1
|
Wang WT, Feng F, Zhang MM, Tian X, Yang QQ, Li YJ, Tao XX, Xu YL, Dou E, Wang JY, Zeng XY. Red nucleus mGluR2 but not mGluR3 mediates inhibitory effect in the development of SNI-induced neuropathological pain by suppressing the expressions of TNF-α and IL-1β. Neurochem Int 2024; 179:105840. [PMID: 39181245 DOI: 10.1016/j.neuint.2024.105840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/08/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Our previous study has verified that activation of group Ⅰ metabotropic glutamate receptors (mGluRⅠ) in the red nucleus (RN) facilitate the development of neuropathological pain. Here, we further discussed the functions and possible molecular mechanisms of red nucleus mGluR Ⅱ (mGluR2 and mGluR3) in the development of neuropathological pain induced by spared nerve injury (SNI). Our results showed that mGluR2 and mGluR3 both were constitutively expressed in the RN of normal rats. At 2 weeks post-SNI, the protein expression of mGluR2 rather than mGluR3 was significantly reduced in the RN contralateral to the nerve lesion. Injection of mGluR2/3 agonist LY379268 into the RN contralateral to the nerve injury at 2 weeks post-SNI significantly attenuated SNI-induced neuropathological pain, this effect was reversed by mGluR2/3 antagonist EGLU instead of selective mGluR3 antagonist β-NAAG. Intrarubral injection of LY379268 did not alter the PWT of contralateral hindpaw in normal rats, while intrarubral injection of EGLU rather than β-NAAG provoked a significant mechanical allodynia. Further studies indicated that the expressions of nociceptive factors TNF-α and IL-1β in the RN were enhanced at 2 weeks post-SNI. Intrarubral injection of LY379268 at 2 weeks post-SNI significantly suppressed the overexpressions of TNF-α and IL-1β, these effects were reversed by EGLU instead of β-NAAG. Intrarubral injection of LY379268 did not influence the protein expressions of TNF-α and IL-1β in normal rats, while intrarubral injection of EGLU rather than β-NAAG significantly boosted the expressions of TNF-α and IL-1β. These findings suggest that red nucleus mGluR2 but not mGluR3 mediates inhibitory effect in the development of SNI-induced neuropathological pain by suppressing the expressions of TNF-α and IL-1β. mGluR Ⅱ may be potential targets for drug development and clinical treatment of neuropathological pain.
Collapse
Affiliation(s)
- Wen-Tao Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China; Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Fan Feng
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Miao-Miao Zhang
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Xue Tian
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Qing-Qing Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China; Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Yue-Jia Li
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Xiao-Xia Tao
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Ya-Li Xu
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China; Department of Blood Transfusion, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - E Dou
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Jun-Yang Wang
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.
| | - Xiao-Yan Zeng
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
2
|
Still NAAG’ing After All These Years. NEUROPSYCHOPHARMACOLOGY: A TRIBUTE TO JOSEPH T. COYLE 2016; 76:215-55. [DOI: 10.1016/bs.apha.2016.01.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
3
|
Crispino M, Cefaliello C, Kaplan B, Giuditta A. Protein synthesis in nerve terminals and the glia-neuron unit. Results Probl Cell Differ 2010; 48:243-67. [PMID: 19554280 DOI: 10.1007/400_2009_9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The progressive philogenetic lengthening of axonal processes and the increase in complexity of terminal axonal arborizations markedly augmented the demands of the neuronal cytoplasmic mass on somatic gene expression. It is proposed that in an adaptive response to this challenge, novel gene expression functions developed in the axon compartment, consisting of axonal and presynaptic translation systems that rely on the delivery of transcripts synthesized in adjacent glial cells. Such intercellular mode of gene expression would allow more rapid plastic changes to occur in spatially restricted neuronal domains, down to the size of individual synapses. The cell body contribution to local gene expression in well-differentiated neurons remains to be defined. The history of this concept and the experimental evidence supporting its validity are critically discussed in this article. The merit of this perspective lies with the recognition that plasticity events represent a major occurrence in the brain, and that they largely occur at synaptic sites, including presynaptic endings.
