1
|
Saha J, Bose P, Dhakal S, Ghosh P, Rangachari V. Ganglioside-Enriched Phospholipid Vesicles Induce Cooperative Aβ Oligomerization and Membrane Disruption. Biochemistry 2022; 61:2206-2220. [PMID: 36173882 PMCID: PMC9840156 DOI: 10.1021/acs.biochem.2c00495] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A major hallmark of Alzheimer's disease (AD) is the accumulation of extracellular aggregates of amyloid-β (Aβ). Structural polymorphism observed among Aβ fibrils in AD brains seem to correlate with the clinical subtypes suggesting a link between fibril polymorphism and pathology. Since fibrils emerge from a templated growth of low-molecular-weight oligomers, understanding the factors affecting oligomer generation is important. Membrane lipids are key factors to influence early stages of Aβ aggregation and oligomer generation, which cause membrane disruption. We have previously demonstrated that conformationally discrete Aβ oligomers can be generated by modulating the charge, composition, and chain length of lipids and surfactants. Here, we extend our studies into liposomal models by investigating Aβ oligomerization on large unilamellar vesicles (LUVs) of total brain extracts (TBE), reconstituted lipid rafts (LRs), or 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). Varying the vesicle composition by specifically increasing the amount of GM1 gangliosides as a constituent, we found that only GM1-enriched liposomes induce the formation of toxic, low-molecular-weight oligomers. Furthermore, we found that the aggregation on liposome surface and membrane disruption are highly cooperative and sensitive to membrane surface characteristics. Numerical simulations confirm such a cooperativity and reveal that GM1-enriched liposomes form twice as many pores as those formed in the absence GM1. Overall, this study uncovers mechanisms of cooperativity between oligomerization and membrane disruption under controlled lipid compositional bias, and refocuses the significance of the early stages of Aβ aggregation in polymorphism, propagation, and toxicity in AD.
Collapse
Affiliation(s)
- Jhinuk Saha
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Priyankar Bose
- Department of Computer Science, Virginia Commonwealth University, Richmond, Virginia 23220, United States
| | - Shailendra Dhakal
- Center for Molecular and Cellular Biosciences, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, Virginia 23220, United States
| | - Vijayaraghavan Rangachari
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States; Center for Molecular and Cellular Biosciences, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| |
Collapse
|
2
|
Zhang SX, Cai HY, Ma XW, Yuan L, Zhang J, Wang ZJ, Li YF, Qi JS. GLP-1 analogue CJC-1131 prevents amyloid β protein-induced impirments of spatial memory and synaptic plasticity in rats. Behav Brain Res 2017; 326:237-243. [DOI: 10.1016/j.bbr.2017.03.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 03/04/2017] [Accepted: 03/08/2017] [Indexed: 11/27/2022]
|
3
|
Cheng L, Zhang J, Li XY, Yuan L, Pan YF, Chen XR, Gao TM, Qiao JT, Qi JS. A novel antibody targeting sequence 31-35 in amyloid β protein attenuates Alzheimer's disease-related neuronal damage. Hippocampus 2016; 27:122-133. [PMID: 27784133 DOI: 10.1002/hipo.22676] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 10/21/2016] [Accepted: 10/25/2016] [Indexed: 11/10/2022]
Abstract
Amyloid β protein (Aβ) plays a critical role in pathogenesis of Alzheimer's disease (AD). Our previous studies indicated that the sequence 31-35 in Aβ molecule is an effective active center responsible for Aβ neurotoxicity in vivo and in vitro. In the present study, we prepared a novel antibody specifically targeting the sequence 31-35 of amyloid β protein, and investigated the neuroprotection of the anti-Aβ31-35 antibody against Aβ1-42 -induced impairments in neuronal viability, spatial memory, and hippocampal synaptic plasticity in rats. The results showed that the anti-Aβ31-35 antibody almost equally bound to both Aβ31-35 and Aβ1-42 , and pretreatment with the antibody dose-dependently prevented Aβ1-42 -induced cytotoxicity on cultured primary cortical neurons. In behavioral study, intracerebroventricular (i.c.v.) injection of anti-Aβ31-35 antibody efficiently attenuated Aβ1-42 -induced impairments in spatial learning and memory of rats. In vivo electrophysiological experiments further indicated that Aβ1-42 -induced suppression of hippocampal synaptic plasticity was effectively reversed by the antibody. These results demonstrated that the sequence 31-35 of Aβ may be a new therapeutic target, and the anti-Aβ31-35 antibody could be a novel immunotheraputic approach for the treatment of AD. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Li Cheng
- Department of Physiology, Shanxi Medical University, Taiyuan, 030001, China.,The General Hospital of TISCO Affiliated to Shanxi Medical University, Taiyuan, 030003, China
| | - Jun Zhang
- Department of Physiology, Shanxi Medical University, Taiyuan, 030001, China
| | - Xin-Yi Li
- Department of Neurology, Shanxi Dayi Hospital, Taiyuan, 030032, China
| | - Li Yuan
- Department of Physiology, Shanxi Medical University, Taiyuan, 030001, China
| | - Yan-Fang Pan
- Department of Physiology, Shanxi Medical University, Taiyuan, 030001, China
| | - Xiao-Rong Chen
- Department of Physiology, Shanxi Medical University, Taiyuan, 030001, China
| | - Tian-Ming Gao
- Department of Physiology, Shanxi Medical University, Taiyuan, 030001, China.,Department of Neurobiology, Southern Medical University, Guangzhou, 510515, China
| | - Jian-Tian Qiao
- Department of Physiology, Shanxi Medical University, Taiyuan, 030001, China
| | - Jin-Shun Qi
- Department of Physiology, Shanxi Medical University, Taiyuan, 030001, China
| |
Collapse
|
4
|
Yuan L, Liu XJ, Han WN, Li QS, Wang ZJ, Wu MN, Yang W, Qi JS. [Gly14]-Humanin Protects Against Amyloid β Peptide-Induced Impairment of Spatial Learning and Memory in Rats. Neurosci Bull 2016; 32:374-82. [PMID: 27306655 DOI: 10.1007/s12264-016-0041-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 05/11/2016] [Indexed: 01/03/2023] Open
Abstract
Alzheimer disease (AD), a progressive neurodegenerative disorder, is characterized by cognitive decline and the accumulation of senile plaques in the brain. Amyloid β protein (Aβ) in the plaques is thought to be responsible for the memory loss in AD patients. [Gly14]-humanin (HNG), a derivative of humanin (HN), has much stronger neuroprotective effects than natural HN in vitro. However, clarification of the Aβ active center and the neuroprotective mechanism of HN still need in vivo evidence. The present study first compared the in vivo biological effects of three Aβ fragments (1-42, 31-35, and 35-31) on spatial memory in rats, and investigated the neuroprotective effects and molecular mechanisms of HNG. The results showed that intrahippocampal injection of Aβ1-42 and Aβ31-35 almost equally impaired spatial learning and memory, but the reversed sequence Aβ35-31 did not have any effect; a high dose of Aβ31-35 (20 nmol) produced a more detrimental response than a low dose (2 nmol); Aβ31-35 injection also disrupted gene and protein expression in the hippocampus, with up-regulation of caspase3 and down-regulation of STAT3; pretreatment with HNG not only protected spatial memory but also rescued STAT3 from Aβ-induced disruption; and the neuroprotective effects of HNG were effectively counteracted by genistein, a specific tyrosine kinase inhibitor. These results clearly show that sequence 31-35 in Aβ is the shortest active center responsible for the neurotoxicity of Aβ from molecule to behavior; and HNG protects spatial learning and memory in rats against Aβ-induced insults; and probably involves the activation of tyrosine kinases and subsequent beneficial modulation of STAT3 and caspase3.
