1
|
Agadagba SK, Yau SY, Liang Y, Dalton K, Thompson B. Bidirectional causality of physical exercise in retinal neuroprotection. Neural Regen Res 2025; 20:3400-3415. [PMID: 39688575 PMCID: PMC11974656 DOI: 10.4103/nrr.nrr-d-24-00942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/21/2024] [Accepted: 11/16/2024] [Indexed: 12/18/2024] Open
Abstract
Physical exercise is recognized as an effective intervention to improve mood, physical performance, and general well-being. It achieves these benefits through cellular and molecular mechanisms that promote the release of neuroprotective factors. Interestingly, reduced levels of physical exercise have been implicated in several central nervous system diseases, including ocular disorders. Emerging evidence has suggested that physical exercise levels are significantly lower in individuals with ocular diseases such as glaucoma, age-related macular degeneration, retinitis pigmentosa, and diabetic retinopathy. Physical exercise may have a neuroprotective effect on the retina. Therefore, the association between reduced physical exercise and ocular diseases may involve a bidirectional causal relationship whereby visual impairment leads to reduced physical exercise and decreased exercise exacerbates the development of ocular disease. In this review, we summarize the evidence linking physical exercise to eye disease and identify potential mediators of physical exercise-induced retinal neuroprotection. Finally, we discuss future directions for preclinical and clinical research in exercise and eye health.
Collapse
Affiliation(s)
- Stephen K. Agadagba
- Center for Eye and Vision Research Limited, 17W, Hong Kong Science Park, Hong Kong Special Administrative Region, China
| | - Suk-yu Yau
- Center for Eye and Vision Research Limited, 17W, Hong Kong Science Park, Hong Kong Special Administrative Region, China
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Ying Liang
- Center for Eye and Vision Research Limited, 17W, Hong Kong Science Park, Hong Kong Special Administrative Region, China
| | - Kristine Dalton
- Center for Eye and Vision Research Limited, 17W, Hong Kong Science Park, Hong Kong Special Administrative Region, China
- School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Benjamin Thompson
- Center for Eye and Vision Research Limited, 17W, Hong Kong Science Park, Hong Kong Special Administrative Region, China
- School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
2
|
Abbasi M, Gupta V, Chitranshi N, Moustardas P, Ranjbaran R, Graham SL. Molecular Mechanisms of Glaucoma Pathogenesis with Implications to Caveolin Adaptor Protein and Caveolin-Shp2 Axis. Aging Dis 2024; 15:2051-2068. [PMID: 37962455 PMCID: PMC11346403 DOI: 10.14336/ad.2023.1012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/12/2023] [Indexed: 11/15/2023] Open
Abstract
Glaucoma is a common retinal disorder characterized by progressive optic nerve damage, resulting in visual impairment and potential blindness. Elevated intraocular pressure (IOP) is a major risk factor, but some patients still experience disease progression despite IOP-lowering treatments. Genome-wide association studies have linked variations in the Caveolin1/2 (CAV-1/2) gene loci to glaucoma risk. Cav-1, a key protein in caveolae membrane invaginations, is involved in signaling pathways and its absence impairs retinal function. Recent research suggests that Cav-1 is implicated in modulating the BDNF/TrkB signaling pathway in retinal ganglion cells, which plays a critical role in retinal ganglion cell (RGC) health and protection against apoptosis. Understanding the interplay between these proteins could shed light on glaucoma pathogenesis and provide potential therapeutic targets.
Collapse
Affiliation(s)
- Mojdeh Abbasi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia.
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping Sweden.
| | - Vivek Gupta
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia.
| | - Nitin Chitranshi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia.
| | - Petros Moustardas
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping Sweden.
| | - Reza Ranjbaran
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Stuart L. Graham
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia.
| |
Collapse
|
3
|
Hector M, Langmann T, Wolf A. Translocator protein (18 kDa) (Tspo) in the retina and implications for ocular diseases. Prog Retin Eye Res 2024; 100:101249. [PMID: 38430990 DOI: 10.1016/j.preteyeres.2024.101249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Translocator protein (18 kDa) (Tspo), formerly known as peripheral benzodiazepine receptor is a highly conserved transmembrane protein primarily located in the outer mitochondrial membrane. In the central nervous system (CNS), especially in glia cells, Tspo is upregulated upon inflammation. Consequently, Tspo was used as a tool for diagnostic in vivo imaging of neuroinflammation in the brain and as a potential therapeutic target. Several synthetic Tspo ligands have been explored as immunomodulatory and neuroprotective therapy approaches. Although the function of Tspo and how its ligands exert these beneficial effects is not fully clear, it became a research topic of interest, especially in ocular diseases in the past few years. This review summarizes state-of-the-art knowledge of Tspo expression and its proposed functions in different cells of the retina including microglia, retinal pigment epithelium and Müller cells. Tspo is involved in cytokine signaling, oxidative stress and reactive oxygen species production, calcium signaling, neurosteroid synthesis, energy metabolism, and cholesterol efflux. We also highlight recent developments in preclinical models targeting Tspo and summarize the relevance of Tspo biology for ocular and retinal diseases. We conclude that glial upregulation of Tspo in different ocular pathologies and the use of Tspo ligands as promising therapeutic approaches in preclinical studies underline the importance of Tspo as a potential disease-modifying protein.
Collapse
Affiliation(s)
- Mandy Hector
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Centre for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| | - Anne Wolf
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Centre for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| |
Collapse
|
4
|
Feng KM, Tsung TH, Chen YH, Lu DW. The Role of Retinal Ganglion Cell Structure and Function in Glaucoma. Cells 2023; 12:2797. [PMID: 38132117 PMCID: PMC10741833 DOI: 10.3390/cells12242797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023] Open
Abstract
Glaucoma, a leading cause of irreversible blindness globally, primarily affects retinal ganglion cells (RGCs). This review dives into the anatomy of RGC subtypes, covering the different underlying theoretical mechanisms that lead to RGC susceptibility in glaucoma, including mechanical, vascular, excitotoxicity, and neurotrophic factor deficiency, as well as oxidative stress and inflammation. Furthermore, we examined numerous imaging methods and functional assessments to gain insight into RGC health. Finally, we investigated the current possible neuroprotective targets for RGCs that could help with future glaucoma research and management.
Collapse
Affiliation(s)
| | | | | | - Da-Wen Lu
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (K.M.F.); (T.-H.T.); (Y.-H.C.)
| |
Collapse
|
5
|
Silvestri T, Daruich A, De Palma FDE, Mollo V, Naud MC, Aleo D, Spitaleri F, Kroemer G, Behar-Cohen F, Biondi M, Picard E, Maiuri MC, Mayol L. In Vitro and In Vivo Safety of Hyaluronic Acid-Decorated Microparticles for Intravitreal Injection of Palmitoylethanolamide, Citicoline, or Glial-Cell-Derived Neurotrophic Factor. Biomacromolecules 2023; 24:3510-3521. [PMID: 37531486 DOI: 10.1021/acs.biomac.3c00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
The treatment of posterior eye segment diseases through intravitreal injection requires repeated injections of an active molecule, which may be associated with serious side effects and poor patient compliance. One brilliant strategy to overcome these issues is the use of drug-loaded microparticles for sustained release, aiming at reducing the frequency of injections. Therefore, the aim of this work was to assess the safety features of poly(lactic-co-glycolic acid) (PLGA)-based, hyaluronic acid-decorated microparticles loaded with palmitoylethanolamide (PEA), citicoline (CIT), or glial-cell-derived neurotrophic factor (GDNF). Microparticles were prepared by double emulsion-solvent evaporation and fully characterized for their technological features. Microparticles possessed a satisfactory safety profile in vitro on human retinal pigment epithelial (ARPE-19) cells. Interestingly, the administration of free GDNF led to a loss of cell viability, while GDNF sustained release displayed a positive effect in that regard. In vivo results confirmed the safety profile of both empty and loaded microparticles. Overall, the outcomes suggest that the produced microparticles are promising for improving the local administration of neuroprotective molecules. Further studies will be devoted to assess the therapeutic ability of microparticles.