Collapse
Affiliation(s)
- Marianna Crispino
- Department of Biological Sciences, University of Naples Federico II, Naples, Italy
| | | | | | | |
Collapse
|
4
|
Uzdensky AB, Lobanov AV. Elevated activity of the crayfish stretch receptor neuron increases resistance of surrounding glial cells to apoptosis induced by photodynamic treatment. Neurosci Lett 2010; 468:89-92. [PMID: 19879336 DOI: 10.1016/j.neulet.2009.10.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 10/12/2009] [Accepted: 10/22/2009] [Indexed: 10/20/2022]
Abstract
Neuroglial interaction is very important for functioning and survival of nerve and glial cells. In the present work, we studied the influence of the intense neuronal activity on survival of the isolated crayfish stretch receptor neuron and surrounding glial cells subjected to photodynamic treatment, which induces intense oxidative stress. In the experimental group, neurons were stimulated by multiple extensions of the receptor muscle for 1h so that the firing rate did not fall below 10-15 Hz, whereas in the control group, the receptor muscles were relaxed and neurons were silent. After stimulation, the preparations were photosensitized with alumophthalocyanine Photosens and irradiated by 670 nm laser diode. The isolated stretch receptors were stained with propidium iodide and Hoechst 33342, which reveal the nuclei of the necrotic and the apoptotic cells, respectively. The level of apoptosis of photosensitized glial cells was significantly lower in the experimental group compared to the resting control. Necrosis of neurons and glial cells was not significantly influenced. Therefore, elevated neuronal activity increased the resistance of the surrounding glial cells to photoinduced apoptosis. This could be attributed to the depletion of the energetic resources, which are transferred from glia into the neuron to support its firing, or to the neurotrophic neuron-to-glia signaling.
Collapse
|
5
|
Giuditta A, Tai Chun J, Eyman M, Cefaliello C, Bruno AP, Crispino M. Local Gene Expression in Axons and Nerve Endings: The Glia-Neuron Unit. Physiol Rev 2008; 88:515-55. [DOI: 10.1152/physrev.00051.2006] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Neurons have complex and often extensively elongated processes. This unique cell morphology raises the problem of how remote neuronal territories are replenished with proteins. For a long time, axonal and presynaptic proteins were thought to be exclusively synthesized in the cell body, which delivered them to peripheral sites by axoplasmic transport. Despite this early belief, protein has been shown to be synthesized in axons and nerve terminals, substantially alleviating the trophic burden of the perikaryon. This observation raised the question of the cellular origin of the peripheral RNAs involved in protein synthesis. The synthesis of these RNAs was initially attributed to the neuron soma almost by default. However, experimental data and theoretical considerations support the alternative view that axonal and presynaptic RNAs are also transcribed in the flanking glial cells and transferred to the axon domain of mature neurons. Altogether, these data suggest that axons and nerve terminals are served by a distinct gene expression system largely independent of the neuron cell body. Such a local system would allow the neuron periphery to respond promptly to environmental stimuli. This view has the theoretical merit of extending to axons and nerve terminals the marginalized concept of a glial supply of RNA (and protein) to the neuron cell body. Most long-term plastic changes requiring de novo gene expression occur in these domains, notably in presynaptic endings, despite their intrinsic lack of transcriptional capacity. This review enlightens novel perspectives on the biology and pathobiology of the neuron by critically reviewing these issues.
Collapse
|
6
|
Tsukamoto T, Wozniak KM, Slusher BS. Progress in the discovery and development of glutamate carboxypeptidase II inhibitors. Drug Discov Today 2007; 12:767-76. [PMID: 17826690 DOI: 10.1016/j.drudis.2007.07.010] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
During the past 10 years, substantial progress has been made in the discovery and development of small molecule glutamate carboxypeptidase II (GCP II) inhibitors. These inhibitors have provided the necessary tools to investigate the physiological role of GCP II as well as the potential therapeutic benefits of its inhibition in neurological disorders of glutamatergic dysregulation. This review article details key GCP II inhibitors discovered in the last decade and important findings from preclinical and clinical studies.
