1
|
Chen YH, Lin S, Jin SY, Gao TM. Extracellular ATP Is a Homeostatic Messenger That Mediates Cell-Cell Communication in Physiological Processes and Psychiatric Diseases. Biol Psychiatry 2025; 97:41-53. [PMID: 38679359 DOI: 10.1016/j.biopsych.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/14/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024]
Abstract
Neuronal activity is the basis of information encoding and processing in the brain. During neuronal activation, intracellular ATP (adenosine triphosphate) is generated to meet the high-energy demands. Simultaneously, ATP is secreted, increasing the extracellular ATP concentration and acting as a homeostatic messenger that mediates cell-cell communication to prevent aberrant hyperexcitability of the nervous system. In addition to the confined release and fast synaptic signaling of classic neurotransmitters within synaptic clefts, ATP can be released by all brain cells, diffuses widely, and targets different types of purinergic receptors on neurons and glial cells, making it possible to orchestrate brain neuronal activity and participate in various physiological processes, such as sleep and wakefulness, learning and memory, and feeding. Dysregulation of extracellular ATP leads to a destabilizing effect on the neural network, as found in the etiopathology of many psychiatric diseases, including depression, anxiety, schizophrenia, and autism spectrum disorder. In this review, we summarize advances in the understanding of the mechanisms by which extracellular ATP serves as an intercellular signaling molecule to regulate neural activity, with a focus on how it maintains the homeostasis of neural networks. In particular, we also focus on neural activity issues that result from dysregulation of extracellular ATP and propose that aberrant levels of extracellular ATP may play a role in the etiopathology of some psychiatric diseases, highlighting the potential therapeutic targets of ATP signaling in the treatment of these psychiatric diseases. Finally, we suggest potential avenues to further elucidate the role of extracellular ATP in intercellular communication and psychiatric diseases.
Collapse
Affiliation(s)
- Yi-Hua Chen
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Song Lin
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
| | - Shi-Yang Jin
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Tian-Ming Gao
- State Key Laboratory of Organ Failure Research, Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Pollatzek E, Hitzel N, Ott D, Raisl K, Reuter B, Gerstberger R. Functional expression of P2 purinoceptors in a primary neuroglial cell culture of the rat arcuate nucleus. Neuroscience 2016; 327:95-114. [PMID: 27072848 DOI: 10.1016/j.neuroscience.2016.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 04/06/2016] [Accepted: 04/06/2016] [Indexed: 12/22/2022]
Abstract
The arcuate nucleus (ARC) plays an important role in the hypothalamic control of energy homeostasis. Expression of various purinoceptor subtypes in the rat ARC and physiological studies suggest a modulatory function of P2 receptors within the neuroglial ARC circuitry. A differentiated mixed neuronal and glial microculture was therefore established from postnatal rat ARC, revealing neuronal expression of ARC-specific transmitters involved in food intake regulation (neuropeptide Y (NPY), proopiomelanocortin (POMC), tyrosine hydroxylase (TH)). Some NPYergic neurons cosynthesized TH, while POMC and TH expression proved to be mutually exclusive. Stimulation with the general purinoceptor agonists 2-methylthioadenosine-5'triphosphate (2-MeSATP) and ATP but not the P2X1/P2X3 receptor subtype agonist α,β-methyleneadenosine-5'triphosphate (α,β-meATP) induced intracellular calcium signals in ARC neurons and astrocytes. Some 5-10% each of 2-MeSATP responsive neurons expressed POMC, NYP or TH. Supporting the calcium imaging data, radioligand binding studies to hypothalamic membranes showed high affinity for 2-MeSATP, ATP but not α,β-meATP to displace [α-(35)S]deoxyadenosine-5'thiotriphosphate ([(35)S]dATPαS) from P2 receptors. Repetitive superfusion with equimolar 2-MeSATP allowed categorization of ARC cells into groups with a high or low (LDD) degree of purinoceptor desensitization, the latter allowing further receptor characterization. Calcium imaging experiments performed at 37°C vs. room temperature showed further reduction of desensitization. Agonist-mediated intracellular calcium signals were suppressed in all LDD neurons but only 25% of astrocytes in the absence of extracellular calcium, suggestive of metabotropic P2Y receptor expression in the majority of ARC astrocytes. The highly P2Y1-selective receptor agonists MRS2365 and 2-methylthioadenosine-5'diphosphate (2-MeSADP) activated 75-85% of all 2-MeSATP-responsive ARC astrocytes. Taking into consideration the high potency to dose-dependently stimulate ARC cells of the LDD group, the high affinity for rat P2X(1-3) and low affinity for rat P2X4, P2X7 and P2Y receptor subtypes except P2Y1 and P2Y13, the agonist 2-MeSATP primarily acted upon P2X2 and P2Y1 purinoceptors to trigger intracellular calcium signaling in ARC neurons and astrocytes.
