2013; 77:361-8. [DOI: 10.1271/bbb.120787] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Glazer L, Sagi A. On the involvement of proteins in the assembly of the crayfish gastrolith extracellular matrix. INVERTEBR REPROD DEV 2012. [DOI: 10.1080/07924259.2011.588010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Glazer L, Shechter A, Tom M, Yudkovski Y, Weil S, Aflalo ED, Pamuru RR, Khalaila I, Bentov S, Berman A, Sagi A. A protein involved in the assembly of an extracellular calcium storage matrix. J Biol Chem 2010; 285:12831-9. [PMID: 20150428 DOI: 10.1074/jbc.m109.071068] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gastroliths, the calcium storage organs of crustaceans, consist of chitin-protein-mineral complexes in which the mineral component is stabilized amorphous calcium carbonate. To date, only three proteins, GAP 65, gastrolith matrix protein (GAMP), and orchestin, have been identified in gastroliths. Here, we report a novel protein, GAP 10, isolated from the gastrolith of the crayfish Cherax quadricarinatus and specifically expressed in its gastrolith disc. The encoding gene was cloned by partial sequencing of the protein extracted from the gastrolith matrix. Based on an assembled microarray cDNA chip, GAP 10 transcripts were found to be highly (12-fold) up-regulated in premolt gastrolith disc and significantly down-regulated in the hypodermis at the same molt stage. The deduced protein sequence of GAP 10 lacks chitin-binding domains and does not show homology to known proteins in the GenBank data base. It does, however, have an amino acid composition that has similarity to proteins extracted from invertebrate and ascidian-calcified extracellular matrices. The GAP 10 sequence contains a predicted signal peptide and predicted phosphorylation sites. In addition, the protein is phosphorylated and exhibits calcium-binding ability. Repeated daily injections of GAP 10 double strand RNA to premolt C. quadricarinatus resulted in a prolonged premolt stage and in the development of gastroliths with irregularly rough surfaces. These findings suggest that GAP 10 may be involved in the assembly of the gastrolith chitin-protein-mineral complex, particularly in the deposition of amorphous calcium carbonate.
Collapse
Affiliation(s)
- Lilah Glazer
- Department of Life Sciences, Ben-Gurion University, P. O. Box 653, Beer-Sheva 84105, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Faircloth LM, Shafer TH. Differential expression of eight transcripts and their roles in the cuticle of the blue crab, Callinectes sapidus. Comp Biochem Physiol B Biochem Mol Biol 2007; 146:370-83. [PMID: 17188921 DOI: 10.1016/j.cbpb.2006.11.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 11/20/2006] [Accepted: 11/20/2006] [Indexed: 11/21/2022]
Abstract
Eight cuticle protein transcripts from Callinectes sapidus were sequenced and their expression determined across the molt cycle in both calcifying and arthrodial cuticle hypodermis using quantitative PCR, Northern blots, and in situ hybridization. Four transcripts, designated CsAMP, are found only in non-calcifying arthrodial membrane hypodermis. They all code for a Rebers-Riddiford-1 motif, known to bind chitin. CsAMP9.3 is most likely an exocuticle constituent since it is expressed only during pre-molt. The other three arthrodial transcripts are present both before and after ecdysis. One of these, CsAMP16.3, codes for a RGD cell-attachment motif that could be involved in anchoring chitin-protein fibers to pore canals, cellular extensions of the hypodermis in the cuticle. The other four transcripts, designated CsCP, were found only in calcifying hypodermis. CsCP14.1 contains an RR-1 motif, which is more commonly found in non-calcifying cuticle proteins. CsCP6.1 is expressed post-molt and contains a partial RR motif, suggesting that it could bind to chitin in the endocuticle. The other two transcripts from calcifying hypodermis do not code for RR proteins, but both contain three copies of a different insect cuticle motif. One of these, CsCP19.0, is expressed only post-molt while the other, CsCP15.0, is present both before and after ecdysis.