Collapse
|
7
|
Eyman M, Cefaliello C, Ferrara E, De Stefano R, Lavina ZS, Crispino M, Squillace A, van Minnen J, Kaplan BB, Giuditta A. Local synthesis of axonal and presynaptic RNA in squid model systems. Eur J Neurosci 2007; 25:341-50. [PMID: 17284174 DOI: 10.1111/j.1460-9568.2007.05304.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The presence of active systems of protein synthesis in axons and nerve endings raises the question of the cellular origin of the corresponding RNAs. Our present experiments demonstrate that, besides a possible derivation from neuronal cell bodies, axoplasmic RNAs originate in periaxonal glial cells and presynaptic RNAs derive from nearby cells, presumably glial cells. Indeed, in perfused squid giant axons, delivery of newly synthesized RNA to the axon perfusate is strongly stimulated by axonal depolarization or agonists of glial glutamate and acetylcholine receptors. Likewise, incubation of squid optic lobe slices with [3H]uridine leads to a marked accumulation of [3H]RNA in the large synaptosomes derived from the nerve terminals of retinal photoreceptor neurons. As the cell bodies of these neurons lie outside the optic lobe, the data demonstrate that presynaptic RNA is locally synthesized, presumably by perisynaptic glial cells. Overall, our results support the view that axons and presynaptic regions are endowed with local systems of gene expression which may prove essential for the maintenance and plasticity of these extrasomatic neuronal domains.
Collapse
Affiliation(s)
- Maria Eyman
- Department of Biological Sciences, University of Naples Federico II, Naples, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Moffett JR, Namboodiri AMA. Expression of N-Acetylaspartate and N-Acetylaspartylglutamate in the Nervous System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 576:7-26; discussion 361-3. [PMID: 16802702 DOI: 10.1007/0-387-30172-0_2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- John R Moffett
- Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda MD, 20814, USA.
| | | |
Collapse
|
9
|
Neale SA, Salt TE. Modulation of GABAergic inhibition in the rat superior colliculus by a presynaptic group II metabotropic glutamate receptor. J Physiol 2006; 577:659-69. [PMID: 16973709 PMCID: PMC1890443 DOI: 10.1113/jphysiol.2006.119073] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Previous work has indicated that metabotropic glutamate receptors (mGluRs) modulate visual responses of superior colliculus (SC) neurones in vivo in a variety of ways, in a manner that can be dependent upon visual stimulus properties. How this occurs remains unclear. In this study we aimed to determine how activation of mGluR2 and mGluR3 receptors (Group II) might modulate visual responses, by using field potential and whole-cell patch clamp recording techniques in rat SC slice. Stimulation within the superficial layers of the SC, in the presence of ionotropic glutamate receptor antagonists, evoked IPSCs that were blocked by bicuculline indicating that they are mediated via GABAA receptors. It is likely that these IPSCs were of heterogeneous origin as they showed substantial variation in paired-pulse behaviour. Nevertheless, activation of Group II mGluRs with the group-selective agonist LY354740 (300 nM, bath application) resulted in a reduction of these IPSCs (to 56% of control amplitude), and this was associated with a decrease in paired-pulse depression. At the same concentration, LY354740 did not reduce the EPSC or field-EPSP evoked by stimulation of the retinal input to the SC. The effects of LY354740 on IPSCs were not mimicked by the mGluR3-selective agonist N-acetyl-aspartyl-glutamate (NAAG, 200-500 microM). Stimulation of IPSCs with trains of impulses (10 at 20 Hz) in order to mimic natural activation patterns resulted in sequences of IPSCs that were reduced in amplitude towards the end of the stimulus train. Application of the Group II antagonist LY341495 (100 nM) under these conditions resulted in an increase in later IPSCs in a third of neurones tested. These findings indicate that mGluR2 (but not mGluR3) can selectively modulate GABAergic inhibition in SC, probably via a presynaptic mechanism. Furthermore, these receptors may be activated by synaptically released transmitter during patterns of activation similar to those seen during visual processing. Thus mGluR2 receptors could have a function in activity-dependent modulation of inhibitory processing during visual responses.