Collapse
Affiliation(s)
- Eric Pollatzek
- Institut für Veterinär-Physiologie und -Biochemie, Justus-Liebig-Universität Giessen, Frankfurter Strasse 100, D-35392 Giessen, Deutschland.
| | - Norma Hitzel
- Institut für Veterinär-Physiologie und -Biochemie, Justus-Liebig-Universität Giessen, Frankfurter Strasse 100, D-35392 Giessen, Deutschland.
| | - Daniela Ott
- Institut für Veterinär-Physiologie und -Biochemie, Justus-Liebig-Universität Giessen, Frankfurter Strasse 100, D-35392 Giessen, Deutschland.
| | - Katrin Raisl
- Institut für Veterinär-Physiologie und -Biochemie, Justus-Liebig-Universität Giessen, Frankfurter Strasse 100, D-35392 Giessen, Deutschland.
| | - Bärbel Reuter
- Institut für Veterinär-Physiologie und -Biochemie, Justus-Liebig-Universität Giessen, Frankfurter Strasse 100, D-35392 Giessen, Deutschland.
| | - Rüdiger Gerstberger
- Institut für Veterinär-Physiologie und -Biochemie, Justus-Liebig-Universität Giessen, Frankfurter Strasse 100, D-35392 Giessen, Deutschland.
| |
Collapse
|
3
|
Salgado M, Tarifeño-Saldivia E, Ordenes P, Millán C, Yañez MJ, Llanos P, Villagra M, Elizondo-Vega R, Martínez F, Nualart F, Uribe E, de los Angeles García-Robles M. Dynamic localization of glucokinase and its regulatory protein in hypothalamic tanycytes. PLoS One 2014; 9:e94035. [PMID: 24739934 PMCID: PMC3989220 DOI: 10.1371/journal.pone.0094035] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 03/11/2014] [Indexed: 11/28/2022] Open
Abstract
Glucokinase (GK), the hexokinase involved in glucose sensing in pancreatic β cells, is also expressed in hypothalamic tanycytes, which cover the ventricular walls of the basal hypothalamus and are implicated in an indirect control of neuronal activity by glucose. Previously, we demonstrated that GK was preferentially localized in tanycyte nuclei in euglycemic rats, which has been reported in hepatocytes and is suggestive of the presence of the GK regulatory protein, GKRP. In the present study, GK intracellular localization in hypothalamic and hepatic tissues of the same rats under several glycemic conditions was compared using confocal microscopy and Western blot analysis. In the hypothalamus, increased GK nuclear localization was observed in hyperglycemic conditions; however, it was primarily localized in the cytoplasm in hepatic tissue under the same conditions. Both GK and GKRP were next cloned from primary cultures of tanycytes. Expression of GK by Escherichia coli revealed a functional cooperative protein with a S0.5 of 10 mM. GKRP, expressed in Saccharomyces cerevisiae, inhibited GK activity in vitro with a Ki 0.2 µM. We also demonstrated increased nuclear reactivity of both GK and GKRP in response to high glucose concentrations in tanycyte cultures. These data were confirmed using Western blot analysis of nuclear extracts. Results indicate that GK undergoes short-term regulation by nuclear compartmentalization. Thus, in tanycytes, GK can act as a molecular switch to arrest cellular responses to increased glucose.