Collapse
Affiliation(s)
- Li Yuan
- Department of Physiology, Shanxi Medical University, Taiyuan, 030001, China
| | - Xiao-Jie Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Wei-Na Han
- Department of Physiology, Shaoyang Medical College, Shaoyang, 422000, China
| | - Qing-Shan Li
- Department of Physiology, Shanxi Medical University, Taiyuan, 030001, China
| | - Zhao-Jun Wang
- Department of Physiology, Shanxi Medical University, Taiyuan, 030001, China
| | - Mei-Na Wu
- Department of Physiology, Shanxi Medical University, Taiyuan, 030001, China
| | - Wei Yang
- Department of Physiology, Shanxi Medical University, Taiyuan, 030001, China
| | - Jin-Shun Qi
- Department of Physiology, Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
5
|
Qi L, Ke L, Liu X, Liao L, Ke S, Liu X, Wang Y, Lin X, Zhou Y, Wu L, Chen Z, Liu L. Subcutaneous administration of liraglutide ameliorates learning and memory impairment by modulating tau hyperphosphorylation via the glycogen synthase kinase-3β pathway in an amyloid β protein induced alzheimer disease mouse model. Eur J Pharmacol 2016; 783:23-32. [PMID: 27131827 DOI: 10.1016/j.ejphar.2016.04.052] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/18/2016] [Accepted: 04/26/2016] [Indexed: 12/21/2022]
Abstract
Type 2 diabetes mellitus is a risk factor for Alzheimer's disease (AD). The glucagon-like peptide-1 analog liraglutide, a novel long-lasting incretin hormone, has been used to treat type 2 diabetes mellitus. In addition, liraglutide has been shown to be neurotrophic and neuroprotective. Here, we investigated the effects of liraglutide on amyloid β protein (Aβ)-induced AD in mice and explored its mechanism of action. The results showed that subcutaneous administration of liraglutide (25nmol/day), once daily for 8 weeks, prevented memory impairments in the Y Maze and Morris Water Maze following Aβ1-42 intracerebroventricular injection, and alleviated the ultra-structural changes of pyramidal neurons and chemical synapses in the hippocampal CA1 region. Furthermore, liraglutide reduced Aβ1-42-induced tau phosphorylation via the protein kinase B and glycogen synthase kinase-3β pathways. Thus liraglutide may alleviate cognitive impairment in AD by at least decreasing the phosphorylation of tau.
Collapse
Affiliation(s)
- Liqin Qi
- Department of Endocrinology, Union Hospital, Fujian Institute of Endocrinology, The Union Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Linfang Ke
- Department of Endocrinology, Union Hospital, Fujian Institute of Endocrinology, The Union Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Xiaohong Liu
- Department of Endocrinology, Union Hospital, Fujian Institute of Endocrinology, The Union Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Lianming Liao
- Department of Endocrinology, Union Hospital, Fujian Institute of Endocrinology, The Union Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Sujie Ke
- Department of Endocrinology, Union Hospital, Fujian Institute of Endocrinology, The Union Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Xiaoying Liu
- Department of Endocrinology, Union Hospital, Fujian Institute of Endocrinology, The Union Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Yanping Wang
- Department of Endocrinology, Union Hospital, Fujian Institute of Endocrinology, The Union Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Xiaowei Lin
- Department of Endocrinology, Union Hospital, Fujian Institute of Endocrinology, The Union Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Yu Zhou
- Department of Endocrinology, Union Hospital, Fujian Institute of Endocrinology, The Union Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Lijuan Wu
- Department of Endocrinology, Union Hospital, Fujian Institute of Endocrinology, The Union Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Zhou Chen
- Department of Pharmacology, College of Pharmacy, Fujian Medical University, Fuzhou, Fujian, People's Republic of China.
| | - Libin Liu
- Department of Endocrinology, Union Hospital, Fujian Institute of Endocrinology, The Union Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, People's Republic of China.
| |
Collapse
|
6
|
Quan QK, Li X, Yuan HF, Wang Y, Liu WL. Ginsenoside Rg1 inhibits high-voltage-activated calcium channel currents in hippocampal neurons of beta-amyloid peptide-exposed rat brain slices. Chin J Integr Med 2016:10.1007/s11655-015-2301-4. [PMID: 26779710 DOI: 10.1007/s11655-015-2301-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To examine whether ginsenoside Rg1 (Rg1) inhibits the high-voltage-activated calcium currents (ICa,HVA) via mitogen-activated protein kinase (MAPK) in hippocampal neurons in rat brain slices exposed to beta-amyloid peptide 25-35 (Aβ25-35). METHODS An experimental Alzheimer disease (AD) model was prepared by exposure of rat brain slices to Aβ25-35 (10 µmol/L). After treatment with Rg1 (20 µmol/L), the ICa,HVA elicited in hippocampal neurons in these rat brain slices upon depolarization from-40 to 40 mV for 200 ms was recorded by a whole-cell patch clamp to analyze the changes in the peak current density, I-V curve, activation-V curve, and inactivation-V curve. RESULTS Exposure of rat brain slices to Aβ led to a significant increase in ICa,HVA, enhancement of the voltage sensitivity of channel activation, and reduction of the voltage sensitivity of channel inactivation in neurons in the hippocampus of rat brain slices. Rg1 treatment significantly inhibited these changes. These effects of Rg1 could be effectively inhibited by the MAPK inhibitor PD98059. CONCLUSION Rg1 can inhibit Ica,HVA via MAPK in hippocampal neurons in Aβ-exposed rat brain slices.
Collapse
Affiliation(s)
- Qian-Kun Quan
- Department of Geriatrics, The Second Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, 710004, China
| | - Xi Li
- Department of Geriatrics, The Second Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, 710004, China.
| | - Hai-Feng Yuan
- Department of Encephalopathy, The Second Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, 710004, China
| | - Yi Wang
- Department of Electronic Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Wen-Li Liu
- The First Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, 710061, China
| |
Collapse
|
7
|
Danilova YV, Shagimardanova EI, Margulis AB, Toymentseva AA, Balaban NP, Rudakova NL, Rizvanov AA, Sharipova MR, Palotás A. Bacterial enzymes effectively digest Alzheimer's β-amyloid peptide. Brain Res Bull 2014; 108:113-7. [PMID: 25262575 DOI: 10.1016/j.brainresbull.2014.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 08/12/2014] [Accepted: 08/28/2014] [Indexed: 10/24/2022]
Abstract
Aggregated β-amyloid peptides play key roles in the development of Alzheimer's disease, and recent evidence suggests that microbial particles, among others, can facilitate their polymerization. Bacterial enzymes, however, have been proved to be beneficial in degrading pathological fibrillar structures in clinical settings, such as strepto-kinases in resolving blood-clots. The purpose of this study was to investigate the ability of bacterial substances to effectively hydrolyze β-amyloid peptides. Degrading products of several proteinases from Bacillus pumilus were evaluated using MALDI-TOF mass-spectrometry, and their toxicity was assessed in vitro using cell-culture assays and morphological studies. These enzymes have proved to be non-toxic and were demonstrated to cleave through the functional domains of β-amyloid peptide. By yielding inactive fragments, proteinases of Bacillus pumilus may be used as candidate anti-amyloid agents.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - András Palotás
- Kazan Federal University, Kazan, Russia; Asklepios-Med (Private Medical Practice and Research Center), Szeged, Hungary.
| |
Collapse
|
8
|
Zhang Y, Shi ZG, Wang ZH, Li JG, Chen JY, Zhang C. Effects of amyloid β-peptide fragment 31-35 on the BK channel-mediated K⁺ current and intracellular free Ca²⁺ concentration of hippocampal CA1 neurons. Neurosci Lett 2014; 568:72-6. [PMID: 24680749 DOI: 10.1016/j.neulet.2014.03.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 03/12/2014] [Accepted: 03/19/2014] [Indexed: 12/23/2022]
Abstract
The present study characterizes the effects of Aβ31-35, a short active fragment of amyloid β-peptide (Aβ), upon the BK channel-mediated K⁺ current and intracellular free Ca²⁺ concentration ([Ca²⁺]i) of freshly dissociated pyramidal cells from rat CA1 hippocampus by using whole-cell patch-clamp recording and single cell Ca²⁺ imaging techniques. The results show that: (1) in the presence of voltage- and ATP-gated K⁺ channel blockers application of 5.0 μM Aβ31-35 significantly diminished transient outward K⁺ current amplitudes at clamped voltages between 0 and 45mV; (2) under the same conditions [Ca²⁺]i was minimally affected by 5.0 μM but significantly increased by 12.5 μM and 25 μM Aβ31-35; and (3) when 25 μM of a larger fragment of the amyloid β-peptide, Aβ25-35, was applied, the results were similar to those obtained with the same concentration of Aβ31-35. These results indicate that Aβ31-35 is likely to be the shortest active fragment of the full Aβ sequence, and can be as effectively as the full-length Aβ peptide in suppressing BK-channel mediated K⁺ currents and significantly elevating [Ca²⁺]i in hippocampal CA1 neurons.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Neurobiology, Shanxi Key Laboratory of Cell Physiology, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China.