Collapse
Affiliation(s)
- S A Neale
- Department of Visual Science, Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | | |
Collapse
|
10
|
Wroblewska B. NAAG as a neurotransmitter. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 576:317-25; discussion 361-3. [PMID: 16802723 DOI: 10.1007/0-387-30172-0_23] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Kolosov M, Uzdensky A. Crayfish mechanoreceptor neuron prevents photoinduced apoptosis of satellite glial cells. Brain Res Bull 2006; 69:495-500. [PMID: 16647578 DOI: 10.1016/j.brainresbull.2006.02.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Revised: 02/20/2006] [Accepted: 02/20/2006] [Indexed: 10/24/2022]
Abstract
Interactions between neurons and glia play a key role in the development, functioning and survival of the nervous system. However, the influence of neurons on glial cells has received less attention than the role of glia in supporting neural functions. We here investigated the role of isolated crayfish stretch receptor neuron in the death of satellite glial cells under photodynamic impact. After staining with aluminum phthalocyanine photosens, the neuronal cell body was locally irradiated with a focused beam of He-Ne (633 nm, 200 W/cm2) or semiconductor laser (650 nm, 50 W/cm2). This rapidly abolished neuronal activity. The whole preparation was then subjected to total laser irradiation with lower intensity (633 nm, 0.3 W/cm2), which induced death of glial cells. Double staining of the preparation with propidium iodide and Hoechst 33342 in the following 6-7h allowed the visualization of necrotic, apoptotic and alive cells. Previous neuron inactivation with the focused laser beam was found to increase photodynamically-induced apoptosis but not necrosis of satellite glial cells enwrapping the axon. Therefore, the intact neuronal cell body protected satellite glial cells against photoinduced apoptosis. Altogether the data indicate that mechanoreceptor neurons release some signaling molecules involved in the prevention of glial apoptosis. This may provide integrity of the stretch receptor organ and its resistance to injurious factors.
Collapse
Affiliation(s)
- Mikhail Kolosov
- Institute for Neurocybernetics, Rostov State University, Rostov-on-Don 344090, Russia
| | | |
Collapse
|
12
|
Baslow MH, Dyakin VV, Nowak KL, Hungund BL, Guilfoyle DN. 2-PMPA, a NAAG peptidase inhibitor, attenuates magnetic resonance BOLD signals in brain of anesthetized mice: evidence of a link between neuron NAAG release and hyperemia. J Mol Neurosci 2005; 26:1-15. [PMID: 15968081 DOI: 10.1385/jmn:26:1:001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2004] [Accepted: 11/15/2004] [Indexed: 11/11/2022]
Abstract
N-acetylaspartylglutamate (NAAG), a dipeptide derivative of N-acetylaspartate (NAA) and glutamate (Glu), is present in neurons. Upon neurostimulation, NAAG is exported to astrocytes where it activates a specific metabotropic Glu surface receptor (mGluR3), and is then hydrolyzed by an astrocyte-specific enzyme, NAAG peptidase, liberating Glu, which can then be taken up by the astrocyte. NAAG is a selective mGluR3 agonist, one of several mGluRs that, when activated, triggers Ca2+ waves that spread to astrocytic endfeet in contact with the vascular system, where a secondary release of vasoactive agents induces a focal hyperemic response providing increased oxygen and nutrient availability to the stimulated neurons. Changes in blood oxygen levels can be assessed in vivo using a blood oxygenation level-dependent (BOLD) magnetic resonance imaging technique that reflects a paramagnetic effect of deoxyhemoglobin. In this study we used the competitive NAAG peptidase inhibitor 2-(phosphonomethyl) pentanedioic acid (2-PMPA) as a probe to interrupt the NAAG-mGluR3- Glu-astrocyte Ca2+ activation sequence. Using this probe, we investigated the relationship between release of the endogenous neuropeptide NAAG and brain blood oxygenation levels, as measured by changes in BOLD signals. In an anesthetized mouse, using an overtly nontoxic dose of 2-PMPA of 250 mg/kg i.p., there was an initial global BOLD signal increase of about 3% above control, lasting about 4 min, followed by a decrease from control of about 4%, sustained over a 32.5-min period of the drug test procedure. Similar changes, but of reduced magnitude and duration, were observed at a dose of 167 mg/kg. The 2-PMPA-induced decreases in BOLD signals appear to indicate that blood deoxyhemoglobin is elevated when endogenous NAAG cannot be hydrolyzed, thus linking the efflux of NAAG from neurons and its hydrolysis by astrocytes to hyperemic oxygenation responses in brain.