Collapse
Affiliation(s)
- Magdiel Salgado
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Estefanía Tarifeño-Saldivia
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Patricio Ordenes
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Carola Millán
- Facultad de Artes Liberales, Universidad Adolfo Ibañez, Viña del Mar, Chile
| | - María José Yañez
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Paula Llanos
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Marcos Villagra
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Roberto Elizondo-Vega
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Fernando Martínez
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Francisco Nualart
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Elena Uribe
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | | |
Collapse
|
4
|
Zhang L, Wang H, Li Q, Zhan R, Yu SY. Purinergic modulation of hypoxic regulation via the rostral ventral lateral medulla in rats. Respir Physiol Neurobiol 2012; 184:48-54. [PMID: 22902254 DOI: 10.1016/j.resp.2012.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Revised: 07/10/2012] [Accepted: 08/02/2012] [Indexed: 11/26/2022]
Abstract
Anatomical studies have demonstrated the existence of purinergic receptors in the rostral ventral lateral medulla (RVLM), a site containing some respiratory-related neurons. However, little is known about the functional role of these receptors in acute hypoxia. In the present study, we found that both the amplitude and frequency of phrenic nerve discharges were increased during hypoxia. Microinjection of adenosine 5'-triphosphate (ATP) (0.2M, 10-70nl) into the RVLM increased the hypoxic respiratory response and showed significant dose-dependency. An identical microinjection protocol of pyridoxalphosphate-6-azophenyl-2',4'-disulfonate (PPADS), a broad-spectrum P2 receptor antagonist, into the RVLM markedly attenuated the respiratory effects evoked by hypoxic ventilation. Immunohistochemical analysis showed that the P2X(2) receptor was present in the postsynaptic membrane of the RVLM neuronal cell bodies and levels of this receptor were significantly increased after acute hypoxic challenge. These results suggest that RVLM purinergic P2 receptors may contribute to respiratory control by regulating the acute hypoxic ventilatory response.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Physiology, Shandong University, School of Medicine, Wenhuaxilu Road, Jinan, Shandong Province, 250012, PR China
| | | | | | | | | |
Collapse
|
5
|
Orellana JA, Sáez PJ, Cortés-Campos C, Elizondo RJ, Shoji KF, Contreras-Duarte S, Figueroa V, Velarde V, Jiang JX, Nualart F, Sáez JC, García MA. Glucose increases intracellular free Ca(2+) in tanycytes via ATP released through connexin 43 hemichannels. Glia 2011; 60:53-68. [PMID: 21987367 DOI: 10.1002/glia.21246] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 08/26/2011] [Accepted: 08/31/2011] [Indexed: 11/10/2022]
Abstract
The ventromedial hypothalamus is involved in regulating feeding and satiety behavior, and its neurons interact with specialized ependymal-glial cells, termed tanycytes. The latter express glucose-sensing proteins, including glucose transporter 2, glucokinase, and ATP-sensitive K(+) (K(ATP) ) channels, suggesting their involvement in hypothalamic glucosensing. Here, the transduction mechanism involved in the glucose-induced rise of intracellular free Ca(2+) concentration ([Ca(2+) ](i) ) in cultured β-tanycytes was examined. Fura-2AM time-lapse fluorescence images revealed that glucose increases the intracellular Ca(2+) signal in a concentration-dependent manner. Glucose transportation, primarily via glucose transporters, and metabolism via anaerobic glycolysis increased connexin 43 (Cx43) hemichannel activity, evaluated by ethidium uptake and whole cell patch clamp recordings, through a K(ATP) channel-dependent pathway. Consequently, ATP export to the extracellular milieu was enhanced, resulting in activation of purinergic P2Y(1) receptors followed by inositol trisphosphate receptor activation and Ca(2+) release from intracellular stores. The present study identifies the mechanism by which glucose increases [Ca(2+) ](i) in tanycytes. It also establishes that Cx43 hemichannels can be rapidly activated under physiological conditions by the sequential activation of glucosensing proteins in normal tanycytes.
Collapse
Affiliation(s)
- Juan A Orellana
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Burnstock G, Krügel U, Abbracchio MP, Illes P. Purinergic signalling: from normal behaviour to pathological brain function. Prog Neurobiol 2011; 95:229-74. [PMID: 21907261 DOI: 10.1016/j.pneurobio.2011.08.006] [Citation(s) in RCA: 318] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 08/12/2011] [Accepted: 08/15/2011] [Indexed: 02/07/2023]
Abstract
Purinergic neurotransmission, involving release of ATP as an efferent neurotransmitter was first proposed in 1972. Later, ATP was recognised as a cotransmitter in peripheral nerves and more recently as a cotransmitter with glutamate, noradrenaline, GABA, acetylcholine and dopamine in the CNS. Both ATP, together with some of its enzymatic breakdown products (ADP and adenosine) and uracil nucleotides are now recognised to act via P2X ion channels and P1 and P2Y G protein-coupled receptors, which are widely expressed in the brain. They mediate both fast signalling in neurotransmission and neuromodulation and long-term (trophic) signalling in cell proliferation, differentiation and death. Purinergic signalling is prominent in neurone-glial cell interactions. In this review we discuss first the evidence implicating purinergic signalling in normal behaviour, including learning and memory, sleep and arousal, locomotor activity and exploration, feeding behaviour and mood and motivation. Then we turn to the involvement of P1 and P2 receptors in pathological brain function; firstly in trauma, ischemia and stroke, then in neurodegenerative diseases, including Alzheimer's, Parkinson's and Huntington's, as well as multiple sclerosis and amyotrophic lateral sclerosis. Finally, the role of purinergic signalling in neuropsychiatric diseases (including schizophrenia), epilepsy, migraine, cognitive impairment and neuropathic pain will be considered.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London NW3 2PF, UK.