| | - Zhi-Gang Shi
- Department of Neurobiology, Shanxi Key Laboratory of Cell Physiology, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Zhi-Hua Wang
- Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Jian-Guo Li
- Department of Neurobiology, Shanxi Key Laboratory of Cell Physiology, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Jin-Yuan Chen
- Functional Laboratory, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Ce Zhang
- Department of Neurobiology, Shanxi Key Laboratory of Cell Physiology, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China.
| |
Collapse
|
9
|
Lixisenatide rescues spatial memory and synaptic plasticity from amyloid β protein-induced impairments in rats. Neuroscience 2014; 277:6-13. [PMID: 24583037 DOI: 10.1016/j.neuroscience.2014.02.022] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 02/15/2014] [Accepted: 02/18/2014] [Indexed: 01/17/2023]
Abstract
Alzheimer's disease (AD) is a progressive and degenerative disorder accompanied by cognitive impairment, but effective strategies against AD are currently not available. Interestingly, glucagon-like peptide-1 (GLP-1) used in type 2 diabetes mellitus (T2DM) has shown neuroprotective effects in preclinical studies of AD. Lixisenatide, an effective GLP-1 receptor (GLP-1R) agonist with much longer half life than GLP-1, has been licensed in the EU as a treatment for T2DM. However, the neuroprotective effects of lixisenatide in the brain remain to be clarified. In the present study, we report for the first time the effects of lixisenatide on the amyloid β (Aβ) protein-induced impairments in spatial learning and memory of rats, and investigated its electrophysiological and molecular mechanisms. We found that: (1) bilateral intrahippocampal injection of Aβ25-35 resulted in a significant decline in spatial learning and memory of rats, as well as a suppression of in vivo hippocampal long-term potentiation (LTP); (2) lixisenatide treatment effectively prevented the Aβ25-35-induced impairments; (3) lixisenatide inhibited the Aβ25-35 injection-induced activation of glycogen synthase kinase 3β (GSK3β), with a significant increase in the phosphorylation of ser9 and a significant decrease in the phosphorylation of Y216. These results indicate that lixisenatide, by affecting the PI3K-Akt-GSK3β pathway, can prevent Aβ-related impairments in synaptic plasticity and spatial memory of rats, suggesting that lixisenatide may be a novel and effective treatment for AD.
Collapse
|
10
|
Wang ZJ, Han WN, Yang GZ, Yuan L, Liu XJ, Li QS, Qi JS. The neuroprotection of Rattin against amyloid β peptide in spatial memory and synaptic plasticity of rats. Hippocampus 2013; 24:44-53. [PMID: 23996574 DOI: 10.1002/hipo.22202] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 08/21/2013] [Accepted: 08/22/2013] [Indexed: 12/22/2022]
Abstract
Rattin, a specific derivative of humanin in rats, shares the ability with HN to protect neurons against amyloid β (Aβ) peptide-induced cellular toxicity. However, it is still unclear whether Rattin can protect against Aβ-induced deficits in cognition and synaptic plasticity in rats. In the present study, we observed the effects of Rattin and Aβ31-35 on the spatial reference memory and in vivo hippocampal Long-term potentiation of rats by using Morris water maze test and hippocampal field potential recording. Furthermore, the probable molecular mechanism underlying the neuroprotective roles of Rattin was investigated. We showed that intra-hippocampal injection of Rattin effectively prevented the Aβ31-35-induced spatial memory deficits and hippocampal LTP suppression in rats; the Aβ31-35-induced activation of Caspase-3 and inhibition of STAT3 in the hippocampus were also prevented by Rattin treatment. These findings indicate that Rattin treatment can protect spatial memory and synaptic plasticity of rats against Aβ31-35-induced impairments, and the underlying protective mechanism of Rattin may be involved in STAT3 and Caspases-3 pathways. Therefore, application of Rattin or activation of its signaling pathways in the brain might be beneficial to the prevention of Aβ-related cognitive deficits.
Collapse
Affiliation(s)
- Zhao-Jun Wang
- Department of Neurobiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
11
|
Liu XJ, Yuan L, Yang D, Han WN, Li QS, Yang W, Liu QS, Qi JS. Melatonin protects against amyloid-β-induced impairments of hippocampal LTP and spatial learning in rats. Synapse 2013; 67:626-36. [PMID: 23620224 DOI: 10.1002/syn.21677] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 04/09/2013] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD), the most prevalent neurodegenerative disease in the elderly, leads to progressive loss of memory and cognitive deficits. Amyloid-β protein (Aβ) in the brain is thought to be the main cause of memory loss in AD. Melatonin, an indole hormone secreted by the pineal gland, has been reported to produce neuroprotective effects. We examined whether melatonin could protect Aβ-induced impairments of hippocampal synaptic plasticity, neuronal cooperative activity, and learning and memory. Rats received bilateral intrahippocampal injection of Aβ1-42 or Aβ31-35 followed by intraperitoneal application of melatonin for 10 days, and the effects of chronic melatonin treatment on in vivo hippocampal long-term potentiation (LTP) and theta rhythm and Morris water maze performance were examined. We showed that intrahippocampal injection of Aβ1-42 or Aβ31-35 impaired hippocampal LTP in vivo, while chronic melatonin treatment reversed Aβ1-42- or Aβ31-35-induced impairments in LTP induction. Intrahippocampal injection of Aβ31-35 impaired spatial learning and decreased the power of theta rhythm in the CA1 region induced by tail pinch, and these synaptic, circuit, and learning deficits were rescued by chronic melatonin treatment. These results provide evidence for the neuroprotective action of melatonin against Aβ insults and suggest a strategy for alleviating cognition deficits of AD.
Collapse
Affiliation(s)
- Xiao-Jie Liu
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Wang XH, Yang W, Hölscher C, Wang ZJ, Cai HY, Li QS, Qi JS. Val8-GLP-1 remodels synaptic activity and intracellular calcium homeostasis impaired by amyloid β peptide in rats. J Neurosci Res 2013; 91:568-77. [DOI: 10.1002/jnr.23181] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Revised: 10/12/2012] [Accepted: 10/30/2012] [Indexed: 11/11/2022]
|
13
|
He YX, Wu MN, Zhang H, Qi JS. Amyloid β-protein suppressed nicotinic acetylcholine receptor-mediated currents in acutely isolated rat hippocampal CA1 pyramidal neurons. Synapse 2012; 67:11-20. [PMID: 23015319 DOI: 10.1002/syn.21611] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 09/14/2012] [Indexed: 11/10/2022]
Abstract
Amyloid β protein (Aβ) is responsible for the deficits of learning and memory in Alzheimer's disease (AD). The high affinity between Aβ and nicotinic acetylcholine receptors (nAChRs) suggests that the impairment of cognitive function in AD might be involved in the Aβ-induced damage of nAChRs. This study investigated the effects of Aβ fragments on nAChR-mediated membrane currents in acutely isolated rat hippocampal pyramidal neurons by using whole-cell patch clamp technique. The results showed that: (1) nonspecific nAChR agonist nicotine, selective α7 nAChR agonist choline, and α4β2 nAChR agonist epibatidine all effectively evoked inward currents in CA1 neurons at normal resting membrane potential, with different desensitization characteristics; (2) acute application of different concentrations (pM-μM) of Aβ25-35, Aβ31-35, or Aβ35-31 alone did not trigger any membrane current, but pretreatment with 1 μM Aβ25-35 and Aβ31-35 similarly and reversibly suppressed the nicotine-induced currents; (3) further, choline- and epibatidine-induced currents were also reversibly suppressed by the Aβ pretreatment, but more prominent for the choline-induced response. These results demonstrate that the functional activity of both α7 and α4β2 nAChRs in the membrane of acutely isolated hippocampal neurons was significantly downregulated by Aβ treatment, suggesting that nAChRs, especially α7 nAChRs, in the brain may be the important biological targets of neurotoxic Aβ in AD. In addition, the similar suppression of nAChR currents by Aβ25-35 and Aβ31-35 suggests that the sequence 31-35 in Aβ molecule may be a shorter active center responsible for the neurotoxicity of Aβ in AD.