Collapse
Affiliation(s)
- Lindsay M Faircloth
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC 28403, USA
| | | |
Collapse
|
11
|
Wang B, Li F, Dong B, Zhang X, Zhang C, Xiang J. Discovery of the genes in response to white spot syndrome virus (WSSV) infection in Fenneropenaeus chinensis through cDNA microarray. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2006; 8:491-500. [PMID: 16794954 DOI: 10.1007/s10126-005-6136-4] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Accepted: 02/09/2006] [Indexed: 05/10/2023]
Abstract
We used microarray technology to study differentially expressed genes in white spot syndrome virus (WSSV)-infected shrimp. A total of 3136 cDNA targets, including 1578 unique genes from a cephalothorax cDNA library and 1536 cDNA clones from reverse and forward suppression subtractive hybridization (SSH) libraries of Fenneropenaeus chinensis, plus 14 negative and 8 blank control clones, were spotted onto a 18 x 18 mm area of NH(2)-modified glass slides. Gene expression patterns in the cephalothorax of shrimp at 6 h after WSSV injection and moribund shrimp naturally infected by WSSV were analyzed. A total of 105 elements on the arrays showed a similar regulation pattern in artificially infected shrimp and naturally infected moribund shrimp; parts of the results were confirmed by semiquantitative reverse transcriptase-polymerase chain reaction (RT-PCR). The up-regulated expression of immune-related genes, including heat shock proteins (HSP70 and HSP90), trehalose-phosphate synthase (TPS), ubiquitin C, and so forth, were observed when shrimp were challenged with WSSV. Genes including myosin LC2, ATP synthase A chain, and arginine kinase were found to be down-regulated after WSSV infection. The expression of housekeeping genes such as actin, elongation factor, and tubulin is not stable, and so these genes are not suitable as internal standards for semiquantitative RT-PCR when shrimp are challenged by WSSV. As a substitute, we found that triosephosphate isomerase (TPI) was an ideal candidate of interstandards in this situation.
Collapse
Affiliation(s)
- Bing Wang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, People's Republic of China
| | | | | | | | | | | |
Collapse
|
12
|
Yuyama I, Hayakawa H, Endo H, Iwao K, Takeyama H, Maruyama T, Watanabe T. Identification of symbiotically expressed coral mRNAs using a model infection system. Biochem Biophys Res Commun 2005; 336:793-8. [PMID: 16153603 DOI: 10.1016/j.bbrc.2005.08.174] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Accepted: 08/23/2005] [Indexed: 10/25/2022]
Abstract
Hermatypic (or reef-building) corals live in obligatory mutualistic symbiosis with the symbiotic dinoflagellates Symbiodinium spp. (generally known as zooxanthellae). In an attempt to establish a model symbiosis system consisting of a coral host and a monoclonal population of zooxanthellae, infectivity of five cultured Symbiodinium cell lines was tested on naturally aposymbiotic juveniles of Acropora tenuis. A clade A3 strain (PL-TS-1) infected the juveniles at high density and promoted growth of the host. To identify host genes involved in the establishment or maintenance of symbiosis, mRNA expression patterns were compared between aposymbiotic and PL-TS-1-infected juvenile polyps using the suppression subtractive hybridization technique. Two mRNAs, the expression levels of which were augmented more than twofold by the presence of the symbionts, were thereby identified. One of the mRNAs, AtSym-02, encodes a novel protein of 322 amino acids which is predicted to be a glycosylated trans-membrane protein.
Collapse
Affiliation(s)
- Ikuko Yuyama
- Department of Marine Bioscience, Ocean Research Institute, The University of Tokyo, 1-15-1 Minamidai, Nakano, Tokyo 164-8639, Japan
| | | | | | | | | | | | | |
Collapse
|
13
|
Wynn A, Shafer TH. Four differentially expressed cDNAs in Callinectes sapidus containing the Rebers–Riddiford consensus sequence. Comp Biochem Physiol B Biochem Mol Biol 2005; 141:294-306. [PMID: 15939643 DOI: 10.1016/j.cbpc.2005.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2004] [Revised: 04/04/2005] [Accepted: 04/05/2005] [Indexed: 11/24/2022]
Abstract
Decapod crustaceans such as Callinectes sapidus, the blue crab, provide unique opportunities to study proteins involved in biomineralization. Subsequent to each molt, the previously deposited soft cuticle is calcified while the postecdysial layers are simultaneously deposited and mineralized. Though the majority of the exoskeleton hardens, morphologically similar cuticle at the joints, called arthrodial membrane, remains flexible. It seems reasonable that hypodermal cells producing these cuticle types should be synthesizing proteins that regulate mineralization. Data presented here are consistent with this hypothesis, showing that transcripts coding for proteins containing the chitin-binding Rebers-Riddiford (RR) consensus sequence (Gx(8)Gx(7)YxAxExGYx(7)Px(2)P) are differentially expressed. Two RR-containing transcripts, CsAMP8.1 and CsAMP6.0, are found only in arthrodial membrane and are expressed uniformly both before and after ecdysis. They have high sequence homology with RR-containing proteins from uncalcified portions of the cuticle of Cancer pagurus, Penaeus japonicus, and Homarus americanus. The other two transcripts, CsCP8.5 and CsCP8.2, are expressed solely in premolt and in hypodermis depositing calcifying cuticle rather than arthrodial membrane. They have high sequence homology with calcification-associated peptides containing the RR sequence obtained from the calcified cuticle of Procambarus clarkii. This suggests possible involvement in the postmolt mineralization of the pre-ecdysial cuticle.