| | | | | | | |
Collapse
|
7
|
Colldén G, Mangano C, Meister B. P2X2 purinoreceptor protein in hypothalamic neurons associated with the regulation of food intake. Neuroscience 2010; 171:62-78. [DOI: 10.1016/j.neuroscience.2010.08.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 08/06/2010] [Accepted: 08/18/2010] [Indexed: 10/19/2022]
|
8
|
Jameson HS, Pinol RA, Mendelowitz D. Purinergic P2X receptors facilitate inhibitory GABAergic and glycinergic neurotransmission to cardiac vagal neurons in the nucleus ambiguus. Brain Res 2008; 1224:53-62. [PMID: 18590708 DOI: 10.1016/j.brainres.2008.06.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 06/05/2008] [Accepted: 06/06/2008] [Indexed: 11/15/2022]
Abstract
This study examined whether adenosine 5'-triphosphate (ATP) modulated inhibitory glycinergic and GABAergic neurotransmission to cardiac vagal neurons. Inhibitory activity to cardiac vagal neurons was isolated and examined using whole-cell patch-clamp recordings in an in vitro brain slice preparation in rats. ATP (100 microM) evoked increases in the frequency of glycinergic and GABAergic miniature inhibitory postsynaptic currents (mIPSCs) in cardiac vagal neurons which were blocked by the broad P2 receptor antagonist pyridoxal-phosphate-6-azophenyl-2',4'-disulphonic acid (100 microM). Application of the P2Y agonists uridine triphosphate (15 microM) and adenosine 5'-0-(Z-thiodiphosphate) (60 microM) did not enhance inhibitory neurotransmission to cardiac vagal neurons however, application of the selective P2X; receptor agonist, alpha, beta-methylene ATP (100 microM), increased glycinergic and GABAergic mIPSC neurotransmission to cardiac vagal neurons. The increase in inhibitory neurotransmission evoked by alpha, beta-methylene ATP was abolished by the selective P2X receptor antagonist 2',3'-O-(2,4,6-Trinitrophenyl) adenosine 5'-triphosphate (100 microM) indicating P2X receptors enhance the release of inhibitory neurotransmitters to cardiac neurons. The voltage-gated calcium channel blocker cadmium chloride did not alter the evoked increase in inhibitory mIPSCs. This work demonstrates that P2X receptor activation enhances inhibitory neurotransmission to parasympathetic cardiac vagal neurons and demonstrates an important functional role for ATP mediated purinergic signaling to cardiac vagal neurons.
Collapse
Affiliation(s)
- Heather S Jameson
- Department of Pharmacology and Physiology, The George Washington University, 2300 Eye Street NW, Washington, DC 20037, USA
| | | | | |
Collapse
|
9
|
Eto K, Arimura Y, Nabekura J, Noda M, Ishibashi H. The effect of zinc on glycinergic inhibitory postsynaptic currents in rat spinal dorsal horn neurons. Brain Res 2007; 1161:11-20. [PMID: 17604007 DOI: 10.1016/j.brainres.2007.05.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 05/06/2007] [Accepted: 05/22/2007] [Indexed: 10/23/2022]
Abstract
The effect of zinc on glycinergic spontaneous inhibitory postsynaptic currents (IPSCs) was investigated using the whole-cell patch-clamp technique in mechanically dissociated rat spinal dorsal horn neurons. Zinc at a concentration of 10 microM reversibly increased the spontaneous IPSC frequency without changing the current amplitudes, suggesting that zinc increases spontaneous glycine release from presynaptic nerve terminals. At a low concentration of 1 microM, on the other hand, zinc potentiated the amplitude of spontaneous IPSCs but had no effect on the frequency. At a high concentration of 100 microM, zinc increased the spontaneous IPSC frequency while it inhibited the IPSC amplitude. The current evoked by exogenously applied glycine was potentiated and inhibited by low and high concentrations of zinc, respectively. The increase in spontaneous IPSC frequency by 10 microM zinc was inhibited by blocking the voltage-dependent Ca(2+) channels in the presence of both omega-conotoxin-MVIIC and nifedipine. The facilitatory effect of zinc on spontaneous IPSC frequency was also inhibited in the presence of tetrodotoxin. In the slice preparation, 30 microM zinc potentiated the evoked IPSC amplitude and decreased the paired pulse ratio. These results suggest that, in addition to an action on the postsynaptic glycine receptors, zinc may depolarize the presynaptic nerve terminals, leading to an activation of voltage-dependent Na(+) and Ca(2+) channels that in turn increases glycine release. Since dorsal horn neurons receive nociceptive inputs, zinc may play an important role in the regulation of sensory transmission.