Collapse
Affiliation(s)
- Morris H Baslow
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA.
| | | | | | | | | |
Collapse
|
13
|
Urazaev AK, Grossfeld RM, Lieberman EM. Regulation of glutamate carboxypeptidase II hydrolysis of
N
‐acetylaspartylglutamate (NAAG) in crayfish nervous tissue is mediated by glial glutamate and acetylcholine receptors. J Neurochem 2005; 93:605-10. [PMID: 15836619 DOI: 10.1111/j.1471-4159.2005.03041.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Glutamate carboxypeptidase II (GCPII), a glial ectoenzyme, is responsible for N-acetylaspartylglutamate (NAAG) hydrolysis. Its regulation in crayfish nervous tissue was investigated by examining uptake of [3H]glutamate derived from N-acetylaspartyl-[3H]glutamate ([3H]NAAG) to measure GCPII activity. Electrical stimulation (100 Hz, 10 min) during 30 min incubation with [3H]NAAG increased tissue [3H]glutamate tenfold. This was prevented by 2-(phosphonomethyl)-pentanedioic acid (2-PMPA), a GCPII inhibitor, suggesting that stimulation increased the hydrolysis of [3H]NAAG and metabolic recycling of [3H]glutamate. Antagonists of glial group II metabotropic glutamate receptors (mGLURII), NMDA receptors and acetylcholine (ACh) receptors that mediate axon-glia signaling in crayfish nerve fibers decreased the effect of stimulation by 58-83%, suggesting that glial receptor activation leads to stimulation of GCPII activity. In combination, they reduced [3H]NAAG hydrolysis during stimulation to unstimulated control levels. Agonist stimulation of mGLURII mimicked the effect of electrical stimulation, and was prevented by antagonists of GCPII or mGLURII. Raising extracellular K+ to three times the normal level stimulated [3H]NAAG release and GCPII activity. These effects were also blocked by antagonists of GCPII and mGLUR(II). No receptor antagonist or agonist tested or 2-PMPA affected uptake of [3H]glutamate. We conclude that NAAG released from stimulated nerve fibers activates its own hydrolysis via stimulation of GCPII activity mediated through glial mGLURII, NMDA and ACh receptors.
Collapse
Affiliation(s)
- Albert K Urazaev
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | | | | |
Collapse
|
14
|
Sanabria ERG, Wozniak KM, Slusher BS, Keller A. GCP II (NAALADase) inhibition suppresses mossy fiber-CA3 synaptic neurotransmission by a presynaptic mechanism. J Neurophysiol 2004; 91:182-93. [PMID: 12917384 PMCID: PMC2810521 DOI: 10.1152/jn.00465.2003] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We tested the hypothesis that endogenous N-acetylaspartylglutamate (NAAG) presynaptically inhibits glutamate release at mossy fiber-CA3 synapses. For this purpose, we made use of 2-(3-mercaptopropyl)pentanedioic acid (2-MPPA), an inhibitor of glutamate carboxypeptidase II [GCP II; also known as N-acetylated alpha-linked acidic dipeptidase (NAALADase)], the enzyme that hydrolyzes NAAG into N-acetylaspartate and glutamate. Application of 2-MPPA (1-20 microM) had no effect on intrinsic membrane properties of CA3 pyramidal neurons recorded in vitro in whole cell current- or voltage-clamp mode. Bath application of 10 microM 2-MPPA suppressed evoked excitatory postsynaptic current (EPSC) amplitudes. Attenuation of EPSC amplitudes was accompanied by a significant increase in paired-pulse facilitation (50-ms interpulse intervals), suggesting that a presynaptic mechanism is involved. The group II metabotropic glutamate receptor (mGluR) antagonist 2S-2-amino-2-(1S,2S-2-carboxycyclopropyl-1-yl)-3-(xanth-9-y l) propanoic acid (LY341495) prevented the 2-MPPA-dependent suppression of EPSC amplitudes. 2-MPPA reduced the frequencies of TTX-insensitive miniature EPSCs (mEPSC), without affecting their amplitudes, further supporting a presynaptic action for GCP II inhibition. 2-MPPA-induced reduction of mEPSC frequencies was prevented by LY341495, reinforcing the role of presynaptic group II mGluR. Because GCP II inhibition is thought to increase NAAG levels, these results suggest that NAAG suppresses synaptic transmission at mossy fiber-CA3 synapses through presynaptic activation of group II mGluRs.