Collapse
Affiliation(s)
- Anna Wynn
- Department of Biological Sciences, University of North Carolina at Wilmington, 601 S. College Rd., Wilmington, NC 28403 USA
| | | |
Collapse
|
14
|
Endo H, Takagi Y, Ozaki N, Kogure T, Watanabe T. A crustacean Ca2+-binding protein with a glutamate-rich sequence promotes CaCO3 crystallization. Biochem J 2005; 384:159-67. [PMID: 15242347 PMCID: PMC1134099 DOI: 10.1042/bj20041052] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The DD4 mRNA of the penaeid prawn Penaeus japonicus was shown previously to be expressed in the epidermis adjacent to the exoskeleton specifically during the post-moult period, when calcification of the exoskeleton took place. The encoded protein possessed a Ca2+-binding site, suggesting its involvement in the calcification of the exoskeleton. In the present study, an additional ORF (open reading frame) of 289 amino acids was identified at the 5' end of the previous ORF. The newly identified part of the encoded protein included a region of approx. 120 amino acids that was highly rich in glutamate residues, and contained one or more Ca2+-binding sites. In an immunohistochemical study, signals were detected within calcified regions in the endocuticular layer of the exoskeleton. Bacterially expressed partial segments of the protein induced CaCO3 crystallization in vitro. Finally, a reverse transcription-PCR study showed that the expression was limited to an early part of the post-moult period, preceding significant calcification of the exoskeleton. These observations argue for the possibility that the encoded protein, renamed crustocalcin (CCN), promotes formation of CaCO3 crystals in the exoskeleton by inducing nucleation.
Collapse
Affiliation(s)
- Hirotoshi Endo
- *Department of Marine Bioscience, Ocean Research Institute, The University of Tokyo, Tokyo, Japan
| | - Yasuaki Takagi
- †Graduate School of Fisheries Sciences, Hokkaido University, Hokkaido, Japan
| | - Noriaki Ozaki
- *Department of Marine Bioscience, Ocean Research Institute, The University of Tokyo, Tokyo, Japan
| | - Toshihiro Kogure
- ‡Department of Earth and Planetary Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Toshiki Watanabe
- *Department of Marine Bioscience, Ocean Research Institute, The University of Tokyo, Tokyo, Japan
- To whom correspondence should be addressed (email )
| |
Collapse
|
15
|
Inoue H, Ohira T, Ozaki N, Nagasawa H. Cloning and expression of a cDNA encoding a matrix peptide associated with calcification in the exoskeleton of the crayfish. Comp Biochem Physiol B Biochem Mol Biol 2004; 136:755-65. [PMID: 14662300 DOI: 10.1016/s1096-4959(03)00210-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Calcification-associated peptide (CAP)-1 isolated from the exoskeleton of the crayfish, Procambarus clarkii, has anti-calcification activity and chitin-binding ability and is, therefore, considered to be associated with calcification. In this study, a cDNA encoding CAP-1 was cloned and characterized. An open reading frame encoded a pre-propeptide of 99 amino acid residues, which was composed of a signal peptide, a CAP-1 precursor and two-basic amino acid residues at the C-terminus. The dibasic residues were not observed in the natural CAP-1. Expression analyses using Northern blot and RT-PCR revealed that the mRNA encoding CAP-1 was strongly expressed in the epidermal tissue during the postmolt stage, where and when the calcification takes place. These results support that CAP-1 may play an important role in the calcification of the exoskeleton. Based on the nucleotide sequence of the cDNA encoding CAP-1, a recombinant CAP-1 and that carrying the basic residues at the C-terminus were expressed in Escherichia coli. Anti-calcification assay showed that these recombinant peptides were less active than natural CAP-1, indicating that the phosphate group at the 70th residue, Ser, in natural CAP-1 is important for inhibitory activity and that the paired basic residues have some contribution to the elevation of inhibitory activity.