Collapse
Affiliation(s)
- Kei Eto
- Department of Bio-signaling Physiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
10
|
Abstract
This review is focused on purinergic neurotransmission, i.e., ATP released from nerves as a transmitter or cotransmitter to act as an extracellular signaling molecule on both pre- and postjunctional membranes at neuroeffector junctions and synapses, as well as acting as a trophic factor during development and regeneration. Emphasis is placed on the physiology and pathophysiology of ATP, but extracellular roles of its breakdown product, adenosine, are also considered because of their intimate interactions. The early history of the involvement of ATP in autonomic and skeletal neuromuscular transmission and in activities in the central nervous system and ganglia is reviewed. Brief background information is given about the identification of receptor subtypes for purines and pyrimidines and about ATP storage, release, and ectoenzymatic breakdown. Evidence that ATP is a cotransmitter in most, if not all, peripheral and central neurons is presented, as well as full accounts of neurotransmission and neuromodulation in autonomic and sensory ganglia and in the brain and spinal cord. There is coverage of neuron-glia interactions and of purinergic neuroeffector transmission to nonmuscular cells. To establish the primitive and widespread nature of purinergic neurotransmission, both the ontogeny and phylogeny of purinergic signaling are considered. Finally, the pathophysiology of purinergic neurotransmission in both peripheral and central nervous systems is reviewed, and speculations are made about future developments.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neurscience Centre, Royal Free and University College Medical School, London, UK.
| |
Collapse
|
11
|
Xiang Z, He C, Burnstock G. P2X5 receptors are expressed on neurons containing arginine vasopressin and nitric oxide synthase in the rat hypothalamus. Brain Res 2006; 1099:56-63. [PMID: 16765918 DOI: 10.1016/j.brainres.2006.04.126] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Revised: 04/26/2006] [Accepted: 04/28/2006] [Indexed: 10/24/2022]
Abstract
In this study, the P2X(5) receptor was found to be distributed widely in the rat hypothalamus using single and double labeling immunofluorescence and reverse transcriptase-polymerase chain reaction (RT-PCR) methods. The regions of the hypothalamus with the highest expression of P2X(5) receptors in neurons are the paraventricular and supraoptic nuclei. The intensity of P2X(5) immunofluorescence in neurons of the ventromedial nucleus was low. 70-90% of the neurons in the paraventricular nucleus and 46-58% of neurons in the supraoptic and accessory neurosecretory nuclei show colocalization of P2X(5) receptors and arginine vasopressin (AVP). None of the neurons expressing P2X(5) receptors shows colocalization with AVP in the suprachiasmatic and ventromedial nuclei. 87-90% of the neurons in the lateral and ventral paraventricular nucleus and 42-56% of the neurons in the accessory neurosecretory, supraoptic and ventromedial nuclei show colocalization of P2X(5) receptors with neuronal nitric oxide synthase (nNOS). None of the neurons expressing P2X(5) receptors in the suprachiasmatic nucleus shows colocalization with nNOS. These findings provide a morphological basis for possible functional interactions between the purinergic and nitrergic or vasopressinergic neurotransmitter systems.
Collapse
Affiliation(s)
- Zhenghua Xiang
- Department of Biochemistry and Neurobiolgy, Second Military Medical University, Shanghai, PR China
| | | | | |
Collapse
|
12
|
Excitatory effect of ATP on rat area postrema neurons. Purinergic Signal 2006; 2:545-57. [PMID: 18404492 PMCID: PMC2096647 DOI: 10.1007/s11302-006-9004-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Accepted: 01/26/2006] [Indexed: 02/03/2023] Open
Abstract
ATP-induced inward currents and increases in the cytosolic Ca(2+) concentration ([Ca](in)) were investigated in neurons acutely dissociated from rat area postrema using whole-cell patch-clamp recordings and fura-2 microfluorometry, respectively. The ATP-induced current (I (ATP)) and [Ca](in) increases were mimicked by 2-methylthio-ATP and ATP-gammaS, and were inhibited by P2X receptor (P2XR) antagonists. The current-voltage relationship of the I (ATP) exhibited a strong inward rectification, and the amplitude of the I (ATP) was concentration-dependent. The I (ATP) was markedly reduced in the absence of external Na(+), and the addition of Ca(2+) to Na(+)-free saline increased the I (ATP). ATP did not increase [Ca](in) in the absence of external Ca(2+), and Ca(2+) channel antagonists partially inhibited the ATP-induced [Ca](in) increase, indicating that ATP increases [Ca](in) by Ca(2+) influx through both P2XR channels and voltage-dependent Ca(2+) channels. There was a negative interaction between P2XR- and nicotinic ACh receptor (nAChR)-channels, which depended on the amplitude and direction of current flow through either channel. Current occlusion was observed at V (h)s between -70 and -10 mV when the I (ATP) and ACh-induced current (I (ACh)) were inward, but no occlusion was observed when these currents were outward at a V (h) of +40 mV. The I (ATP) was not inhibited by co-application of ACh when the I (ACh) was markedly decreased either by removal of permeant cations, by setting V (h) close to the equilibrium potential of I (ACh), or by the addition of d-tubocurarine or serotonin. These results suggest that the inhibitory interaction is attributable to inward current flow of cations through the activated P2XR- and nAChR-channels.