Collapse
Affiliation(s)
- Teresa Silvestri
- Department of Pharmacy─Pharmaceutical Sciences, University of Bari Aldo Moro, Orabona St. 4, 70125 Bari, Italy
- Department of Pharmacy, University of Naples Federico II, D. Montesano St. 49, 80131 Naples, Italy
| | - Alejandra Daruich
- Centre de Recherche des Cordeliers, INSERM UMRS1138, Team "From Physiopathology of Ocular Diseases to Clinical Development", Sorbonne Université, Université Paris Cité, 75006 Paris, France
- Ophthalmology Department, Necker-Enfants Malades University Hospital, AP-HP, 149 Rue de Sèvres, Université Paris Cité, 75015 Paris, France
| | - Fatima Domenica Elisa De Palma
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli Federico II, Pansini St. 5, 80131 Naples, Italy
- Centre de Recherche des Cordeliers, INSERM UMRS1138, Université Paris Cité, Sorbonne Université, Team "Metabolism, Cancer & Immunity", 75006 Paris, France
- Cell Biology and Metabolomics platforms, Gustave Roussy Cancer Campus, 94805 Villejuif, France
| | - Valentina Mollo
- Italian Institute of Technology─Centre for Advanced Biomaterials for Healthcare, Largo Barsanti e Matteucci, 53, 80125 Naples, Italy
| | - Marie Christine Naud
- Centre de Recherche des Cordeliers, INSERM UMRS1138, Team "From Physiopathology of Ocular Diseases to Clinical Development", Sorbonne Université, Université Paris Cité, 75006 Paris, France
| | - Danilo Aleo
- Medivis Srl, Carnazza St. 34/C, 95030 Tremestieri etneo, Catania, Italy
| | - Fabiola Spitaleri
- Medivis Srl, Carnazza St. 34/C, 95030 Tremestieri etneo, Catania, Italy
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, INSERM UMRS1138, Université Paris Cité, Sorbonne Université, Team "Metabolism, Cancer & Immunity", 75006 Paris, France
- Cell Biology and Metabolomics platforms, Gustave Roussy Cancer Campus, 94805 Villejuif, France
| | - Francine Behar-Cohen
- Centre de Recherche des Cordeliers, INSERM UMRS1138, Team "From Physiopathology of Ocular Diseases to Clinical Development", Sorbonne Université, Université Paris Cité, 75006 Paris, France
| | - Marco Biondi
- Department of Pharmacy, University of Naples Federico II, D. Montesano St. 49, 80131 Naples, Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB), Piazzale Tecchio 80, 80125 Naples, Italy
| | - Emilie Picard
- Centre de Recherche des Cordeliers, INSERM UMRS1138, Team "From Physiopathology of Ocular Diseases to Clinical Development", Sorbonne Université, Université Paris Cité, 75006 Paris, France
| | - Maria Chiara Maiuri
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli Federico II, Pansini St. 5, 80131 Naples, Italy
- Centre de Recherche des Cordeliers, INSERM UMRS1138, Université Paris Cité, Sorbonne Université, Team "Metabolism, Cancer & Immunity", 75006 Paris, France
- Cell Biology and Metabolomics platforms, Gustave Roussy Cancer Campus, 94805 Villejuif, France
| | - Laura Mayol
- Interdisciplinary Research Centre on Biomaterials (CRIB), Piazzale Tecchio 80, 80125 Naples, Italy
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Pansini St. 5, 80131 Naples, Italy
| |
Collapse
|
6
|
Laperle AH, Moser VA, Avalos P, Lu B, Wu A, Fulton A, Ramirez S, Garcia VJ, Bell S, Ho R, Lawless G, Roxas K, Shahin S, Shelest O, Svendsen S, Wang S, Svendsen CN. Human iPSC-derived neural progenitor cells secreting GDNF provide protection in rodent models of ALS and retinal degeneration. Stem Cell Reports 2023; 18:1629-1642. [PMID: 37084724 PMCID: PMC10444557 DOI: 10.1016/j.stemcr.2023.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/23/2023] Open
Abstract
Human induced pluripotent stem cells (iPSCs) are a renewable cell source that can be differentiated into neural progenitor cells (iNPCs) and transduced with glial cell line-derived neurotrophic factor (iNPC-GDNFs). The goal of the current study is to characterize iNPC-GDNFs and test their therapeutic potential and safety. Single-nuclei RNA-seq show iNPC-GDNFs express NPC markers. iNPC-GDNFs delivered into the subretinal space of the Royal College of Surgeons rodent model of retinal degeneration preserve photoreceptors and visual function. Additionally, iNPC-GDNF transplants in the spinal cord of SOD1G93A amyotrophic lateral sclerosis (ALS) rats preserve motor neurons. Finally, iNPC-GDNF transplants in the spinal cord of athymic nude rats survive and produce GDNF for 9 months, with no signs of tumor formation or continual cell proliferation. iNPC-GDNFs survive long-term, are safe, and provide neuroprotection in models of both retinal degeneration and ALS, indicating their potential as a combined cell and gene therapy for various neurodegenerative diseases.
Collapse
Affiliation(s)
- Alexander H Laperle
- Cedars-Sinai Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - V Alexandra Moser
- Cedars-Sinai Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Pablo Avalos
- Cedars-Sinai Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Bin Lu
- Cedars-Sinai Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Amanda Wu
- Cedars-Sinai Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Aaron Fulton
- Cedars-Sinai Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Stephany Ramirez
- Cedars-Sinai Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Veronica J Garcia
- Cedars-Sinai Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Shaughn Bell
- Cedars-Sinai Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ritchie Ho
- Cedars-Sinai Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - George Lawless
- Cedars-Sinai Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kristina Roxas
- Cedars-Sinai Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Saba Shahin
- Cedars-Sinai Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Oksana Shelest
- Cedars-Sinai Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Soshana Svendsen
- Cedars-Sinai Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Shaomei Wang
- Cedars-Sinai Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Clive N Svendsen
- Cedars-Sinai Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Sinclair SH, Miller E, Talekar KS, Schwartz SS. Diabetes mellitus associated neurovascular lesions in the retina and brain: A review. FRONTIERS IN OPHTHALMOLOGY 2022; 2:1012804. [PMID: 38983558 PMCID: PMC11182219 DOI: 10.3389/fopht.2022.1012804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/14/2022] [Indexed: 07/11/2024]
Abstract
Diabetes mellitus (DM) is now recognized as a system-wide, autoimmune, inflammatory, microvascular disorder, which, in the retina and brain results in severe multifocal injury now recognized as a leading cause, world-wide, of progressive vision loss and dementia. To address this problem, resulting primarily from variations in glycemia in the prediabetic and overt diabetic states, it must be realized that, although some of the injury processes associated with diabetes may be system wide, there are varying responses, effector, and repair mechanisms that differ from organ to organ or within varying cell structures. Specifically, within the retina, and similarly within the brain cortex, lesions occur of the "neurovascular unit", comprised of focal microvascular occlusions, inflammatory endothelial and pericyte injury, with small vessel leakage resulting in injury to astrocytes, Müller cells, and microglia, all of which occur with progressive neuronal apoptosis. Such lesions are now recognized to occur before the first microaneurysms are visible to imaging by fundus cameras or before they result in detectable symptoms or signs recognizable to the patient or clinician. Treatments, therefore, which currently are not initiated within the retina until edema develops or there is progression of vascular lesions that define the current staging of retinopathy, and in the brain only after severe signs of cognitive failure. Treatments, therefore are applied relatively late with some reduction in progressive cellular injury but with resultant minimal vision or cognitive improvement. This review article will summarize the multiple inflammatory and remediation processes currently understood to occur in patients with diabetes as well as pre-diabetes and summarize as well the current limitations of methods for assessing the structural and functional alterations within the retina and brain. The goal is to attempt to define future screening, monitoring, and treatment directions that hopefully will prevent progressive injury as well as enable improved repair and attendant function.