Collapse
Affiliation(s)
- Emilio R Garrido Sanabria
- Department of Anatomy and Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, Baltimore 21201, USA
| | | | | | | |
Collapse
|
15
|
Uzdensky A, Kolosov M, Bragin D, Dergacheva O, Vanzha O, Oparina L. Involvement of adenylate cyclase and tyrosine kinase signaling pathways in response of crayfish stretch receptor neuron and satellite glia cell to photodynamic treatment. Glia 2004; 49:339-48. [PMID: 15494984 DOI: 10.1002/glia.20122] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neuroglial interactions are most profound during development or damage of nerve tissue. We studied the responses of crayfish stretch receptor neurons (SRN) and satellite glial cells to photosensitization with sulfonated aluminum phthalocyanine Photosens. Although Photosens was localized mainly in the glial envelope, neurons were very sensitive to photodynamic treatment. Photosensitization gradually inhibited and then abolished neuron activity. Neuronal and glial nuclei shrank. Some neurons and glial cells lost the integrity of the plasma membrane and died through necrosis after the treatment. The nuclei of other glial cells but not neurons become fragmented, indicating apoptosis. The number of glial nuclei around neuron soma increased, probably indicating proliferation for enhanced neuron protection. Adenylate cyclase (AC) inhibition by MDL-12330A, or tyrosine kinase (TK) inhibition by genistein, shortened neuron lifetime, whereas AC activation by forskolin or protein tyrosine phosphatases (PTP) inhibition by sodium orthovanadate prolonged neuronal activity. Therefore, cAMP and phosphotyrosines produced by AC and TK, respectively, protected SRN against photoinactivation. AC inhibition reduced photodamage of the plasma membrane and subsequent necrosis in neuronal and glial cells. AC activation prevented apoptosis in photosensitized glial cells and stimulated glial proliferation. TK inhibition protected neurons but not glia against photoinduced membrane permeabilization and subsequent necrosis whereas PTP inhibition more strongly protected glial cells. Therefore, both signaling pathways involving cAMP and phosphotyrosines might contribute to the maintenance of neuronal activity and the integrity of the neuronal and glial plasma membranes. Adenylate cyclase but not phosphotyrosine signaling pathways modulated glial apoptosis and proliferation under photooxidative stress.
Collapse
Affiliation(s)
- Anatoly Uzdensky
- Department of Biophysics and Biocybernetics, Rostov State University, 194/1 Stachky ave., Institute of Neurocybernetics, Rostov-on-Don 344090, Russia.
| | | | | | | | | | | |
Collapse
|
16
|
Engler JA, Gottesman JM, Harkins JC, Urazaev AK, Lieberman EM, Grossfeld RM. Properties of glutaminase of crayfish CNS: implications for axon-glia signaling. Neuroscience 2002; 114:699-705. [PMID: 12220571 DOI: 10.1016/s0306-4522(02)00357-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Glutaminase of crayfish axons is believed to participate in recycling of axon-glia signaling agent(s). We measured the activity and properties of glutaminase in crude homogenates of crayfish CNS, using ion exchange chromatography to separate radiolabeled product from substrate. Crayfish glutaminase activity is cytoplasmic and/or weakly bound to membranes and dependent on time, tissue protein, and glutamine concentration. It resembles the kidney-type phosphate-activated glutaminase of mammals in being stimulated by inorganic phosphate and alkaline pH and inhibited by the product glutamate and by the glutamine analog 6-diazo-5-oxo-L-norleucine. During incubation of crayfish CNS fibers in Na(+)-free saline containing radiolabeled glutamine, there is an increased formation of radiolabeled glutamate in axoplasm that is temporally associated with an increase in axonal pH from about 7.1 to about 8.0. Both the formation of glutamate and the change in pH are reduced by 6-diazo-5-oxo-L-norleucine. Our results suggest that crayfish glutaminase activity is regulated by cellular changes in pH and glutamate concentration. Such changes could impact availability of the axon-glia signaling agents glutamate and N-acetylaspartylglutamate.