Collapse
|
13
|
Seidel B, Bigl M, Franke H, Kittner H, Kiess W, Illes P, Krügel U. Expression of purinergic receptors in the hypothalamus of the rat is modified by reduced food availability. Brain Res 2006; 1089:143-52. [PMID: 16643864 DOI: 10.1016/j.brainres.2006.03.038] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 03/09/2006] [Accepted: 03/13/2006] [Indexed: 11/24/2022]
Abstract
ATP-sensitive P2 receptors are suggested to play an important role in the cerebral signal transduction. We examined the expression of the P2Y1 receptor and the possibly downstream-related neuronal nitric oxide synthase (nNOS) in the hypothalamus of rats food-restricted for 3 or 10 days and rats refed after a restriction of 10 days. The restriction caused a reduction of the body weight and plasma triacylglyceride, an increase of non-esterified fatty acid levels correlating with a decrease of leptin levels and an enhancement of plasma corticosterone. All changes returned to basal levels after refeeding. The restriction induced an enhanced intake within 30 min after food presentation and a reduction in the latency. Interestingly, the latter was not abolished by refeeding. The daily food intake induced by refeeding was enhanced at the first day only. The expression of hypothalamic P2Y1 receptor/nNOS mRNA and protein and of leptin receptor mRNA were enhanced after restricted feeding. These changes were abolished after 3 days of refeeding. Immunofluorescence studies indicated that P2Y1 receptor and nNOS immunoreactivities are present in the dorsomedial, ventromedial and lateral hypothalamus and in the nucleus arcuatus. P2Y1 receptor-positive cells were partially also nNOS-positive. The P2Y1 receptor labeling was restricted to cell bodies of obviously non-glial cells, whereas nNOS labeling could be detected also at cellular processes of these cells. In the nucleus arcuatus, astrocytes were identified, expressing P2Y1 receptors at cell bodies and cellular processes. The data suggest that restricted feeding may enhance the sensitivity of the hypothalamus to extracellular ADP/ATP by regulation of the expression of P2Y1 receptors and possibly of their signal transduction pathway via nitric oxide production.
Collapse
Affiliation(s)
- Bertolt Seidel
- University Hospital for Children and Adolescents, Medical Faculty, University of Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
14
|
Wollmann G, Acuna-Goycolea C, van den Pol AN. Direct Excitation of Hypocretin/Orexin Cells by Extracellular ATP at P2X Receptors. J Neurophysiol 2005; 94:2195-206. [PMID: 15958604 DOI: 10.1152/jn.00035.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypocretin/orexin (hcrt) neurons play an important role in hypothalamic arousal and energy homeostasis. ATP may be released by neurons or glia or by pathological conditions. Here we studied the effect of extracellular ATP on hypocretin cells using whole cell patch-clamp recording in hypothalamic slices of transgenic mice expressing green fluorescent protein (GFP) exclusively in hcrt-producing cells. Local application of ATP induced a dose-dependent increase in spike frequency. In the presence of TTX, ATP (100 μM) depolarized the cells by 7.8 ± 1.2 mV. In voltage clamp under blockade of synaptic activity with the GABAA receptor antagonist bicuculline, and ionotropic glutamate receptor antagonists dl-2-amino-5-phosphonopentanoic acid (AP-5) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), ATP (100 μM) evoked an 18 pA inward current. The inward current was blocked by extracellular choline substitution for Na+, had a reversal potential of −27 mV, and was not affected by nominally Ca2+-free external buffer, suggesting that ATP activated a nonselective cation current. All excitatory effects of ATP showed rapid attenuation. ATP-induced excitatory actions were mimicked by nonhydrolyzable ATP-γ-S but not by α,β-MeATP and inhibited by the purinoceptor antagonists suramin and pyridoxal phosphate-6-azo(benzene-2,4-disulfonic acid) tetrasodium salt (PPADS). The current was potentiated by a decrease in bath pH, suggesting P2X2 subunit involvement. Frequency and amplitude of spontaneous and miniature synaptic events were not altered by ATP. Suramin, but not PPADS, caused a small suppression of evoked excitatory synaptic potentials. Together, these results show a depolarizing response to extracellular ATP that would lead to an increased activity of the hypocretin arousal system.