Collapse
Affiliation(s)
- Stephen H Sinclair
- Pennsylvania College of Optometry, Salus University, Philadelphia, PA, United States
| | - Elan Miller
- Division of Vascular Neurology, Vickie & Jack Farber Institute for Institute for Neuroscience, Sidney Kimmel Medical College (SKMC) Thomas Jefferson University, Philadelphia, PA, United States
| | - Kiran S Talekar
- Department of Radiology, Section of Neuroradiology and ENT Radiology, Clinical Functional Magnetic Resonance Imaging and Diffusion Tensor Imaging at Thomas Jefferson University Hospital and The Jefferson Integrated Magnetic Resonance Imaging Center (JIMRIC) Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, United States
| | - Stanley S Schwartz
- Department of Endocrinology and Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Main Line Health System, Philadelphia, PA, United States
| |
Collapse
|
8
|
Guo L, Choi S, Bikkannavar P, Cordeiro MF. Microglia: Key Players in Retinal Ageing and Neurodegeneration. Front Cell Neurosci 2022; 16:804782. [PMID: 35370560 PMCID: PMC8968040 DOI: 10.3389/fncel.2022.804782] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/11/2022] [Indexed: 12/20/2022] Open
Abstract
Microglia are the resident immune cells of the central nervous system (CNS) and play a key role in maintaining the normal function of the retina and brain. During early development, microglia migrate into the retina, transform into a highly ramified phenotype, and scan their environment constantly. Microglia can be activated by any homeostatic disturbance that may endanger neurons and threaten tissue integrity. Once activated, the young microglia exhibit a high diversity in their phenotypes as well as their functions, which relate to either beneficial or harmful consequences. Microglial activation is associated with the release of cytokines, chemokines, and growth factors that can determine pathological outcomes. As the professional phagocytes in the retina, microglia are responsible for the clearance of pathogens, dead cells, and protein aggregates. However, their phenotypic diversity and phagocytic capacity is compromised with ageing. This may result in the accumulation of protein aggregates and myelin debris leading to retinal neuroinflammation and neurodegeneration. In this review, we describe microglial phenotypes and functions in the context of the young and ageing retina, and the mechanisms underlying changes in ageing. Additionally, we review microglia-mediated retinal neuroinflammation and discuss the mechanisms of microglial involvement in retinal neurodegenerative diseases.
Collapse
Affiliation(s)
- Li Guo
- Institute of Ophthalmology, University College London, London, United Kingdom
- *Correspondence: Li Guo,
| | - Soyoung Choi
- Institute of Ophthalmology, University College London, London, United Kingdom
| | | | - M. Francesca Cordeiro
- Institute of Ophthalmology, University College London, London, United Kingdom
- Imperial College Ophthalmology Research Group, Imperial College London, London, United Kingdom
- M. Francesca Cordeiro,
| |
Collapse
|
9
|
Cell-Based Neuroprotection of Retinal Ganglion Cells in Animal Models of Optic Neuropathies. BIOLOGY 2021; 10:biology10111181. [PMID: 34827174 PMCID: PMC8615038 DOI: 10.3390/biology10111181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022]
Abstract
Retinal ganglion cells (RGCs) comprise a heterogenous group of projection neurons that transmit visual information from the retina to the brain. Progressive degeneration of these cells, as it occurs in inflammatory, ischemic, traumatic or glaucomatous optic neuropathies, results in visual deterioration and is among the leading causes of irreversible blindness. Treatment options for these diseases are limited. Neuroprotective approaches aim to slow down and eventually halt the loss of ganglion cells in these disorders. In this review, we have summarized preclinical studies that have evaluated the efficacy of cell-based neuroprotective treatment strategies to rescue retinal ganglion cells from cell death. Intraocular transplantations of diverse genetically nonmodified cell types or cells engineered to overexpress neurotrophic factors have been demonstrated to result in significant attenuation of ganglion cell loss in animal models of different optic neuropathies. Cell-based combinatorial neuroprotective approaches represent a potential strategy to further increase the survival rates of retinal ganglion cells. However, data about the long-term impact of the different cell-based treatment strategies on retinal ganglion cell survival and detailed analyses of potential adverse effects of a sustained intraocular delivery of neurotrophic factors on retina structure and function are limited, making it difficult to assess their therapeutic potential.
Collapse
|
10
|
Simó R, Simó-Servat O, Bogdanov P, Hernández C. Neurovascular Unit: A New Target for Treating Early Stages of Diabetic Retinopathy. Pharmaceutics 2021; 13:pharmaceutics13081320. [PMID: 34452281 PMCID: PMC8399715 DOI: 10.3390/pharmaceutics13081320] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 01/02/2023] Open
Abstract
The concept of diabetic retinopathy as a microvascular disease has evolved and is now considered a more complex diabetic complication in which neurovascular unit impairment plays an essential role and, therefore, can be considered as a main therapeutic target in the early stages of the disease. However, neurodegeneration is not always the apparent primary event in the natural story of diabetic retinopathy, and a phenotyping characterization is recommendable to identify those patients in whom neuroprotective treatment might be of benefit. In recent years, a myriad of treatments based on neuroprotection have been tested in experimental models, but more interestingly, there are drugs with a dual activity (neuroprotective and vasculotropic). In this review, the recent evidence concerning the therapeutic approaches targeting neurovascular unit impairment will be presented, along with a critical review of the scientific gaps and problems which remain to be overcome before our knowledge can be transferred to clinical practice.
Collapse
Affiliation(s)
- Rafael Simó
- Diabetes and Metabolism Research Unit, Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain; (O.S.-S.); (P.B.); (C.H.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ICSIII), 28029 Madrid, Spain
- Correspondence:
| | - Olga Simó-Servat
- Diabetes and Metabolism Research Unit, Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain; (O.S.-S.); (P.B.); (C.H.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ICSIII), 28029 Madrid, Spain
| | - Patricia Bogdanov
- Diabetes and Metabolism Research Unit, Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain; (O.S.-S.); (P.B.); (C.H.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ICSIII), 28029 Madrid, Spain
| | - Cristina Hernández
- Diabetes and Metabolism Research Unit, Vall d’Hebron Research Institute (VHIR), 08035 Barcelona, Spain; (O.S.-S.); (P.B.); (C.H.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ICSIII), 28029 Madrid, Spain
| |
Collapse
|
11
|
Vernazza S, Oddone F, Tirendi S, Bassi AM. Risk Factors for Retinal Ganglion Cell Distress in Glaucoma and Neuroprotective Potential Intervention. Int J Mol Sci 2021; 22:7994. [PMID: 34360760 PMCID: PMC8346985 DOI: 10.3390/ijms22157994] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/14/2022] Open
Abstract
Retinal ganglion cells (RGCs) are a population of neurons of the central nervous system (CNS) extending with their soma to the inner retina and with their axons to the optic nerve. Glaucoma represents a group of neurodegenerative diseases where the slow progressive death of RGCs results in a permanent loss of vision. To date, although Intra Ocular Pressure (IOP) is considered the main therapeutic target, the precise mechanisms by which RGCs die in glaucoma have not yet been clarified. In fact, Primary Open Angle Glaucoma (POAG), which is the most common glaucoma form, also occurs without elevated IOP. This present review provides a summary of some pathological conditions, i.e., axonal transport blockade, glutamate excitotoxicity and changes in pro-inflammatory cytokines along the RGC projection, all involved in the glaucoma cascade. Moreover, neuro-protective therapeutic approaches, which aim to improve RGC degeneration, have also been taken into consideration.