Collapse
Affiliation(s)
- Ye-Xin He
- Department of Radiology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China
| | | | | | | |
Collapse
|
14
|
Deletion of microsomal prostaglandin E synthase-1 protects neuronal cells from cytotoxic effects of β-amyloid peptide fragment 31–35. Biochem Biophys Res Commun 2012; 424:409-13. [DOI: 10.1016/j.bbrc.2012.06.121] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 06/24/2012] [Indexed: 02/04/2023]
|
15
|
Han WN, Hölscher C, Yuan L, Yang W, Wang XH, Wu MN, Qi JS. Liraglutide protects against amyloid-β protein-induced impairment of spatial learning and memory in rats. Neurobiol Aging 2012; 34:576-88. [PMID: 22592020 DOI: 10.1016/j.neurobiolaging.2012.04.009] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 03/24/2012] [Accepted: 04/17/2012] [Indexed: 12/24/2022]
Abstract
Type 2 diabetes mellitus is a risk factor of Alzheimer's disease (AD), most likely linked to an impairment of insulin signaling in the brain. Liraglutide, a novel long-lasting glucagon-like peptide 1 (GLP-1) analog, facilitates insulin signaling and shows neuroprotective properties. In the present study, we analyzed the effects of liraglutide on the impairment of learning and memory formation induced by amyloid-β protein (Aβ), and the probable underlying electrophysiological and molecular mechanisms. We found that (1) bilateral intrahippocampal injection of Aβ(25-35) resulted in a significant decline of spatial learning and memory of rats in water maze tests, together with a serious depression of in vivo hippocampal late-phase long-term potentiation (L-LTP) in CA1 region of rats; (2) pretreatment with liraglutide effectively and dose-dependently protected against the Aβ(25-35)-induced impairment of spatial memory and deficit of L-LTP; (3) liraglutide injection also activated cAMP signal pathway in the brain, with a nearly doubled increase in the cAMP contents compared with control. These results strongly suggest that upregulation of GLP-1 signaling in the brain, such as application of liraglutide, may be a novel and promising strategy to ameliorate the learning and memory impairment seen in AD.
Collapse
Affiliation(s)
- Wei-Na Han
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, PR China
| | | | | | | | | | | | | |
Collapse
|
16
|
Zhang YJ, Shi JM, Bai CJ, Wang H, Li HY, Wu Y, Ji SR. Intra-membrane oligomerization and extra-membrane oligomerization of amyloid-β peptide are competing processes as a result of distinct patterns of motif interplay. J Biol Chem 2011; 287:748-756. [PMID: 22105077 DOI: 10.1074/jbc.m111.281295] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Soluble oligomers of amyloid-β peptide (Aβ) are emerging as the primary neurotoxic species in Alzheimer disease, however, whether the membrane is among their direct targets that mediate the downstream adverse effects remains elusive. Herein, we show that multiple soluble oligomeric Aβ preparations, including Aβ-derived diffusible ligand, protofibril, and zinc-induced Aβ oligomer, exhibit much weaker capability to insert into the membrane than Aβ monomer. Aβ monomers prefer incorporating into membrane rather than oligomerizing in solution, and such preference can be reversed by the aggregation-boosting factor, zinc ion. Further analyses indicate that the membrane-embedded oligomers of Aβ are derived from rapid assembly of inserted monomers but not due to the insertion of soluble Aβ oligomers. By comparing the behavior of a panel of Aβ truncation variants, we demonstrate that the intra- and extra-membrane oligomerization are mutually exclusive processes that proceed through distinct motif interplay, both of which require the action of amino acids 37-40/42 to overcome the auto-inhibitory interaction between amino acids 29-36 and the N-terminal portion albeit via different mechanisms. These results indicate that intra- and extra-membrane oligomerization of Aβ are competing processes and emphasize a critical regulation of membrane on the behavior of Aβ monomer and soluble oligomers, which may determine distinct neurotoxic mechanisms.
Collapse
Affiliation(s)
- Yi-Jiong Zhang
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jing-Ming Shi
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Cai-Juan Bai
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Han Wang
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Hai-Yun Li
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yi Wu
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Shang-Rong Ji
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
17
|
Li SF, Wu MN, Wang XH, Yuan L, Yang D, Qi JS. Requirement of α7 nicotinic acetylcholine receptors for amyloid beta protein-induced depression of hippocampal long-term potentiation in CA1 region of rats in vivo. Synapse 2011; 65:1136-43. [DOI: 10.1002/syn.20951] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 05/07/2011] [Accepted: 05/11/2011] [Indexed: 11/09/2022]
|
18
|
Val8-glucagon-like peptide-1 protects against Aβ1–40-induced impairment of hippocampal late-phase long-term potentiation and spatial learning in rats. Neuroscience 2010; 170:1239-48. [DOI: 10.1016/j.neuroscience.2010.08.028] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 08/13/2010] [Indexed: 11/24/2022]
|
19
|
Pan YF, Chen XR, Wu MN, Ma CG, Qi JS. Arginine vasopressin prevents against Abeta(25-35)-induced impairment of spatial learning and memory in rats. Horm Behav 2010; 57:448-54. [PMID: 20138885 DOI: 10.1016/j.yhbeh.2010.01.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2009] [Revised: 01/19/2010] [Accepted: 01/31/2010] [Indexed: 11/29/2022]
Abstract
Amyloid beta protein (Abeta) is thought to be responsible for loss of memory in Alzheimer's disease (AD). A significant decrease in [Arg(8)]-vasopressin (AVP) has been found in the AD brain and in plasma; however, it is unclear whether this decrease in AVP is involved in Abeta-induced impairment of spatial cognition and whether AVP can protect against Abeta-induced deficits in cognitive function. The present study examined the effects of intracerebroventricular (i.c.v.) injection of AVP on spatial learning and memory in the Morris water maze test and investigated the potential protective function of AVP against Abeta-induced impairment in spatial cognition. The results were as follows: (1) i.c.v. injection of 25 nmol Abeta(25-35) resulted in a significant decline in spatial learning and memory; (2) 1 nmol and 10 nmol, but not 0.1 nmol, AVP injections markedly improved learning and memory; (3) pretreatment with 1 nmol or 10 nmol, but not 0.1 nmol, AVP effectively reversed the impairment in spatial learning and memory induced by Abeta(25-35); and (4) none of the drugs, including Abeta(25-35) and different concentrations of AVP, affected the vision or swimming speed of the rats. These results indicate that Abeta(25-35) could significantly impair spatial learning and memory in rats, and pretreatment with AVP centrally can enhance spatial learning and effectively prevent the behavioral impairment induced by neurotoxic Abeta(25-35). Thus, the present study provides further insight into the mechanisms by which Abeta impairs spatial learning and memory, suggesting that up-regulation of central AVP might be beneficial in the prevention and treatment of AD.
Collapse
Affiliation(s)
- Yan-Fang Pan
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China
| | | | | | | | | |
Collapse
|
20
|
Randall AD, Witton J, Booth C, Hynes-Allen A, Brown JT. The functional neurophysiology of the amyloid precursor protein (APP) processing pathway. Neuropharmacology 2010; 59:243-67. [PMID: 20167227 DOI: 10.1016/j.neuropharm.2010.02.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 02/11/2010] [Indexed: 01/12/2023]
Abstract
Amyloid beta (Abeta) peptides derived from proteolytic cleavage of amyloid precursor protein (APP) are thought to be a pivotal toxic species in the pathogenesis of Alzheimer's disease (AD). Furthermore, evidence has been accumulating that components of APP processing pathway are involved in non-pathological normal function of the CNS. In this review we aim to cover the extensive body of research aimed at understanding how components of this pathway contribute to neurophysiological function of the CNS in health and disease. We briefly outline changes to clinical neurophysiology seen in AD patients before discussing functional changes in mouse models of AD which range from changes to basal synaptic transmission and synaptic plasticity through to abnormal synchronous network activity. We then describe the various neurophysiological actions that are produced by application of exogenous Abeta in various forms, and finally discuss a number or other neurophysiological aspects of the APP pathway, including functional activities of components of secretase complexes other than Abeta production.
Collapse
Affiliation(s)
- A D Randall
- MRC Centre for Synaptic Plasticity, Department of Anatomy, University of Bristol School of Medical Sciences, Bristol, UK.
| | | | | | | | | |
Collapse
|
21
|
Guo F, Jing W, Ma CG, Wu MN, Zhang JF, Li XY, Qi JS. [Gly(14)]-humanin rescues long-term potentiation from amyloid beta protein-induced impairment in the rat hippocampal CA1 region in vivo. Synapse 2010; 64:83-91. [PMID: 19768812 DOI: 10.1002/syn.20707] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The novel neuroprotective action of Humanin (HN), especially its derivative [Gly(14)]-humanin (HNG), against Alzheimer's disease (AD)-related insults has been reported. However, it is still short of electrophysiological evidence for the protection of HN on synaptic plasticity, and the molecular mechanisms that underlie the neuroprotective function of HN remain largely unknown. The present study examined the effects of intracerebroventricular (i.c.v.) injection of HNG on amyloid beta (Abeta), a main constituent of senile plaques in the AD brain, induced suppression of long-term potentiation (LTP) in the rat hippocampal CA1 region in vivo and investigated the possible mechanism of HNG in LTP protection. We found that application of Abeta fragments 25-35 (Abeta25-35) and 31-35 (Abeta31-35) significantly inhibited high frequency stimulation-induced LTP, while HNG effectively prevented the suppression of LTP induced by Abeta fragments in a dose-dependent manner. After pretreatment with Genistein, a tyrosine kinase inhibitor, the protective action of HNG on LTP was nearly completely abolished. Therefore, the present study demonstrated for the first time that HNG could protect against the neurotoxic Abeta-induced hippocampal LTP impairment and the tyrosine kinase pathway was involved in the neuroprotective action of HNG, suggesting that HNG might be one of the promising candidates for the treatment of AD in the future.