Collapse
Affiliation(s)
- Hirotaka Inoue
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
16
|
Inoue H, Ohira T, Ozaki N, Nagasawa H. A novel calcium-binding peptide from the cuticle of the crayfish, Procambarus clarkii. Biochem Biophys Res Commun 2004; 318:649-54. [PMID: 15144887 DOI: 10.1016/j.bbrc.2004.04.075] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2004] [Indexed: 11/30/2022]
Abstract
A novel peptide named calcification-associated peptide (CAP)-2 was isolated from the exoskeleton of the crayfish, Procambarus clarkii. CAP-2 consists of 65 amino acid residues and has a 44% sequence identity with CAP-1 characterized previously. It has a chitin-binding domain observed in many arthropod cuticle proteins. CAP-2 showed inhibitory activity on calcium carbonate precipitation and chitin-binding ability. A CAP-2 cDNA was cloned using RT-PCR and RACE and the open reading frame encoded a precursor peptide consisting of a signal peptide and CAP-2. RT-PCR revealed that CAP-2 mRNA was exclusively expressed in the epidermal tissue during the postmolt stage, the site and stage being associated with calcification. Calcium-binding assay using recombinant CAP-2 revealed that this peptide had affinity for calcium ions with a Kd value of about 1 mM. All these results suggest that CAP-2 serves as a nucleator or a regulator in the calcification of the exoskeleton.
Collapse
Affiliation(s)
- Hirotaka Inoue
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan.
| | | | | | | |
Collapse
|
17
|
Cheng SH, So CH, Chan PK, Cheng CW, Wu RSS. Cloning of the HSP70 gene in barnacle larvae and its expression under hypoxic conditions. MARINE POLLUTION BULLETIN 2003; 46:665-671. [PMID: 12735964 DOI: 10.1016/s0025-326x(03)00059-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Affiliation(s)
- S H Cheng
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong.
| | | | | | | | | |
Collapse
|
18
|
Fukuda I, Ooki S, Fujita T, Murayama E, Nagasawa H, Isa Y, Watanabe T. Molecular cloning of a cDNA encoding a soluble protein in the coral exoskeleton. Biochem Biophys Res Commun 2003; 304:11-7. [PMID: 12705876 DOI: 10.1016/s0006-291x(03)00527-8] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Organic substances were extracted from the calcified exoskeleton of the reef coral Galaxea fascicularis. In an SDS-PAGE analysis of the extract, a protein with an apparent molecular mass of 53 kDa was detected as well as two other weaker bands. A Ca2+ overlay analysis failed to find a Ca2+-binding protein in the extract. Periodic acid Schiff staining indicated that the 53 kDa protein was glycosylated. A cDNA containing the entire open reading frame for this protein was obtained. Analysis of the deduced protein sequence suggests that the protein, named galaxin, is synthesized as a precursor consisting of a signal peptide, a propeptide sequence, and a mature protein of 298 amino acids. Galaxin exhibits a novel amino acid sequence which is characterized by a tandem repeat structure. Galaxin transcripts were detected in the adult coral, but not in planktonic larvae.
Collapse
Affiliation(s)
- Isao Fukuda
- Division of Marine Biosciences, Ocean Research Institute, The University of Tokyo, 1-15-1 Minamidai, Nakano, 168-8639, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
19
|
Ditzel N, Andersen SO, Højrup P. Cuticular proteins from the horseshoe crab, Limulus polyphemus. Comp Biochem Physiol B Biochem Mol Biol 2003; 134:489-97. [PMID: 12628379 DOI: 10.1016/s1096-4959(02)00291-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Proteins were purified from the carapace cuticle of a juvenile horseshoe crab, Limulus polyphemus, and several of them were characterized by amino acid sequence determination. The proteins are small (7-16 kDa) and their isoelectric points range from 6.5 to 9.2. They have high contents of tyrosine, ranging from 13.5 to 35.4%. Some of the proteins show sequence similarity to cuticular proteins from other arthropod groups, with the most pronounced similarity to proteins from the cuticle of the spider Araneus diadematus. Two proteins show sequence similarity to a hexamerin storage protein from Blaberus discoidalis.