Collapse
Affiliation(s)
- Stefania Vernazza
- Department of Experimental Medicine (DIMES), University of Genoa, 16126 Genoa, Italy; (S.T.); (A.M.B.)
| | | | - Sara Tirendi
- Department of Experimental Medicine (DIMES), University of Genoa, 16126 Genoa, Italy; (S.T.); (A.M.B.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
| | - Anna Maria Bassi
- Department of Experimental Medicine (DIMES), University of Genoa, 16126 Genoa, Italy; (S.T.); (A.M.B.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
| |
Collapse
|
12
|
Retinal Ganglion Cell Transplantation: Approaches for Overcoming Challenges to Functional Integration. Cells 2021; 10:cells10061426. [PMID: 34200991 PMCID: PMC8228580 DOI: 10.3390/cells10061426] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023] Open
Abstract
As part of the central nervous system, mammalian retinal ganglion cells (RGCs) lack significant regenerative capacity. Glaucoma causes progressive and irreversible vision loss by damaging RGCs and their axons, which compose the optic nerve. To functionally restore vision, lost RGCs must be replaced. Despite tremendous advancements in experimental models of optic neuropathy that have elucidated pathways to induce endogenous RGC neuroprotection and axon regeneration, obstacles to achieving functional visual recovery through exogenous RGC transplantation remain. Key challenges include poor graft survival, low donor neuron localization to the host retina, and inadequate dendritogenesis and synaptogenesis with afferent amacrine and bipolar cells. In this review, we summarize the current state of experimental RGC transplantation, and we propose a set of standard approaches to quantifying and reporting experimental outcomes in order to guide a collective effort to advance the field toward functional RGC replacement and optic nerve regeneration.
Collapse
|
13
|
Prospects for the application of Müller glia and their derivatives in retinal regenerative therapies. Prog Retin Eye Res 2021; 85:100970. [PMID: 33930561 DOI: 10.1016/j.preteyeres.2021.100970] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/28/2021] [Accepted: 03/31/2021] [Indexed: 02/07/2023]
Abstract
Neural cell death is the main feature of all retinal degenerative disorders that lead to blindness. Despite therapeutic advances, progression of retinal disease cannot always be prevented, and once neuronal cell damage occurs, visual loss cannot be reversed. Recent research in the stem cell field, and the identification of Müller glia with stem cell characteristics in the human eye, have provided hope for the use of these cells in retinal therapies to restore vision. Müller glial cells, which are the major structural cells of the retina, play a very important role in retinal homeostasis during health and disease. They are responsible for the spontaneous retinal regeneration observed in zebrafish and lower vertebrates during early postnatal life, and despite the presence of Müller glia with stem cell characteristics in the adult mammalian retina, there is no evidence that they promote regeneration in humans. Like many other stem cells and neurons derived from pluripotent stem cells, Müller glia with stem cell potential do not differentiate into retinal neurons or integrate into the retina when transplanted into the vitreous of experimental animals with retinal degeneration. However, despite their lack of integration, grafted Müller glia have been shown to induce partial restoration of visual function in spontaneous or induced experimental models of photoreceptor or retinal ganglion cell damage. This improvement in visual function observed after Müller cell transplantation has been ascribed to the release of neuroprotective factors that promote the repair and survival of damaged neurons. Due to the development and availability of pluripotent stem cell lines for therapeutic uses, derivation of Müller cells from retinal organoids formed by iPSC and ESC has provided more realistic prospects for the application of these cells to retinal therapies. Several opportunities for research in the regenerative field have also been unlocked in recent years due to a better understanding of the genomic and proteomic profiles of the developing and regenerating retina in zebrafish, providing the basis for further studies of the human retina. In addition, the increased interest on the nature and function of cellular organelle release and the characterization of molecular components of exosomes released by Müller glia, may help us to design new approaches that could be applied to the development of more effective treatments for retinal degenerative diseases.
Collapse
|
14
|
Intravitreal Co-Administration of GDNF and CNTF Confers Synergistic and Long-Lasting Protection against Injury-Induced Cell Death of Retinal Ganglion Cells in Mice. Cells 2020; 9:cells9092082. [PMID: 32932933 PMCID: PMC7565883 DOI: 10.3390/cells9092082] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/03/2020] [Accepted: 09/09/2020] [Indexed: 12/15/2022] Open
Abstract
We have recently demonstrated that neural stem cell-based intravitreal co-administration of glial cell line-derived neurotrophic factor (GDNF) and ciliary neurotrophic factor (CNTF) confers profound protection to injured retinal ganglion cells (RGCs) in a mouse optic nerve crush model, resulting in the survival of ~38% RGCs two months after the nerve lesion. Here, we analyzed whether this neuroprotective effect is long-lasting and studied the impact of the pronounced RGC rescue on axonal regeneration. To this aim, we co-injected a GDNF- and a CNTF-overexpressing neural stem cell line into the vitreous cavity of adult mice one day after an optic nerve crush and determined the number of surviving RGCs 4, 6 and 8 months after the lesion. Remarkably, we found no significant decrease in the number of surviving RGCs between the successive analysis time points, indicating that the combined administration of GDNF and CNTF conferred lifelong protection to injured RGCs. While the simultaneous administration of GDNF and CNTF stimulated pronounced intraretinal axon growth when compared to retinas treated with either factor alone, numbers of regenerating axons in the distal optic nerve stumps were similar in animals co-treated with both factors and animals treated with CNTF only.
Collapse
|
15
|
Abbasi M, Gupta VK, Chitranshi N, Gupta VB, Mirzaei M, Dheer Y, Garthwaite L, Zaw T, Parton RG, You Y, Graham SL. Caveolin-1 Ablation Imparts Partial Protection Against Inner Retinal Injury in Experimental Glaucoma and Reduces Apoptotic Activation. Mol Neurobiol 2020; 57:3759-3784. [PMID: 32578008 DOI: 10.1007/s12035-020-01948-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 05/13/2020] [Indexed: 12/16/2022]
Abstract
Retinal ganglion cell degeneration is a characteristic feature of glaucoma, and accordingly, protection of these cells constitutes a major therapeutic objective in the disease. Here, we demonstrate the key influence of caveolin (Cav) in regulating the inner retinal homeostasis in two models of experimentally elevated intraocular pressure (IOP). Two groups of Cav-1-/- and wild-type mice were used in the study. Animals were subjected to experimentally induced chronic and acutely elevated IOP and any changes in their retinal function were assessed by positive scotopic threshold response recordings. TUNEL and cleaved caspase-3 assays were performed to evaluate apoptotic changes in the retina while Brn3a immunostaining was used as a marker to assess and quantify ganglion cell layer (GCL) changes. H&E staining was carried out on retinal sections to evaluate histological differences in retinal laminar structure. Cav-1 ablation partially protected the inner retinal function in both chronic and acute models of elevated IOP. The protective effects of Cav-1 loss were also evident histologically by reduced loss of GCL density in both models. The phenotypic protection in Cav-1-/- glaucoma mice paralleled with increased TrkB phosphorylation and reduced endoplasmic reticulum stress markers and apoptotic activation in the inner retinas. This study corroborated previous findings of enhanced Shp2 phosphorylation in a chronic glaucoma model and established a novel role of Cav-1 in mediating activation of this phosphatase in the inner retina in vivo. Collectively, these findings highlight the critical involvement of Cav-1 regulatory mechanisms in ganglion cells in response to increased IOP, implicating Cav-1 as a potential therapeutic target in glaucoma.