Collapse
Affiliation(s)
- Fen Guo
- Department of Neurobiology, Key Laboratory for Cellular Physiology of Ministry of Education, Shanxi Medical University, Taiyuan 030001, China
| | | | | | | | | | | | | |
Collapse
|
22
|
Parodi J, Sepúlveda FJ, Roa J, Opazo C, Inestrosa NC, Aguayo LG. Beta-amyloid causes depletion of synaptic vesicles leading to neurotransmission failure. J Biol Chem 2009; 285:2506-14. [PMID: 19915004 DOI: 10.1074/jbc.m109.030023] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Alzheimer disease is a progressive neurodegenerative brain disorder that leads to major debilitating cognitive deficits. It is believed that the alterations capable of causing brain circuitry dysfunctions have a slow onset and that the full blown disease may take several years to develop. Therefore, it is important to understand the early, asymptomatic, and possible reversible states of the disease with the aim of proposing preventive and disease-modifying therapeutic strategies. It is largely unknown how amyloid beta-peptide (A beta), a principal agent in Alzheimer disease, affects synapses in brain neurons. In this study, we found that similar to other pore-forming neurotoxins, A beta induced a rapid increase in intracellular calcium and miniature currents, indicating an enhancement in vesicular transmitter release. Significantly, blockade of these effects by low extracellular calcium and a peptide known to act as an inhibitor of the A beta-induced pore prevented the delayed failure, indicating that A beta blocks neurotransmission by causing vesicular depletion. This new mechanism for A beta synaptic toxicity should provide an alternative pathway to search for small molecules that can antagonize these effects of A beta.
Collapse
Affiliation(s)
- Jorge Parodi
- Laboratory of Neurophysiology, Department of Physiology, University of Concepción, Edmundo Larenas S/N, P.O. Box 160-C, Concepción, Chile
| | | | | | | | | | | |
Collapse
|
23
|
Zhao L, Zhao ST, Qian ZM, Zhang C, Wu XM, Du F, Ke Y. Activation of group III metabotropic glutamate receptor reduces intracellular calcium in beta-amyloid peptide [31-35]-treated cortical neurons. Neurotox Res 2009; 16:174-83. [PMID: 19526293 DOI: 10.1007/s12640-009-9068-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 12/06/2008] [Accepted: 05/18/2009] [Indexed: 11/25/2022]
Abstract
It is unknown whether amyloid beta-protein 31-35 (Abeta[31-35]) has effects similar to Abeta[1-40] and Abeta[25-35] on the intracellular calcium ([Ca(2+)]i) to induce a disruption of calcium homeostasis. In this study, we investigated the effects of Abeta[31-35] on [Ca(2+)]i in primary cultured cortical neurons using real time fluorescence imaging technique and the Ca(2+)-sensitive dye Furo-2/AM. It was found that Abeta[31-35] (25 microM) could induce a significant elevation in [Ca(2+)]i and a decrease in the average latency in the cortical neurons in a dose-dependent manner. To examine whether the activation of group III mGluRs could block the changes in [Ca(2+)]i and protect neurons from apoptosis induced by Abeta[31-35], we then investigated the effects of L: -serine-O-phosphate (L: -SOP) and (R,S)-4-phosphonophenylglycine ((R,S)-PPG), the selective agonists of group III metabotropic glutamate receptors (mGluRs), on [Ca(2+)]i and apoptosis in neurons treated by Abeta[31-35]. We demonstrated that L: -SOP or (R,S)-PPG (100 microM) treatment suppresses significantly the elevation of [Ca(2+)]i induced by Abeta[31-35] and also induces an almost complete recovery of both the fluorescence intensity and apoptotic cells (%) to the control level in the neurons. These results suggest that Abeta[31-35] may be the shortest sequence responsible for the neuronal toxicity of Abeta protein and that the neuroprotective role of the activation of group III mGluRs from the apoptosis induced by Abeta[31-35] might be partly due to its ability to inhibit the increased calcium influx, which results from Abeta[31-35].
Collapse
Affiliation(s)
- Li Zhao
- Department of Neurobiology, Shanxi Medical University, 030001, Taiyuan, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
24
|
Cheng L, Yin WJ, Zhang JF, Qi JS. Amyloid beta-protein fragments 25-35 and 31-35 potentiate long-term depression in hippocampal CA1 region of rats in vivo. Synapse 2009; 63:206-14. [PMID: 19072840 DOI: 10.1002/syn.20599] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Amyloid beta-protein (Abeta) is thought to be responsible for the deficit of learning and memory in Alzheimer's disease (AD), possibly through interfering with synaptic plasticity in the brain. It has been reported that Abeta fragments suppress the long-term potentiation (LTP) of synaptic transmission. However, it is unclear whether Abeta fragments can regulate long-term depression (LTD), an equally important form of synaptic plasticity in the brain. The present study investigates the effects of Abeta fragments on LTD induced by low frequency stimulation (LFS) in the hippocampus in vivo. Our results showed that (1) prolonged 1-10 Hz of LFS all effectively elicited LTD, which could persist for at least 2 h and be reversed by high frequency stimulation (HFS); (2) the effectiveness of LTD induction depended mainly on the number of pulses but not the frequency of LFS; (3) pretreatment with Abeta fragment 25-35 (Abeta(25-35), 12.5 and 25 nmol) did not change baseline field excitatory postsynaptic potentials but dose-dependently potentiated LTD; (4) Abeta fragment 31-35 (Abeta(31-35)), a shorter Abeta fragment than Abeta(25-35), also dose-dependently strengthened LFS-induced hippocampal LTD. Thus, the present study demonstrates the enhancement of hippocampal LTD by Abeta in in vivo condition. We propose that Abeta-induced potentiation of LTD, together with the suppression of LTP, will result in the impairment of cognitive function of the brain.
Collapse
Affiliation(s)
- Li Cheng
- Department of Neurobiology, Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | | | | | | |
Collapse
|
25
|
Korol’ TY, Korol’ SV, Kostyuk EP, Kostyuk PG. Disruption of Calcium Homeostasis in Alzheimer’s Disease. NEUROPHYSIOLOGY+ 2009. [DOI: 10.1007/s11062-009-9064-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
26
|
Jing W, Guo F, Cheng L, Zhang JF, Qi JS. Arginine vasopressin prevents amyloid beta protein-induced impairment of long-term potentiation in rat hippocampus in vivo. Neurosci Lett 2008; 450:306-10. [PMID: 19059464 DOI: 10.1016/j.neulet.2008.11.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 11/20/2008] [Accepted: 11/24/2008] [Indexed: 11/30/2022]
Abstract
Amyloid beta protein (Abeta) is thought to be responsible for the loss of memory in Alzheimer's disease (AD). A significant decrease in [Arg(8)]-vasopressin (AVP) in the AD brain has been found. However, it is unclear whether the decrease in AVP is involved in Abeta-induced impairment of memory and whether AVP can protect against Abeta-induced neurotoxicity. The present study examines the effects of intracerebroventricular (i.c.v.) injection of AVP on hippocampal long-term potentiation (LTP), a synaptic model of memory, and investigates the potential protective function of AVP in Abeta-induced LTP impairment. The results showed that (1) i.c.v. injection of different concentrations of AVP or Abeta(25-35) did not affect the baseline field excitatory postsynaptic potentials (fEPSPs); (2) AVP administration alone induced a significant increase in HFS-induced LTP, while Abeta(25-35) significantly suppressed HFS-induced LTP; (3) Abeta(25-35)-induced LTP suppression was significantly prevented by the pretreatment with AVP; (4) paired-pulse facilitation did not change after separate application or co-application of AVP and Abeta(25-35). These results indicate that AVP can potentiate hippocampal synaptic plasticity and dose-dependently prevent Abeta(25-35)-induced LTP impairment. Thus, the present study provides further insight into the mechanisms by which Abeta impairs synaptic plasticity and suggests an important approach in the treatment of AD.