Collapse
Affiliation(s)
- Guido Wollmann
- Department of Neurosurgery, Yale University School of Medicine, 333 Cedar St., New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
15
|
Matsumoto N, Sorimachi M, Akaike N. Excitatory effects of ATP on rat dorsomedial hypothalamic neurons. Brain Res 2004; 1009:234-7. [PMID: 15120603 DOI: 10.1016/j.brainres.2004.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2004] [Indexed: 10/26/2022]
Abstract
We investigated P2X purinoceptors in rat dorsomedial hypothalamic (DMH) neurons using nystatin-perforated patch-clamp recordings and fura-2 microfluorometry. Adenosine triphosphate (ATP) concentration-dependently evoked an inward current and increased cytosolic Ca(2+) ([Ca](i)). The rise in [Ca](i) was dependent on external Ca(2+) and Na(+), was blocked by Ca(2+) channel antagonists and had pharmacological properties consistent with P2X2 receptors. These results suggest that P2X receptor-mediated depolarization activates voltage-gated Ca(2+) channels, resulting in an increase in [Ca](i).
Collapse
Affiliation(s)
- N Matsumoto
- Cellular and System Physiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | |
Collapse
|
16
|
Wakamori M, Sorimachi M. Properties of native P2X receptors in large multipolar neurons dissociated from rat hypothalamic arcuate nucleus. Brain Res 2004; 1005:51-9. [PMID: 15044064 DOI: 10.1016/j.brainres.2004.01.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2004] [Indexed: 11/23/2022]
Abstract
ATP, the ligand of P2X receptors, is a candidate of neurotransmitter or co-transmitter in the peripheral and the central nervous systems. Anatomical studies have revealed the wide distribution of P2X receptors in the brain. So far, P2X-mediated small synaptic responses have been recorded in some brain regions. To determine the physiological significance of postsynaptic ATP receptors in the brain, we have investigated the P2X responses in rat dissociated hypothalamic arcuate neurons by using the patch-clamp technique. ATP evoked inward currents in a concentration-dependent manner (EC(50)=42 microM) at a holding potential of -70 mV. The current-voltage relationship showed a marked inward rectification starting around -10 mV. Although neither 300 microM alphabeta-methylene-ATP nor 300 microM betagamma-methylene-ATP induced any currents, 100 microM ATPgammaS and 100 microM 2-methylthio-ATP evoked inward currents of which amplitude was about 60% of the control currents evoked by 100 microM ATP. PPADS, one of P2 receptor antagonists, inhibited the ATP-evoked currents in a time- and a concentration-dependent manners (IC(50)=19 microM at 2 min). Permeant Ca(2+) inhibited the ATP-evoked currents in the range of millimolars (IC(50)=7 mM); however, Cd(2+) (1-300 microM), a broad cation channel blocker, facilitated the currents with slow off-response. Zn(2+) in the range of 1-100 microM facilitated the currents whereas Zn(2+) at the concentrations over 100 microM inhibited the currents. These observations suggest that functional P2X receptors are expressed in the hypothalamic arcuate nucleus. The most likely subunit combinations of the P2X receptors are P2X(2)-homomultimer and P2X(2)/P2X(6)-heteromultimer.
Collapse
Affiliation(s)
- Minoru Wakamori
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima 890-8520, Japan.
| | | |
Collapse
|
17
|
Burnstock G, Knight GE. Cellular Distribution and Functions of P2 Receptor Subtypes in Different Systems. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 240:31-304. [PMID: 15548415 DOI: 10.1016/s0074-7696(04)40002-3] [Citation(s) in RCA: 592] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review is aimed at providing readers with a comprehensive reference article about the distribution and function of P2 receptors in all the organs, tissues, and cells in the body. Each section provides an account of the early history of purinergic signaling in the organ?cell up to 1994, then summarizes subsequent evidence for the presence of P2X and P2Y receptor subtype mRNA and proteins as well as functional data, all fully referenced. A section is included describing the plasticity of expression of P2 receptors during development and aging as well as in various pathophysiological conditions. Finally, there is some discussion of possible future developments in the purinergic signaling field.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Institute, Royal Free and University College Medical School, London NW3 2PF, United Kingdom
| | | |
Collapse
|
18
|
Vorobjev VS, Sharonova IN, Sergeeva OA, Haas HL. Modulation of ATP-induced currents by zinc in acutely isolated hypothalamic neurons of the rat. Br J Pharmacol 2003; 139:919-26. [PMID: 12839865 PMCID: PMC1573915 DOI: 10.1038/sj.bjp.0705321] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Whole-cell patch-clamp and fast perfusion were used to study the effects of zinc on adenosine 5'-triphosphate (ATP)-induced responses of histaminergic neurons. 2. At 10-30 micro M ATP, Zn(2+) had biphasic effects on ATP responses. Zn(2+) at 3-100 micro M increased the ATP-induced currents, but inhibited them at higher concentrations. 3. At 300 micro M ATP, Zn(2+) predominantly but incompletely inhibited the currents. 4. At 5 and 50 micro M, Zn(2+) shifted to the left the concentration-response curve for ATP-induced currents, without changing the maximal response. At 1 mM, Zn(2+) inhibited ATP-induced currents in a noncompetitive way, reducing the maximal response by 58%. .Zn(2+) increased the decay time of ATP-evoked currents nine fold with an EC(50) of 63 micro M. Upon removal of high concentrations of Zn(2+), there was a rapid increase of the current followed by a slow decline towards the response amplitude seen with ATP alone. The appearance of a tail current is consistent with a Zn(2+)-induced increase of ATP affinity and an inhibition of its efficacy. 6. Thus, Zn(2+) acts as a bidirectional modulator of ATP receptor channels in tuberomamillary neurons, which possess functional P2X(2) receptors. The data are consistent with the existence of two distinct modulatory sites on the P2X receptor, which can be occupied by Zn(2+). 7. Our data suggest that zinc-induced potentiation of ATP-mediated currents is caused by the slowing of ATP dissociation from the receptor, while inhibition of ATP-induced currents is related to the suppression of ATP receptor gating.