Collapse
Affiliation(s)
- Mojdeh Abbasi
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
| | - Vivek K Gupta
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia.
| | - Nitin Chitranshi
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia.
| | - Veer B Gupta
- School of Medicine, Deakin University, Melbourne, VIC, Australia
| | - Mehdi Mirzaei
- Department of Molecular Science, Macquarie University, North Ryde, NSW, 2109, Australia.,Australian Proteome Analysis Facility, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Yogita Dheer
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
| | - Linda Garthwaite
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia
| | - Thiri Zaw
- Department of Molecular Science, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Robert G Parton
- Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland, 4072, Australia.,Institute for Molecular Bioscience, The University of Queensland, QLD, Brisbane, Australia
| | - Yuyi You
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia.,Save Sight Institute, Sydney University, Sydney, NSW, 2000, Australia
| | - Stuart L Graham
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW, 2109, Australia.,Save Sight Institute, Sydney University, Sydney, NSW, 2000, Australia
| |
Collapse
|
16
|
Vogt D, Haritoglou C, Mautone L, Hagenau F, Guenther SR, Wolf A, Priglinger SG, Schumann RG. Premacular Cells as Source of Neurotrophic Factors in Idiopathic Macular Holes. Curr Eye Res 2020; 45:1395-1402. [PMID: 32253944 DOI: 10.1080/02713683.2020.1752389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Purpose: To describe the presence of neurotrophic growth factors and histopathologic characteristics of internal limiting membrane (ILM) specimens obtained from large idiopathic full-thickness macular holes (FTMH). Methods: In 24 eyes of 24 patients with FTMH of diameter >400 µm, ILM specimens were harvested directly at the edge surrounding the macular hole during vitrectomy with peeling. We performed interference and phase contrast microscopy of flat mounts followed by immunostaining and transmission electron microscopy. Primary antigens directed against neurotrophic growth factors as well as antigens to glial and ganglion cells were used. Topographic relationship of cells and collagen was demonstrated by serial ultrathin sectioning. Results: Immunofluorescence microscopy demonstrated the presence of glial-derived neurotrophic factor and ciliary neurotrophic factor. Expression of vimentin, glial fibrillary acidic protein (GFAP), neurofilament, calretinin, and melanopsin was seen positive too. Cellular retinaldehyde-binding protein was seen positive in half of the specimens. Co-localisation of anti-GFAP as well as anti-vimentin with neurotrophic factors was found. Electron microscopy revealed cells exclusively on the vitreal side of the ILM. Cell fragments on the retinal side were rarely seen. Conclusion: In large FTMH, ILM specimens present positive immunolabelling of neurotrophic factors. The co-localization with macroglial cell markers suggests a premacular cell composition as a source of the neurotrophic factors. Ultrastructurally, premacular cells were found on the vitreal side of the ILM and not within the collagen network of the ILM itself.
Collapse
Affiliation(s)
- Denise Vogt
- Department of Ophthalmology, Ludwig-Maximilians-University , Munich, Germany
| | | | - Luca Mautone
- Department of Ophthalmology, Ludwig-Maximilians-University , Munich, Germany
| | - Felix Hagenau
- Department of Ophthalmology, Ludwig-Maximilians-University , Munich, Germany
| | - Stefanie R Guenther
- Department of Ophthalmology, Ludwig-Maximilians-University , Munich, Germany
| | - Armin Wolf
- Department of Ophthalmology, Ludwig-Maximilians-University , Munich, Germany
| | | | - Ricarda G Schumann
- Department of Ophthalmology, Ludwig-Maximilians-University , Munich, Germany
| |
Collapse
|
17
|
Yun D, Jeon MT, Kim HJ, Moon GJ, Lee S, Ha CM, Shin M, Kim SR. Induction of GDNF and GFRα-1 Following AAV1-Rheb(S16H) Administration in the Hippocampus in vivo. Exp Neurobiol 2020; 29:164-175. [PMID: 32408406 PMCID: PMC7237268 DOI: 10.5607/en19075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 01/24/2023] Open
Abstract
The activation of neurotrophic signaling pathways following the upregulation of glial cell line-derived neurotrophic factor (GDNF), a member of the transforming growth factor-β family, has a potential neuroprotective effect in the adult brain. Herein, we report that hippocampal transduction of adeno-associated virus serotype 1 (AAV1) with a constitutively active form of ras homolog enriched in brain [Rheb(S16H)], which can stimulate the production of brain-derived neurotrophic factor (BDNF) in hippocampal neurons, induces the increases in expression of GDNF and GDNF family receptor α-1 (GFRα-1), in neurons and astrocytes in the hippocampus of rat brain in vivo. Moreover, upregulation of GDNF and GFRα-1 contributes to neuroprotection against thrombin-induced neurotoxicity in the hippocampus. These results suggest that AAV1-Rheb(S16H) transduction of hippocampal neurons, resulting in neurotrophic interactions between neurons and astrocytes, may be useful for neuroprotection in the adult hippocampus.
Collapse
Affiliation(s)
- Dongyoung Yun
- School of Life Sciences, Kyungpook National University, Daegu 41566, Korea.,BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| | - Min-Tae Jeon
- School of Life Sciences, Kyungpook National University, Daegu 41566, Korea.,BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| | - Hyung-Jun Kim
- Dementia Research Group and Neurodegenerative Disease Group, Daegu 41068, Korea
| | - Gyeong Joon Moon
- School of Life Sciences, Kyungpook National University, Daegu 41566, Korea.,BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| | - Shinrye Lee
- Dementia Research Group and Neurodegenerative Disease Group, Daegu 41068, Korea
| | - Chang Man Ha
- Research Division and Brain Research Core Facilities, Korea Brain Research Institute, Daegu 41068, Korea
| | - Minsang Shin
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Korea.,Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Sang Ryong Kim
- School of Life Sciences, Kyungpook National University, Daegu 41566, Korea.,BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea.,Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
18
|
Arnold E, Thébault S, Aroña RM, Martínez de la Escalera G, Clapp C. Prolactin mitigates deficiencies of retinal function associated with aging. Neurobiol Aging 2019; 85:38-48. [PMID: 31698287 DOI: 10.1016/j.neurobiolaging.2019.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 01/17/2023]
Abstract
Aging causes the progressive degeneration of retinal cells leading to the eventual loss of vision. The hormone prolactin (PRL) is a neurotrophic factor able to compensate for photoreceptor cell death and electroretinogram deficits induced by light retinal damage. Here, we used adult 4-month old and aged 20-month old pigmented mice, null or not for the PRL receptor to explore whether PRL provides trophic support against age-related retinal dysfunction. Retinal functionality, apoptosis, glia activation, and neurotrophin expression were assessed by electroretinogram, TUNEL, glial fibrillary acidic protein and ionized calcium binding adaptor molecule 1 immunohistochemistry, and real-time PCR, respectively. Lack of PRL signaling in aged mice, but not in adult mice, correlated with photosensitive retinal dysfunction, increased photoreceptor apoptosis, differential expression of proapoptotic mediators, and microglia activation. We conclude that PRL is required for maintaining retinal functionality in both female and male mice during aging and has potential therapeutic value against age-related retinal disorders.
Collapse
Affiliation(s)
- Edith Arnold
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México; CONACYT-Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| | - Stéphanie Thébault
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| | - Rodrigo M Aroña
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| | | | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México.
| |
Collapse
|
19
|
Mardani M, Tiraihi T, Bathaie SZ, Mirnajafi-Zadeh J. Comparison of the proteome patterns of adipose-derived stem cells with those treated with selegiline using a two dimensional gel electrophoresis analysis. Biotech Histochem 2019; 95:176-185. [PMID: 31589072 DOI: 10.1080/10520295.2019.1656345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Adipose derived stem cells (ADSCs) are multipotent and can transdifferentiate into neural stem cells. We investigated the transdifferentiation of ADSCs to neural phenotype (NP) cells using selegiline and two-dimensional electrophoresis (2-DE). The perinephric and inguinal fat of rats was collected and used to isolate ADSCs that were characterized by immunophenotyping using flow cytometry. The ADSCs were differentiated into osteogenic and lipogenic cells. The NP cells were generated using 10-9 mM selegiline and characterized by immunocytochemical staining of nestin and neurofilament 68 (NF-68), and by qRT-PCR of nestin, neurod1 and NF68. Total protein of ADSCs and NP cells was extracted and their proteome patterns were examined using 2-DE. ADSCs carried CD73, CD44 and CD90 cell markers, but not CD34. ADSCs were differentiated into osteocyte and adipocyte lineages. The differentiated NP cells expressed nestin, neuro d1 and NF-68. The proteome pattern of ADSCs was compared with that of NP cells and eight spots showed more than a two fold increase in protein expression. The molecular weights and isoelectric points of these highly expressed proteins were estimated using Melanie software. We compared these results with those of the mouse proteomic database using the protein isoelectric point database, and the functions of the eight proteins in differentiation of NP cells were predicted using the UniProt database. The probable identities of the proteins that showed higher expression in NP cells included cholinesterase, GFRa2, protein kinase C (PKC-eta) and RING finger protein 121. The sequences of the proteins identified from mouse database were aligned by comparing them with similar proteins in rat database using the Basic Local Alignment Search Tool (BLAST). The E values of all aligned proteins were zero, which indicates consistency of the matched protein. These proteins participate in differentiation of the neuron and their overexpression causes ADSCs transdifferentiation into NP cells.