Collapse
Affiliation(s)
- Wei Jing
- Department of Neurobiology and National Key Discipline of Physiology, Shanxi Medical University, 86 Xinjian South Road, Taiyuan, Shanxi 030001, China
| | | | | | | | | |
Collapse
|
27
|
Wu MN, He YX, Guo F, Qi JS. Alpha4beta2 nicotinic acetylcholine receptors are required for the amyloid beta protein-induced suppression of long-term potentiation in rat hippocampal CA1 region in vivo. Brain Res Bull 2008; 77:84-90. [PMID: 18602971 DOI: 10.1016/j.brainresbull.2008.06.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2008] [Revised: 06/06/2008] [Accepted: 06/08/2008] [Indexed: 11/26/2022]
Abstract
Amyloid beta protein (Abeta) is thought to be responsible for the deficit of learning and memory in Alzheimer's disease (AD), possibly through interfering with synaptic plasticity such as hippocampal long-term potentiation (LTP). Nicotinic acetylcholine receptors (nAChRs) participate in various cognitive brain functions. However, it is unclear whether nAChRs, especially alpha4beta2 subtype nAChRs, are involved in Abeta-induced impairment of hippocampal LTP. The present study investigates a possible role of nAChRs during the impairment of LTP by Abeta. Our results showed that: (1) intracerebroventricular injection of Abeta(1-40), Abeta(25-35) or Abeta(31-35) significantly suppressed high-frequency stimulation-induced LTP, while Abeta(35-31), a reversed sequence of Abeta(31-35), have no effect on the LTP; (2) epibatidine, a specific agonist of alpha4beta2 subtype of nAChRs, dose-dependently suppressed the induction of LTP; (3) co-injection of epibatidine together with Abeta(31-35) did not further enhance the suppression of LTP induced by Abeta(31-35) or epibatidine alone; (4) dihydro-beta-erythroidine, a selective antagonist against alpha4beta2 subtype of nAChRs, showed no effect on the induction of LTP, but significantly reversed Abeta(31-35)-induced LTP impairment. These results indicate that: (1) sequence 31-35 in Abeta molecule might be a shorter active center responsible for the neurotoxicity of full length of Abeta; (2) alpha4beta2 subtype of nAChRs is required for the suppressive action of Abeta on the hippocampal LTP in vivo. Thus, the present study provides further insight into the mechanisms by which Abeta impairs synaptic plasticity and cognitive function in the AD brain.
Collapse
Affiliation(s)
- M N Wu
- Department of Neurobiology and the national key discipline of physiology, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | | | | | | |
Collapse
|
28
|
Pérez de Vega MJ, Baeza JL, García-López MT, Vila-Perelló M, Jiménez-Castells C, Simón AM, Frechilla D, del Río J, Gutiérrez-Gallego R, Andreu D, González-Muñiz R. Synthesis and biological properties of β-turned Aβ31–35 constrained analogues. Bioorg Med Chem Lett 2008; 18:2078-82. [DOI: 10.1016/j.bmcl.2008.01.092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 01/23/2008] [Accepted: 01/24/2008] [Indexed: 10/22/2022]
|
29
|
Jiao Y, Yang P. Molecular modeling of the ion channel-like nanotube structure of amyloid β-peptide. ACTA ACUST UNITED AC 2007. [DOI: 10.1007/s11434-007-0220-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
30
|
Misiti F, Clementi ME, Tringali G, Vairano M, Orsini F, Pezzotti M, Navarra P, Giardina B, Pozzoli G. Fragment 31–35 of β-amyloid peptide induces neurodegeneration in rat cerebellar granule cells via bax gene expression and caspase-3 activation. Neurochem Int 2006; 49:525-32. [PMID: 16720060 DOI: 10.1016/j.neuint.2006.03.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Accepted: 03/30/2006] [Indexed: 10/24/2022]
Abstract
The amyloid beta-peptide (AbetaP) is the major protein component of brain senile plaques in Alzheimer's disease. The redox state of methionine-35 residue plays a critical role in peptide neurotoxic actions. We used the fragment 31-35 of AbetaP [AbetaP(31-35)], containing a single methionine-35 residue (Met-35), to investigate the relationship between the oxidative state of Met-35 and neurotoxic and pro-apoptotic actions induced by the peptide; in rat cerebellar granule cells (CGC), we compared the effects of AbetaP(31-35), in which the Met-35 is present in the reduced state, with those of a modified peptide with oxidized Met-35 [AbetaP(31-35)Met-35(OX)](,) as well as an AbetaP-derivative with Met-35 substituted by norleucine [AbetaP(31-35)Nle-35]. AbetaP(31-35) induced a time-dependent decrease in cell viability. AbetaP(31-35)Met-35(OX) was significantly less potent, but still induced a significant decrease in cell viability compared to control. No toxic effects were observed after treatment with AbetaP(31-35)Nle-35. AbetaP(31-35) induced a 2-fold increase in bax mRNA levels after 4h, whereas AbetaP(31-35)Met-35(OX) raised bax mRNA levels by 41% and AbetaP(31-35)Nle-35 had no effect. Finally, AbetaP(31-35) caused a 43% increase in caspase-3 activity after 24h; AbetaP(31-35)Met-35(OX) caused only a 18% increase, and AbetaP(31-35)Nle-35 had no effect. These findings suggest that AbetaP(31-35)-induced neurodegeneration in CGC is mediated by a selective early increase in bax mRNA levels followed by delayed caspase-3 activation; the redox state of the single Met-35 residue is crucial in the occurrence and extent of the above phenomena.
Collapse
Affiliation(s)
- Francesco Misiti
- Institute of Biochemistry and Clinical Biochemistry, Catholic University School of Medicine, Largo F. Vito 1, 00168 Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Qin Y, Qi JS, Qiao JT. Apolipoprotein E4 suppresses delayed-rectifier potassium channels in membrane patches excised from hippocampal neurons. Synapse 2006; 59:82-91. [PMID: 16270302 DOI: 10.1002/syn.20201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Recent studies show a clear association between Alzheimer's disease (AD) and the apolipoprotein E epsilon 4 allele (APOE4). The mechanisms underlying apoE4-mediated detrimental effects have not been well-clarified. The present study investigates possible effects of apoE4 on the delayed-rectifier potassium (IK) channels in inside-out membrane patches excised from rat hippocampal neurons. Acute application of apoE4 (0.5 microM) to the inside of the membrane patches markedly and reversibly suppressed the single IK channel activities. The average open probability and open frequency of IK channels decreased by (92.6+/-7.1)% and (88.6+/-3.2)%, respectively. The mean open time of IK channels decreased by (81.6+/-6.7)%, and the mean closed-time of them increased by 6.9+/-1.9 fold. Meanwhile, the mean current amplitude of IK channels was not significantly affected. In contrast, application of apolipoprotein A (apoA, 0.5 microM), another member of apolipoprotein family with similar molecular weight and amino acid sequence to apoE4, did not exhibit any effects on IK currents. These results indicate that apoE4 molecules can rapidly suppress the activities of IK channels in hippocampal neurons when they act on the inner side of the neuronal membrane. We propose that the overproduction of apoE4 in neurons may suppress normal IK channel activities and thus be responsible for the late-developed neuronal damages related to the pathogenesis of AD.