Collapse
Affiliation(s)
- Vladimir S Vorobjev
- Department of Neurophysiology, Heinrich-Heine-University, Duesseldorf, Germany
| | - Irina N Sharonova
- Department of Neurophysiology, Heinrich-Heine-University, Duesseldorf, Germany
| | - Olga A Sergeeva
- Department of Neurophysiology, Heinrich-Heine-University, Duesseldorf, Germany
- Author for correspondence:
| | - Helmut L Haas
- Department of Neurophysiology, Heinrich-Heine-University, Duesseldorf, Germany
| |
Collapse
|
19
|
Ishibashi H, Umezu M, Jang IS, Ito Y, Akaike N. Alpha 1-adrenoceptor-activated cation currents in neurones acutely isolated from rat cardiac parasympathetic ganglia. J Physiol 2003; 548:111-20. [PMID: 12598585 PMCID: PMC2342805 DOI: 10.1113/jphysiol.2002.033100] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The noradrenaline (NA)-induced cation current was investigated in neurones freshly isolated from rat cardiac parasympathetic ganglia using the nystatin-perforated patch recording configuration. Under current-clamp conditions, NA depolarized the membrane, eliciting repetitive action potentials. NA evoked an inward cation current under voltage-clamp conditions at a holding potential of -60 mV. The NA-induced current was inhibited by extracellular Ca2+ or Mg2+, with a half-maximal concentration of 13 microM for Ca2+ and 1.2 mM for Mg2+. Cirazoline mimicked the NA response, and prazosin and WB-4101 inhibited the NA-induced current, suggesting the contribution of an alpha1-adrenoceptor. The NA-induced current was inhibited by U73122, a phospholipase C (PLC) inhibitor. The membrane-permeable IP3 receptor blocker xestospongin-C also blocked the NA-induced current. Furthermore, pretreatment with thapsigargin and BAPTA-AM could inhibit the NA response while KN-62, phorbol 12-myristate 13-acetate (PMA) and staurosporine had no effect. These results suggest that NA activates the extracellular Ca2+- and Mg2+-sensitive cation channels via alpha 1-adrenoceptors in neurones freshly isolated from rat cardiac parasympathetic ganglia. This activation mechanism also involves phosphoinositide breakdown, release of Ca2+ from intracellular Ca2+ stores and calmodulin. The cation channels activated by NA may play an important role in neuronal membrane depolarization in rat cardiac ganglia.
Collapse
Affiliation(s)
- Hitoshi Ishibashi
- Cellular and System Physiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | | | | | | | | |
Collapse
|
20
|
|
21
|
Sorimachi M, Yamagami K, Wakomori M. Activation of ATP receptor increases the cytosolic Ca(2+) concentration in ventral tegmental area neurons of rat brain. Brain Res 2002; 935:129-33. [PMID: 12062483 DOI: 10.1016/s0006-8993(02)02473-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
ATP increased the cytosolic Ca(2+) concentration ([Ca](i)) in neurons of ventral tegmental area acutely dissociated from rat brain. The ATP response was dependent on external Ca(2+) and Na(+), and was blocked by voltage-dependent Ca(2+) channel blockers. The results suggest that the ATP-induced depolarization increases Ca(2+) influx via voltage-gated Ca(2+) channels resulting in the increase in [Ca](i).
Collapse
Affiliation(s)
- Masaru Sorimachi
- Department of Physiology, Faculty of Medicine, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan.
| | | | | |
Collapse
|