Collapse
Affiliation(s)
- M Mardani
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - T Tiraihi
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - S Z Bathaie
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - J Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
20
|
Andries L, De Groef L, Moons L. Neuroinflammation and Optic Nerve Regeneration: Where Do We Stand in Elucidating Underlying Cellular and Molecular Players? Curr Eye Res 2019; 45:397-409. [PMID: 31567007 DOI: 10.1080/02713683.2019.1669664] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Neurodegenerative diseases and central nervous system (CNS) trauma are highly irreversible, in part because adult mammals lack a robust regenerative capacity. A multifactorial problem underlies the limited axonal regeneration potential. Strikingly, neuroinflammation seems able to induce axonal regrowth in the adult mammalian CNS. It is increasingly clear that both blood-borne and resident inflammatory cells as well as reactivated glial cells affect axonal regeneration. The scope of this review is to give a comprehensive overview of the knowledge that links inflammation (with a focus on the innate immune system) to axonal regeneration and to critically reflect on the controversy that still prevails about the cells, molecules and pathways that are dominating the scene. Also, a brief overview is given of what is already known about the crosstalk between and the heterogeneity of cell types that might play a role in axonal regeneration. Recent research indicates that inflammation-induced axonal regrowth is not solely driven by a single-cell population but probably relies on the crosstalk between multiple cell types and the strong regulation of these cell populations in time and space. Moreover, there is growing evidence that the different cell populations are highly heterogeneous and as such can react differently upon injury. This could explain the controversial results that have been obtained over the past years. The primary focus of this manuscript is the retinofugal system of adult mammals, however, when relevant, insights or examples of the spontaneous regenerating zebrafish model and spinal cord research are added.
Collapse
Affiliation(s)
- Lien Andries
- Department of Biology, Neural Circuit Development and Regeneration Research Group, KU Leuven, Leuven, Belgium
| | - Lies De Groef
- Department of Biology, Neural Circuit Development and Regeneration Research Group, KU Leuven, Leuven, Belgium
| | - Lieve Moons
- Department of Biology, Neural Circuit Development and Regeneration Research Group, KU Leuven, Leuven, Belgium
| |
Collapse
|
21
|
Elmasry K, Ibrahim AS, Abdulmoneim S, Al-Shabrawey M. Bioactive lipids and pathological retinal angiogenesis. Br J Pharmacol 2019; 176:93-109. [PMID: 30276789 PMCID: PMC6284336 DOI: 10.1111/bph.14507] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/14/2018] [Accepted: 08/22/2018] [Indexed: 12/22/2022] Open
Abstract
Angiogenesis, disruption of the retinal barrier, leukocyte-adhesion and oedema are cardinal signs of proliferative retinopathies that are associated with vision loss. Therefore, identifying factors that regulate these vascular dysfunctions is critical to target pathological angiogenesis. Given the conflicting role of bioactive lipids reported in the current literature, the goal of this review is to provide the reader a clear road map of what has been accomplished so far in the field with specific focus on the role of polyunsaturated fatty acids (PUFAs)-derived metabolites in proliferative retinopathies. This necessarily entails a description of the different retina cells, blood retina barriers and the role of (PUFAs)-derived metabolites in diabetic retinopathy, retinopathy of prematurity and age-related macular degeneration as the most common types of proliferative retinopathies.
Collapse
Affiliation(s)
- Khaled Elmasry
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA
- Cellular Biology and Anatomy, MCG, Augusta University, Augusta, GA, USA
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Schepens Eye Research Institute/Massachusetts Eye and Ear & Department of ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Ahmed S Ibrahim
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Department of Ophthalmology and Culver Vision Discovery Institute, Medical College of Georgia (MCG), Augusta University, Augusta, GA, USA
| | - Samer Abdulmoneim
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA
- Cellular Biology and Anatomy, MCG, Augusta University, Augusta, GA, USA
| | - Mohamed Al-Shabrawey
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA
- Cellular Biology and Anatomy, MCG, Augusta University, Augusta, GA, USA
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Department of Ophthalmology and Culver Vision Discovery Institute, Medical College of Georgia (MCG), Augusta University, Augusta, GA, USA
| |
Collapse
|
22
|
Flachsbarth K, Jankowiak W, Kruszewski K, Helbing S, Bartsch S, Bartsch U. Pronounced synergistic neuroprotective effect of GDNF and CNTF on axotomized retinal ganglion cells in the adult mouse. Exp Eye Res 2018; 176:258-265. [PMID: 30237104 DOI: 10.1016/j.exer.2018.09.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/04/2018] [Accepted: 09/16/2018] [Indexed: 01/09/2023]
Abstract
Neuroprotection is among the potential treatment options for glaucoma and other retinal pathologies characterized by the loss of retinal ganglion cells (RGCs). Here, we examined the impact of a neural stem (NS) cell-based intravitreal co-administration of two neuroprotective factors on the survival of axotomized RGCs. To this aim we used lentiviral vectors to establish clonal NS cell lines ectopically expressing either glial cell line-derived neurotrophic factor (GDNF) or ciliary neurotrophic factor (CNTF). The modified NS cell lines were intravitreally injected either separately or as a 1:1 mixture into adult mice one day after an optic nerve lesion, and the number of surviving RGCs was determined in retinal flat-mounts two, four and eight weeks after the lesion. For the transplantation experiments, we selected a GDNF- and a CNTF-expressing NS cell line that promoted the survival of axotomized RGCs with a similar efficacy. Eight weeks after the lesion, GDNF-treated retinas contained 3.8- and CNTF-treated retinas 3.7-fold more RGCs than control retinas. Of note, the number of surviving RGCs was markedly increased when both factors were administered simultaneously, with 14.3-fold more RGCs than in control retinas eight weeks after the lesion. GDNF and CNTF thus potently and synergistically rescued RGCs from axotomy-induced cell death, indicating that combinatorial neuroprotective approaches represent a promising strategy to effectively promote the survival of RGCs under pathological conditions.