Collapse
Affiliation(s)
- Ying Qin
- Department of Neurobiology, Shanxi Medical University, Taiyuan, Shanxi 030001, People's Republic of China
| | | | | |
Collapse
|
32
|
Clementi ME, Pezzotti M, Orsini F, Sampaolese B, Mezzogori D, Grassi C, Giardina B, Misiti F. Alzheimer's amyloid beta-peptide (1-42) induces cell death in human neuroblastoma via bax/bcl-2 ratio increase: an intriguing role for methionine 35. Biochem Biophys Res Commun 2006; 342:206-13. [PMID: 16472763 DOI: 10.1016/j.bbrc.2006.01.137] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Accepted: 01/26/2006] [Indexed: 11/18/2022]
Abstract
The beta amyloid (Abeta), the major protein component of brain senile plaques in Alzheimer's disease, is known to be directly responsible for the production of free radicals toxic to brain tissue and the redox state of Met-35 residue seems to play a particular and critical role in peptide's neurotoxic actions. In this study, we investigated, in human neuroblastoma cells (IMR-32), the relationship between the oxidative state of methionine, and both neurotoxic and pro-apoptotic actions induced by Abeta-peptide, comparing the effects of native peptide, in which the Met-35 is present in the reduced state, with those of a modified peptide with oxidized Met-35 (Abeta(1-42)(35Met-ox)), as well as an Abeta-derivative with Met-35 substituted with norleucine (Abeta(1-42)(35Nle)). The obtained results show that Abeta induces a time-dependent decrease in cell viability; Abeta(1-42)(35Met-ox) was significantly less potent, though inducing a remarkable decrease in cell viability compared to control. On the contrary, no toxic effects were observed after treatment with Abeta(1-42)(35Nle). Abeta-peptide as well as the amyloid modified peptide with oxidized Met-35 induced the pro-apoptotic gene bax over-expression after 24 h, whereas Abeta(1-42)(35Nle) had no effect. Conversely, bcl-2, an anti-apoptotic gene, became highly down-regulated by Abeta peptide treatment, in contrast to that evidenced by the Abeta(1-42)(35Met-ox) peptide. Finally, Abeta caused an increase in caspase-3 activity to be higher with respect to that shown by Abeta(1-42)(35Met-ox) while Abeta(1-42)(35Nle) had no effect. These results support the hypothesis that Abeta-induced neurotoxicity occurs via bax over-expression, bcl-2 down-regulation, and caspase-3 activation, first indicating that methionine 35 redox state may alter this cell death pathway.
Collapse
Affiliation(s)
- M E Clementi
- CNR-ICRM, Institute of Chimica del Riconoscimento Molecolare, c/o Institute of Biochemistry and Clinical Biochemistry, Catholic University School of Medicine, Largo F. Vito 1, 00168 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Zhang JM, Wu MN, Qi JS, Qiao JT. Amyloid β-protein fragment 31–35 suppresses long-term potentiation in hippocampal CA1 region of rats in vivo. Synapse 2006; 60:307-13. [PMID: 16786537 DOI: 10.1002/syn.20302] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Effects of fragment 31-35 of amyloid beta-protein (AbetaP31-35) on the baseline synaptic transmission, shown as fEPSPs, and the long-term potentiation (LTP) induced by high-frequency stimuli (HFS) were investigated in vivo in the hippocampal CA1 region of rats; a longer fragment of AbetaP, i.e., AbetaP25-35, which had been generally accepted as the active center in AbetaP, was also tested comparatively along with AbetaP31-35. The results showed that: (1) the baseline fEPSPs induced by test stimuli were not changed by i.c.v. injection of AbetaP31-35, while application of either AbetaP31-35 or AbetaP25-35 with the same molar concentration (50 nmol) significantly and similarly suppressed the HFS-induced LTP; (2) higher concentration of AbetaP31-35 or longer time of AbetaP exposure exhibited stronger suppression on LTP, indicating a dose- and time-dependent trends; (3) no significant effects could be found on the paired-pulse facilitation (PPF) following AbetaP31-35 injection; (4) pretreatment with verapamil (2.5 mg/kg, i.p., 1 h prior to HFS), a blocker of L-type Ca2+ channels, did not affect the baseline fEPSPs, while it exhibited a significant suppression on LTP induced by HFS; and (5) surprisingly enough, coapplication with verapamil and AbetaP31-35 exhibited a similar suppression on LTP just as both of these two agents were used alone. These results indicate that: (1) AbetaP31-35, similar to AbetaP25-35, possesses potent suppressive effects on hippocampal LTP in vivo, supporting our proposal that the fragment AbetaP31-35 might be to date the shortest active sequence in full-length of AbetaP molecule; (2) AbetaP31-35-induced LTP suppression is not mediated by affecting the presynaptic processes; and (3) L-type Ca2+ channels might be one of the main pathways by which AbetaP31-35 insults LTP.
Collapse
Affiliation(s)
- Jian-Mei Zhang
- Department of Neurobiology, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | | | | | | |
Collapse
|
34
|
Kagan BL, Azimov R, Azimova R. Amyloid peptide channels. J Membr Biol 2005; 202:1-10. [PMID: 15702375 DOI: 10.1007/s00232-004-0709-4] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Revised: 07/28/2004] [Indexed: 12/20/2022]
Abstract
At least 16 distinct clinical syndromes including Alzheimer's disease (AD), Parkinson's disease (PD), rheumatoid arthritis, type II diabetes mellitus (DM), and spongiform encephelopathies (prion diseases), are characterized by the deposition of amorphous, Congo red-staining deposits known as amyloid. These "misfolded" proteins adopt beta-sheet structures and aggregate spontaneously into similar extended fibrils despite their widely divergent primary sequences. Many, if not all, of these peptides are capable of forming ion-permeable channels in vitro and possibly in vivo. Common channel properties include irreversible, spontaneous insertion into membranes, relatively large, heterogeneous single-channel conductances, inhibition of channel formation by Congo red, and blockade of inserted channels by Zn2+. Physiologic effects of amyloid, including Ca2+ dysregulation, membrane depolarization, mitochondrial dysfunction, inhibition of long-term potentiation (LTP), and cytotoxicity, suggest that channel formation in plasma and intracellular membranes may play a key role in the pathophysiology of the amyloidoses.
Collapse
Affiliation(s)
- B L Kagan
- Department of Psychiatry, Neuropsychiatric Institute, David Geffen School of Medicine, UCLA, Los Angeles, California 90024-1759, USA.
| | | | | |
Collapse
|
35
|
Clementi ME, Martorana GE, Pezzotti M, Giardina B, Misiti F. Methionine 35 oxidation reduces toxic effects of the amyloid beta-protein fragment (31-35) on human red blood cell. Int J Biochem Cell Biol 2005; 36:2066-76. [PMID: 15203119 DOI: 10.1016/j.biocel.2004.03.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2003] [Revised: 03/16/2004] [Accepted: 03/19/2004] [Indexed: 10/26/2022]
Abstract
Amyloid beta-peptide, the central constituent of senile plaques in Alzheimer's disease brain, has been shown to be a source of free radical oxidative stress that may lead to neurodegeneration. In particular, it is well known that oxidation of methionine 35, is strongly related to the pathogenesis of Alzheimer's disease, since it represents the residue in the beta-amyloid peptide most susceptible to oxidation "in vivo". In this study, the fragment 31-35 of the beta-amyloid peptide, which has a single methionine at residue 35, was used to investigate the influence of the oxidation state of methionine-35 on the beta-amyloid peptide (31-35) mediated cytotoxic effects. Because no extensive studies have yet addressed whether amyloid beta peptides-mediated toxic effects can occur in the absence of mitochondria, human red blood cells were used as cell model. Exposure of intact red blood cells to beta-amyloid peptide (31-35) induced a marked stimulation (approximately 45%) of the pentose phosphate pathway and a significant inhibition of the red cell enzyme catalase, compared with the results observed in control red blood cells. In contrast, exposure of red blood cells to the beta-amyloid peptide (31-35)-Met35OX i.e. in which the sulfur of methionine is oxidised to sulfoxide, induced a slight activation of PPP (approximately 19%), and an inhibition of catalase activity lower with respect to the results observed in beta-amyloid peptide (31-35)-treated red blood cells. Since the activities of red cell phosphofructokinase, glucose-6-phosphate dehydrogenase, glutathione peroxidase, glutathione reductase and the functionality of hemoglobin were not modified within the red cell following to beta-amyloid peptides exposure, it is likely that beta-amyloid (31-35)-catalase interaction may represent a selective toxic event. Together, these results support the hypothesis that Abeta peptide and the oxidative state of Met-35 may be involved in the mechanisms responsible of neurodegeneration in Alzheimer's disease.