Collapse
Affiliation(s)
- J A Engler
- Zoology Department and WM Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695-7617, USA
| | | | | | | | | | | |
Collapse
|
17
|
Buttram JG, Engler JA, Grossfeld RM, Urazaev AK, Lieberman EM. Glutamine uptake and metabolism to N-acetylaspartylglutamate (NAAG) by crayfish axons and glia. Comp Biochem Physiol B Biochem Mol Biol 2002; 133:209-20. [PMID: 12381383 DOI: 10.1016/s1096-4959(02)00124-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have proposed that N-acetylaspartylglutamate (NAAG) or its hydrolytic product glutamate, is a chemical signaling agent between axons and periaxonal glia at non-synaptic sites in crayfish nerves, and that glutamine is a probable precursor for replenishing the releasable pool of NAAG. We report here, that crayfish central nerve fibers synthesize NAAG from exogenous glutamine. Cellular accumulation of radiolabel during in vitro incubation of desheathed cephalothoracic nerve bundles with [3H]glutamine was 74% Na(+)-independent. The Na(+)-independent transport was temperature-sensitive, linear with time for at least 4 h, saturable between 2.5 and 10 mM L-glutamine, and blocked by neutral amino acids and analogs that inhibit mammalian glutamine transport. Radiolabeled glutamine was taken up and metabolized by both axons and glia to glutamate and NAAG, and a significant fraction of these products effluxed from the cells. Both the metabolism and release of radiolabeled glutamine was influenced by extracellular Na(+). The uptake and conversion of glutamine to glutamate and NAAG by axons provides a possible mechanism for recycling and formation of the axon-to-glia signaling agent(s).
Collapse
Affiliation(s)
- J G Buttram
- Zoology Department and W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC 27695-7617, USA
| | | | | | | | | |
Collapse
|
18
|
Gafurov BS, Urazaev AK, Grossfeld RM, Lieberman EM. Mechanism of NMDA receptor contribution to axon-to-glia signaling in the crayfish medial giant nerve fiber. Glia 2002; 38:80-6. [PMID: 11921205 DOI: 10.1002/glia.10042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Electrical stimulation of crayfish giant axons at high frequency activates group II metabotropic and NMDA glutamate receptors on adjacent glial cells via release of N-acetylaspartylglutamate and glutamate formed upon its hydrolysis. This produces a transient depolarization followed by a prolonged hyperpolarization of glial cells that involves nicotinic acetylcholine receptor activation. The hyperpolarization is nearly completely blocked by antagonists of metabotropic glutamate receptors but only slightly reduced by inhibition of NMDA receptors. We report that the NMDA-induced hyperpolarization of glial cells is reduced by decreased calcium in the solution bathing the giant nerve fiber, while removal of sodium ions or block of voltage-dependent calcium channels completely prevents the glial response to NMDA. Inhibition of nicotinic acetylcholine receptors or removal of extracellular Cl(-) converts the glial response from a hyperpolarization to a depolarization that is sensitive to NMDA receptor antagonist. We propose that NMDA receptor activation by glutamate, formed from extracellular N-acetylaspartylglutamate during nerve stimulation, contributes to glial hyperpolarization by increasing intracellular Ca(2+) via opening of voltage-sensitive Ca(2+) channels. Based on our previous work, we propose further that the added Ca(2+) supplements that produced by N-acetylaspartylglutamate and glutamate acting on group II metabotropic glutamate receptors to cause an increased release of acetylcholine and a larger hyperpolarization.