Collapse
Affiliation(s)
- Kai Flachsbarth
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wanda Jankowiak
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Kruszewski
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sabine Helbing
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Susanne Bartsch
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Udo Bartsch
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
23
|
Hu XB, Fu SH, Luo Q, He JZ, Qiu YF, Lai W, Zhong M. Down-regulation of microRNA-216a confers protection against yttrium aluminium garnet laser-induced retinal injury via the GDNF-mediated GDNF/GFRα1/RET signalling pathway. J Biosci 2018. [DOI: 10.1007/s12038-018-9795-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Rathnasamy G, Foulds WS, Ling EA, Kaur C. Retinal microglia - A key player in healthy and diseased retina. Prog Neurobiol 2018; 173:18-40. [PMID: 29864456 DOI: 10.1016/j.pneurobio.2018.05.006] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 03/09/2018] [Accepted: 05/29/2018] [Indexed: 01/04/2023]
Abstract
Microglia, the resident immune cells of the brain and retina, are constantly engaged in the surveillance of their surrounding neural tissue. During embryonic development they infiltrate the retinal tissues and participate in the phagocytosis of redundant neurons. The contribution of microglia in maintaining the purposeful and functional histo-architecture of the adult retina is indispensable. Within the retinal microenvironment, robust microglial activation is elicited by subtle changes caused by extrinsic and intrinsic factors. When there is a disturbance in the cell-cell communication between microglia and other retinal cells, for example in retinal injury, the activated microglia can manifest actions that can be detrimental. This is evidenced by activated microglia secreting inflammatory mediators that can further aggravate the retinal injury. Microglial activation as a harbinger of a variety of retinal diseases is well documented by many studies. In addition, a change in the microglial phenotype which may be associated with aging, may predispose the retina to age-related diseases. In light of the above, the focus of this review is to highlight the role played by microglia in the healthy and diseased retina, based on findings of our own work and from that of others.
Collapse
Affiliation(s)
- Gurugirijha Rathnasamy
- Department of Anatomy, Yong Loo Lin School of Medicine, Blk MD10, 4 Medical Drive, National University of Singapore, 117594, Singapore; Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53706, United States
| | - Wallace S Foulds
- Singapore Eye Research Institute Level 6, The Academia, Discovery Tower, 20 College Road, 169856, Singapore; University of Glasgow, Glasgow, Scotland, G12 8QQ, United Kingdom
| | - Eng-Ang Ling
- Department of Anatomy, Yong Loo Lin School of Medicine, Blk MD10, 4 Medical Drive, National University of Singapore, 117594, Singapore
| | - Charanjit Kaur
- Department of Anatomy, Yong Loo Lin School of Medicine, Blk MD10, 4 Medical Drive, National University of Singapore, 117594, Singapore.
| |
Collapse
|
25
|
Ruzafa N, Pereiro X, Lepper MF, Hauck SM, Vecino E. A Proteomics Approach to Identify Candidate Proteins Secreted by Müller Glia that Protect Ganglion Cells in the Retina. Proteomics 2018; 18:e1700321. [PMID: 29645351 DOI: 10.1002/pmic.201700321] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/20/2017] [Indexed: 12/27/2022]
Abstract
The retinal Müller glial cells, can enhance the survival and activity of neurons, especially of retinal ganglion cells (RGCs), which are the neurons affected in diseases such as glaucoma, diabetes, and retinal ischemia. It has been demonstrated that Müller glia release neurotrophic factors that support RGC survival, yet many of these factors remain to be elucidated. To define these neurotrophic factors, a quantitative proteomic approach was adopted aiming at identifying neuroprotective proteins. First, the conditioned medium from porcine Müller cells cultured in vitro under three different conditions were isolated and these conditioned media were tested for their capacity to promote survival of primary adult RGCs in culture. Mass spectrometry was used to identify and quantify proteins in the conditioned medium, and osteopontin (SPP1), clusterin (CLU), and basigin (BSG) were selected as candidate neuroprotective factors. SPP1 and BSG significantly enhance RGC survival in vitro, indicating that the survival-promoting activity of the Müller cell secretome is multifactorial, and that SPP1 and BSG contribute to this activity. Thus, the quantitative proteomics strategy identify proteins secreted by Müller glia that are potentially novel neuroprotectants, and it may also serve to identify other bioactive proteins or molecular markers.
Collapse
Affiliation(s)
- Noelia Ruzafa
- Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, 48940, Vizcaya, Spain
| | - Xandra Pereiro
- Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, 48940, Vizcaya, Spain
| | - Marlen F Lepper
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, D-80939, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, D-80939, Germany
| | - Elena Vecino
- Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, 48940, Vizcaya, Spain
| |
Collapse
|
26
|
Schultz R, Krug M, Precht M, Wohl SG, Witte OW, Schmeer C. Frataxin overexpression in Müller cells protects retinal ganglion cells in a mouse model of ischemia/reperfusion injury in vivo. Sci Rep 2018; 8:4846. [PMID: 29555919 PMCID: PMC5859167 DOI: 10.1038/s41598-018-22887-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 03/02/2018] [Indexed: 01/28/2023] Open
Abstract
Müller cells are critical for retinal function and neuronal survival but can become detrimental in response to retinal ischemia and increased oxidative stress. Elevated oxidative stress increases expression of the mitochondrial enzyme frataxin in the retina, and its overexpression is neuroprotective after ischemia. Whether frataxin expression in Müller cells might improve their function and protect neurons after ischemia is unknown. The aim of this study was to evaluate the effect of frataxin overexpression in Müller cells on neuronal survival after retinal ischemia/reperfusion in the mouse in vivo. Retinal ischemia/reperfusion was induced in mice overexpressing frataxin in Müller cells by transient elevation of intraocular pressure. Retinal ganglion cells survival was determined 14 days after lesion. Expression of frataxin, antioxidant enzymes, growth factors and inflammation markers was determined with qRT-PCR, Western blotting and immunohistochemistry 24 hours after lesion. Following lesion, there was a 65% increase in the number of surviving RGCs in frataxin overexpressing mice. Improved survival was associated with increased expression of the antioxidant enzymes Gpx1 and Sod1 as well as the growth factors Cntf and Lif. Additionally, microglial activation was decreased in these mice. Therefore, support of Müller cell function constitutes a feasible approach to reduce neuronal degeneration after ischemia.
Collapse
Affiliation(s)
- Rowena Schultz
- Department of Ophthalmology, Jena University Hospital, Jena, Germany
| | - Melanie Krug
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Michel Precht
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Stefanie G Wohl
- Department of Biological Structure, University of Washington Seattle, Seattle, United States
| | - Otto W Witte
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Christian Schmeer
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany.
| |
Collapse
|
27
|
Rosich K, Hanna BF, Ibrahim RK, Hellenbrand DJ, Hanna A. The Effects of Glial Cell Line-Derived Neurotrophic Factor after Spinal Cord Injury. J Neurotrauma 2017; 34:3311-3325. [DOI: 10.1089/neu.2017.5175] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Konstantin Rosich
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin
| | - Bishoy F. Hanna
- Department of Neurological Surgery, Ross University School of Medicine, Dominica, West Indies
| | - Rami K. Ibrahim
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin
| | - Daniel J. Hellenbrand
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin
- Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin
| | - Amgad Hanna
- Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
28
|
Landfried B, Grimm C. Neuroprotektion geschädigter Photorezeptoren. MED GENET-BERLIN 2017. [DOI: 10.1007/s11825-017-0130-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Zusammenfassung
Der Schutz der Sehzellen durch Neuroprotektion ist ein vielversprechender Ansatz, der bei vielen degenerativen Netzhauterkrankungen entweder als Mono- oder Kombinationstherapie zum Einsatz kommen könnte. Viele neuroprotektive Substanzen wurden im Tiermodell identifiziert und erfolgreich getestet. Einige dieser Substanzen wurden auch bereits in klinischen Versuchen am Patienten untersucht, allerdings mit unterschiedlichem Erfolg. Diverse Versuchsansätze werden derzeit überprüft.