Collapse
Affiliation(s)
- Maria Elisabetta Clementi
- CNR, Istituto di Chimica del Riconoscimento Molecolare (ICRM), L.go F. Vito n.1, CAP 00168 Rome, Italy
| | | | | | | | | |
Collapse
|
36
|
Cardoso SM, Rego AC, Pereira C, Oliveira CR. Protective effect of zinc on amyloid-beta 25-35 and 1-40 mediated toxicity. Neurotox Res 2005; 7:273-81. [PMID: 16179264 DOI: 10.1007/bf03033885] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Amyloid beta-peptide (Abeta) is widely held to be associated with Alzheimer's disease, the insoluble aggregates of the peptide being the major constituents of senile plaques. In this study, we evaluated the effect of Zn(2+) (5, 50 and 200 microM) on Abeta induced toxicity using the human teratocarcinome (NT2) cell line. Our results proved that 50 and 200 microM Zn(2+) protected NT2 cells from Abeta 25-35 toxicity. Zinc was also shown to be effective by preventing the loss of mitochondrial membrane potential (DeltaPsi(m)) induced by Abeta 25-35, not allowing cytochrome c release from mitochondria, and subsequently, caspase 3 activation. However, when the cells were treated with Abeta 1-40, only Zn(2+) 5 microM had a protective effect. We have further observed that 5 microM Zn(2+) prevented Abeta 1-40 aggregation into a beta-sheet structure. Considering the results presented, we argue that Zn(2+) has a concentration-dependent protective effect.
Collapse
Affiliation(s)
- S M Cardoso
- Center for Neuroscience and Cellular Biology of Coimbra and Institute of Biochemistry, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | | | | | | |
Collapse
|
37
|
Glutamate and amyloid beta-protein rapidly inhibit fast axonal transport in cultured rat hippocampal neurons by different mechanisms. J Neurosci 2003. [PMID: 14523099 DOI: 10.1523/jneurosci.23-26-08967.2003] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Impairment of axonal transport leads to neurodegeneration and synapse loss. Glutamate and amyloid beta-protein (Abeta) have critical roles in the pathogenesis of Alzheimer's disease (AD). Here we show that both agents rapidly inhibit fast axonal transport in cultured rat hippocampal neurons. The effect of glutamate (100 microm), but not of Abeta25-35 (20 microm), was reversible, was mimicked by NMDA or AMPA, and was blocked by NMDA and AMPA antagonists and by removal of extracellular Ca2+. The effect of Abeta25-35 was progressive and irreversible, was prevented by the actin-depolymerizing agent latrunculin B, and was mimicked by the actin-polymerizing agent jasplakinolide. Abeta25-35 induced intracellular actin aggregation, which was prevented by latrunculin B. Abeta31-35 but not Abeta15-20 exerted effects similar to those of Abeta25-35. Full-length Abeta1-42 incubated for 7 d, which specifically contained 30-100 kDa molecular weight assemblies, also caused an inhibition of axonal transport associated with intracellular actin aggregation, whereas freshly dissolved Abeta1-40, incubated Abeta1-40, and fresh Abeta1-42 had no effect. These results suggest that glutamate inhibits axonal transport via activation of NMDA and AMPA receptors and Ca2+ influx, whereas Abeta exerts its inhibitory effect via actin polymerization and aggregation. The ability of Abeta to inhibit axonal transport seems to require active amino acid residues, which is probably present in the 31-35 sequence. Full-length Abeta may be effective when it represents a structure in which these active residues can access the cell membrane. Our results may provide insight into the early pathogenetic mechanisms of AD.
Collapse
|
38
|
Bahadi R, Farrelly PV, Kenna BL, Kourie JI, Tagliavini F, Forloni G, Salmona M. Channels formed with a mutant prion protein PrP(82-146) homologous to a 7-kDa fragment in diseased brain of GSS patients. Am J Physiol Cell Physiol 2003; 285:C862-72. [PMID: 12814912 DOI: 10.1152/ajpcell.00077.2003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A major prion protein (PrP) mutant that forms amyloid fibrils in the diseased brain of patients with Gerstmann-Sträussler-Scheinker syndrome (GSS) is a fragment of 7 kDa spanning from residues 81-82 to 144-153 of PrP. Analysis of ionic membrane currents, recorded with a lipid bilayer technique, revealed that the wild-type fragment PrP(82-146) WT and the partially scrambled PrP(82-146) (127-146) SC are capable of forming heterogeneous ion channels that are similar to those channels formed with PrP(106-126). In contrast, PrP(82-146) peptides in which the region from residue 106 to 126 had been scrambled (SC) showed a reduction in interaction with lipid membranes and did not form channels. The PrP(82-146) WT- and PrP(82-146) (127-146) SC-formed cation channels with fast kinetics are Cu2+ sensitive and rifampicin (RIF) insensitive, whereas the time-dependent inactivating channels formed by these same peptides are both Cu2+ and RIF insensitive. The presence of RIF in the solution before the addition of PrP(82-146) WT or PrP(82-146) (127-146) SC affected their incorporation into the lipid bilayers. PrP(82-146) WT and PrP(82-146) (127-146) SC fast cation channels formed in the presence of RIF appeared in an electrically semisilent state or an inactivated state. Increasing [Cd2+]cis enhanced the incorporation of PrP(82-146) WT and PrP(82-146) (127-146) SC channels formed in the presence of RIF. We conclude that the major PrP mutant fragment in the diseased brain of GSS patients is prone to form channels in neuronal membranes, causing their dysfunction. We propose that Cd2+ may accentuate the neurotoxicity of this channel-forming PrP fragment by enhancing its incorporation into the membrane.
Collapse
Affiliation(s)
- Randa Bahadi
- Membrane Transport Group, Department of Chemistry, The Faculties, The Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | | | | | | | | | | | | |
Collapse
|
39
|
Bahadi R, Farrelly PV, Kenna BL, Curtain CC, Masters CL, Cappai R, Barnham KJ, Kourie JI. Cu2+-induced modification of the kinetics of A beta(1-42) channels. Am J Physiol Cell Physiol 2003; 285:C873-80. [PMID: 12814914 DOI: 10.1152/ajpcell.00147.2003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We found that the amyloid beta peptide A beta(1-42) is capable of interacting with membrane and forming heterogeneous ion channels in the absence of any added Cu2+ or biological redox agents that have been reported to mediate A beta(1-42) toxicity. The A beta(1-42)-formed cation channel was inhibited by Cu2+ in cis solution ([Cu2+]cis) in a voltage- and concentration-dependent manner between 0 and 250 microM. The [Cu2+]cis-induced channel inhibition is fully reversible at low concentrations between 50 and 100 microM [Cu2+]cis and partially reversible at 250 microM [Cu2+]cis. The inhibitory effects of [Cu2+]cis between 50 and 250 microM on the channel could not be reversed with addition of Cu2+-chelating agent clioquinol (CQ) at concentrations between 64 and 384 microM applied to the cis chamber. The effects of 200-250 microM [Cu2+]cis on the burst and intraburst kinetic parameters were not fully reversible with either wash or 128 microM [CQ]cis. The kinetic analysis of the data indicate that Cu2+-induced inhibition was mediated via both desensitization and an open channel block mechanism and that Cu2+ binds to the histidine residues located at the mouth of the channel. It is proposed that the Cu2+-binding site of the A beta(1-42)-formed channels is modulated with Cu2+ in a similar way to those of channels formed with the prion protein fragment PrP(106-126), suggesting a possible common mechanism for Cu2+ modulation of A beta and PrP channel proteins linked to neurodegenerative diseases.
Collapse
Affiliation(s)
- Randa Bahadi
- Membrane Transport Group, Department of Chemistry, The Faculties, The Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Qi JS, Ye L, Qiao JT. Amyloid ?-protein fragment 31-35 suppresses delayed rectifying potassium channels in membrane patches excised from hippocampal neurons in rats. Synapse 2003; 51:165-72. [PMID: 14666514 DOI: 10.1002/syn.10299] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
To clarify the early initial mechanism underlying the neurotoxicity of amyloid beta-protein (AbetaP) and the shorter essential active sequence in native AbetaP molecules, the effects of AbetaP31-35 and AbetaP25-35 on delayed rectifier K+ current (Ik) were investigated in the inside-out membrane patches excised from hippocampal neurons of rats. The results showed that: 1) After application of AbetaP31-35 (5 microM) to the inside of patches, the average open frequency and open probability of Ik channels reversibly decreased by 70.45 +/- 35.75% and 86.9 +/- 11.13%, respectively; the mean open time decreased by 47.1 +/- 38.8%, while the mean current amplitude of Ik channels was not significantly affected. 2) Application of AbetaP25-35 at the same concentration showed similar effects as did the AbetaP31-35 application. It has generally been accepted that AbetaP25-35 acts as a full-length AbetaP molecule does, so our findings suggest that the neurotoxicity of AbetaP may be initiated by the functional suppression of Ik channels and the sequence of 31-35 might be the shorter active sequence in AbetaP responsible for its neurotoxicity.
Collapse
Affiliation(s)
- Jin-Shun Qi
- Department of Neurobiology, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China.
| | | | | |
Collapse
|