Collapse
Affiliation(s)
- Nicholas Ditzel
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | | | | |
Collapse
|
20
|
Testenière O, Hecker A, Le Gurun S, Quennedey B, Graf F, Luquet G. Characterization and spatiotemporal expression of orchestin, a gene encoding an ecdysone-inducible protein from a crustacean organic matrix. Biochem J 2002; 361:327-35. [PMID: 11772404 PMCID: PMC1222312 DOI: 10.1042/0264-6021:3610327] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We report the characterization of a new gene encoding an acidic protein named Orchestin. This protein is a component of the organic matrix of calcium storage structures (calcareous concretions) elaborated during the moulting cycles of the terrestrial crustacean Orchestia cavimana. The deduced molecular mass of Orchestin is estimated to be 12.4 kDa and the pI to be 4.4, whereas the native protein extracted from the calcium deposits migrates as a 23 kDa band on SDS/PAGE. This discrepancy is probably due to the richness of this protein in acidic amino acids (approx. 30%). The protein obtained by expressing the Orchestin cDNA in Escherichia coli presents an electrophoretic mobility of 25 kDa. Antibodies raised against the recombinant protein recognize the 23 kDa native protein exclusively among the organic-matrix components. Spatiotemporal analysis of the expression of the orchestin gene shows that it is expressed only in the storage organ cells when the concretions are elaborated during the premoult period and also, to a smaller extent, during the postmoult period. The translation products are expressed in accordance with the transcript expression during both the premoult and postmoult periods. Study of the hormonal stimulation of orchestin reveals that 20-hydroxyecdysone induces this gene as a secondary-response or late-response gene.
Collapse
Affiliation(s)
- Olivier Testenière
- UMR CNRS 5548, Développement-Communication chimique, Université de Bourgogne, 6 Boulevard Gabriel, F-21000 Dijon, France
| | | | | | | | | | | |
Collapse
|
21
|
Ikeya T, Persson P, Kono M, Watanabe T. The DD5 gene of the decapod crustacean Penaeus japonicus encodes a putative exoskeletal protein with a novel tandem repeat structure. Comp Biochem Physiol B Biochem Mol Biol 2001; 128:379-88. [PMID: 11250533 DOI: 10.1016/s1096-4959(00)00335-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A gene, named DD5, was identified in the penaeid prawn Penaeus japonicus and its cDNA cloned and sequenced. DD5 is expressed in the epidermal cells underlying the exoskeleton and the transcripts are detected specifically during the postmolt stage of the molt cycle. Sequence analysis of the conceptual protein product suggests that the DD5 protein is a component of the exoskeleton. The bulk of the protein consists of tandem repeats of a unit sequence of approximately 100 amino acids. The repeated sequences are highly homologous to one another and each of them includes a variant of the Rebers--Riddiford consensus sequence.
Collapse
Affiliation(s)
- T Ikeya
- Department of Marine Bioscience, Ocean Research Institute, University of Tokyo, 1-15-1 Minamidai, Nakano, Tokyo 164-8639, Japan
| | | | | | | |
Collapse
|
22
|
Endo H, Persson P, Watanabe T. Molecular cloning of the crustacean DD4 cDNA encoding a Ca(2+)-binding protein. Biochem Biophys Res Commun 2000; 276:286-91. [PMID: 11006119 DOI: 10.1006/bbrc.2000.3446] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A cDNA, named DD4, was identified in the prawn Penaeus japonicus in a search for genes that were expressed during calcification of the crustacean exoskeleton. DD4 transcripts were detected in the epidermal cells underlying the exoskeleton specifically during the postmolt stage, when the calcification takes place. In the DD4 cDNA an open reading frame of 542 amino acids was found. The deduced protein was acidic and proline-rich, and exhibited similarity to the Drosophila Ca(2+)-binding protein calphotin in the amino acid sequence and composition. The DD4 cDNA was expressed in Escherichia coli to characterize Ca(2+)-binding of the encoded protein, and Ca(2+) was found to bind to a central segment of 186 amino acids. The DD4 protein is suggested to play a role in the calcification of the crustacean exoskeleton.
Collapse
Affiliation(s)
- H Endo
- Department of Marine Bioscience, University of Tokyo, 1-15-1 Minamidai, Nakano, Tokyo, 164-8639, Japan
| | | | | |
Collapse
|