Collapse
Affiliation(s)
- Boris S Gafurov
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27858, USA
| | | | | | | |
Collapse
|
19
|
Urazaev AK, Buttram JG, Deen JP, Gafurov BS, Slusher BS, Grossfeld RM, Lieberman EM. Mechanisms for clearance of released N-acetylaspartylglutamate in crayfish nerve fibers: implications for axon-glia signaling. Neuroscience 2002; 107:697-703. [PMID: 11720792 DOI: 10.1016/s0306-4522(01)00393-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Crayfish nerve fibers incubated with radiolabeled glutamate or glutamine accumulate these substrates and synthesize radioactive N-acetylaspartylglutamate (NAAG). Upon stimulation of the medial giant nerve fiber, NAAG is the primary radioactive metabolite released. Since NAAG activates a glial hyperpolarization comparable to that initiated by glutamate or axonal stimulation through the same receptor, we have proposed that it is the likely mediator of interactions between the medial giant axon and its periaxonal glia. This manuscript reports investigations of possible mechanisms for termination of NAAG-signaling activity. N-acetylaspartyl-[(3)H]glutamate was not accumulated from the bath saline by unstimulated crayfish giant axons or their associated glia during a 30-min incubation. Stimulation of the central nerve cord at 50 Hz during the last minute of the incubation dramatically increased the levels of radiolabeled glutamate, NAAG, and glutamine in the medial giant axon and its associated glia. These results indicate that stimulation-sensitive peptide hydrolysis and metabolic recycling of the radiolabeled glutamate occurred. There was a beta-NAAG-, quisqualate- and 2-(phosphonomethyl)-pentanedioic acid-inhibitable glutamate carboxypeptidase II activity in the membrane fraction of central nerve fibers, but not in axonal or glial cytoplasmic fractions. Inactivation of this enzyme by 2-(phosphonomethyl)-pentanedioic acid or inhibition of N-methyl-D-aspartate (NMDA) receptors by MK801 reduced the glial hyperpolarization activated by high-frequency stimulation. These results indicate that axon-to-glia signaling is terminated by NAAG hydrolysis and that the glutamate formed contributes to the glial electrical response in part via activation of NMDA receptors. Both NAAG release and an increase in glutamate carboxypeptidase II activity appear to be induced by nerve stimulation.
Collapse
Affiliation(s)
- A K Urazaev
- Department of Physiology, The Brody School of Medicine, East Carolina University, Greenville, NC 27858-4354, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Urazaev AK, Grossfeld RM, Fletcher PL, Speno H, Gafurov BS, Buttram JG, Lieberman EM. Synthesis and release of N-acetylaspartylglutamate (NAAG) by crayfish nerve fibers: implications for axon-glia signaling. Neuroscience 2002; 106:237-47. [PMID: 11564433 DOI: 10.1016/s0306-4522(01)00270-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Early physiological and pharmacological studies of crayfish and squid giant nerve fibers suggested that glutamate released from the axon during action potential generation initiates metabolic and electrical responses of periaxonal glia. However, more recent investigations in our laboratories suggest that N-acetylaspartylglutamate (NAAG) may be the released agent active at the glial cell membrane. The investigation described in this paper focused on NAAG metabolism and release, and its contribution to the appearance of glutamate extracellularly. Axoplasm and periaxonal glial cell cytoplasm collected from medial giant nerve fibers (MGNFs) incubated with radiolabeled L-glutamate contained radiolabeled glutamate, glutamine, NAAG, aspartate, and GABA. Total radiolabel release was not altered by electrical stimulation of nerve cord loaded with [(14)C]glutamate by bath application or loaded with [(14)C]glutamate, [(3)H]-D-aspartate or [(3)H]NAAG by axonal injection. However, when radiolabeled glutamate was used for bath loading, radiolabel distribution among glutamate and its metabolic products in the superfusate was changed by stimulation. NAAG was the largest fraction, accounting for approximately 50% of the total recovered radiolabel in control conditions. The stimulated increase in radioactive NAAG in the superfusate coincided with its virtual clearance from the medial giant axon (MGA). A small, stimulation-induced increase in radiolabeled glutamate in the superfusate was detected only when a glutamate uptake inhibitor was present. The increase in [(3)H]glutamate in the superfusion solution of nerve incubated with [(3)H]NAAG was reduced when beta-NAAG, a competitive glutamate carboxypeptidase II (GCP II) inhibitor, was present.Overall, these results suggest that glutamate is metabolized to NAAG in the giant axon and its periaxonal glia and that, upon stimulation, NAAG is released from the axon and converted in part to glutamate by GCP II. A quisqualate- and beta-NAAG-sensitive GCP II activity was detected in nerve cord homogenates. These results, together with those in the accompanying paper demonstrating that NAAG can activate a glial electrophysiological response comparable to that initiated by glutamate, implicate NAAG as a probable mediator of interactions between the MGA and its periaxonal glia.
Collapse
Affiliation(s)
- A K Urazaev
- Department of Physiology, The Brody School of Medicine of East Carolina University, Greenville, NC 27858, USA
| | | | | | | | | | | | | |
Collapse
|