Collapse
Affiliation(s)
- Britta Landfried
- Aff1 0000 0004 0478 9977 grid.412004.3 Augenklinik Universitätsspital Zürich Zürich Schweiz
- Aff4 0000 0004 1937 0650 grid.7400.3 Labor für Zellbiologie der Netzhaut, Augenklinik Universität Zürich Wagistrasse 14 8952 Schlieren Schweiz
| | - Christian Grimm
- Aff1 0000 0004 0478 9977 grid.412004.3 Augenklinik Universitätsspital Zürich Zürich Schweiz
- Aff2 0000 0004 1937 0650 grid.7400.3 Zentrum für integrative Humanphysiologie (ZIHP) Universität Zürich Zürich Schweiz
- Aff3 0000 0004 1937 0650 grid.7400.3 Zentrum für Neurowissenschaften Zürich (ZNZ) Universität Zürich Zürich Schweiz
- Aff4 0000 0004 1937 0650 grid.7400.3 Labor für Zellbiologie der Netzhaut, Augenklinik Universität Zürich Wagistrasse 14 8952 Schlieren Schweiz
| |
Collapse
|
29
|
Jones MK, Lu B, Girman S, Wang S. Cell-based therapeutic strategies for replacement and preservation in retinal degenerative diseases. Prog Retin Eye Res 2017; 58:1-27. [PMID: 28111323 PMCID: PMC5441967 DOI: 10.1016/j.preteyeres.2017.01.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/08/2017] [Accepted: 01/17/2017] [Indexed: 12/13/2022]
Abstract
Cell-based therapeutics offer diverse options for treating retinal degenerative diseases, such as age-related macular degeneration (AMD) and retinitis pigmentosa (RP). AMD is characterized by both genetic and environmental risks factors, whereas RP is mainly a monogenic disorder. Though treatments exist for some patients with neovascular AMD, a majority of retinal degenerative patients have no effective therapeutics, thus indicating a need for universal therapies to target diverse patient populations. Two main cell-based mechanistic approaches are being tested in clinical trials. Replacement therapies utilize cell-derived retinal pigment epithelial (RPE) cells to supplant lost or defective host RPE cells. These cells are similar in morphology and function to native RPE cells and can potentially supplant the responsibilities of RPE in vivo. Preservation therapies utilize supportive cells to aid in visual function and photoreceptor preservation partially by neurotrophic mechanisms. The goal of preservation strategies is to halt or slow the progression of disease and maintain remaining visual function. A number of clinical trials are testing the safety of replacement and preservation cell therapies in patients; however, measures of efficacy will need to be further evaluated. In addition, a number of prevailing concerns with regards to the immune-related response, longevity, and functionality of the grafted cells will need to be addressed in future trials. This review will summarize the current status of cell-based preclinical and clinical studies with a focus on replacement and preservation strategies and the obstacles that remain regarding these types of treatments.
Collapse
Affiliation(s)
- Melissa K Jones
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Bin Lu
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Sergey Girman
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Shaomei Wang
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Ave., Los Angeles, CA 90095, USA.
| |
Collapse
|
30
|
Col4a1 mutation generates vascular abnormalities correlated with neuronal damage in a mouse model of HANAC syndrome. Neurobiol Dis 2017; 100:52-61. [DOI: 10.1016/j.nbd.2016.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 12/01/2016] [Accepted: 12/18/2016] [Indexed: 12/22/2022] Open
|
31
|
Jindal N, Banik A, Prabhakar S, Vaiphie K, Anand A. Alteration of Neurotrophic Factors After Transplantation of Bone Marrow Derived Lin-ve Stem Cell in NMDA-Induced Mouse Model of Retinal Degeneration. J Cell Biochem 2017; 118:1699-1711. [PMID: 27935095 DOI: 10.1002/jcb.25827] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 12/06/2016] [Indexed: 02/02/2023]
Abstract
Retinal ganglion cell layer (RGCs) is one of the important layers of retina, depleted in Glaucoma. Loss of RGC neurons is a major cellular mechanism involved in its pathogenesis resulting in severe vision loss. Stem cell therapy has emerged as a potential strategy to arrest the apoptotic loss of RGCs and also replace the degenerative cells in damaged retina. Here, we have investigated the incorporation and survival of mouse bone marrow derived Lin-ve stem cells in N-methyl-d-aspartate (NMDA)-induced mouse model of retinal degeneration. Two days after intravitreal injection of NMDA (100 mM) showed significant decrease in ganglion cell number and increase in TUNEL positive apoptotic cells in retinal layers. The injury was further characterized by immunohistochemical expression of Brn3b, GFAP, Bcl2, pCREB, CNTF, GDNF, and BDNF in retinal layers. Lin-ve cells (100,000 dose) were intravitreally transplanted after 2 days of injury and evaluated after 7, 14, and 21 days of transplantation. Transplanted cells were found to have migrated from intravitreal space and incorporated into injured retina at 7, 14, and 21 days post-transplantation. At 21 days Brn3b, CNTF, and BDNF expression was found to be upregulated whereas GDNF was downregulated when compared to respective injury time points. Molecular data showed decrease in the expression of Brn3b, BDNF, CNTF, and GDNF post transplantation when compared with injury groups. This study reveals that Lin-ve stem cells may exert neuroprotective effect in damaged retina mediated by participation of neurotrophic factors induced by stem cell transplantation at the site of injury. J. Cell. Biochem. 118: 1699-1711, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Neeru Jindal
- Neuroscience Research Lab, Department of Neurology, PGIMER, Chandigarh 160012, India
| | - Avijit Banik
- Neuroscience Research Lab, Department of Neurology, PGIMER, Chandigarh 160012, India
| | - Sudesh Prabhakar
- Neuroscience Research Lab, Department of Neurology, PGIMER, Chandigarh 160012, India
| | - Kim Vaiphie
- Department of Histopathology, PGIMER, Chandigarh 160012, India
| | - Akshay Anand
- Neuroscience Research Lab, Department of Neurology, PGIMER, Chandigarh 160012, India
| |
Collapse
|
32
|
Kimura A, Namekata K, Guo X, Harada C, Harada T. Neuroprotection, Growth Factors and BDNF-TrkB Signalling in Retinal Degeneration. Int J Mol Sci 2016; 17:ijms17091584. [PMID: 27657046 PMCID: PMC5037849 DOI: 10.3390/ijms17091584] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/01/2016] [Accepted: 09/14/2016] [Indexed: 12/18/2022] Open
Abstract
Neurotrophic factors play key roles in the development and survival of neurons. The potent neuroprotective effects of neurotrophic factors, including brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF), glial cell-line derived neurotrophic factor (GDNF) and nerve growth factor (NGF), suggest that they are good therapeutic candidates for neurodegenerative diseases. Glaucoma is a neurodegenerative disease of the eye that causes irreversible blindness. It is characterized by damage to the optic nerve, usually due to high intraocular pressure (IOP), and progressive degeneration of retinal neurons called retinal ganglion cells (RGCs). Current therapy for glaucoma focuses on reduction of IOP, but neuroprotection may also be beneficial. BDNF is a powerful neuroprotective agent especially for RGCs. Exogenous application of BDNF to the retina and increased BDNF expression in retinal neurons using viral vector systems are both effective in protecting RGCs from damage. Furthermore, induction of BDNF expression by agents such as valproic acid has also been beneficial in promoting RGC survival. In this review, we discuss the therapeutic potential of neurotrophic factors in retinal diseases and focus on the differential roles of glial and neuronal TrkB in neuroprotection. We also discuss the role of neurotrophic factors in neuroregeneration.
Collapse
Affiliation(s)
- Atsuko Kimura
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| | - Kazuhiko Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| | - Xiaoli Guo
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| | - Chikako Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| | - Takayuki Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| |
Collapse
|
33
|
Becker S, Eastlake K, Jayaram H, Jones MF, Brown RA, McLellan GJ, Charteris DG, Khaw PT, Limb GA. Allogeneic Transplantation of Müller-Derived Retinal Ganglion Cells Improves Retinal Function in a Feline Model of Ganglion Cell Depletion. Stem Cells Transl Med 2016; 5:192-205. [PMID: 26718648 PMCID: PMC4729554 DOI: 10.5966/sctm.2015-0125] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 11/11/2015] [Indexed: 11/16/2022] Open
Abstract
Human Müller glia with stem cell characteristics (hMGSCs) have been shown to improve retinal function upon transplantation into rat models of retinal ganglion cell (RGC) depletion. However, their translational potential may depend upon successful engraftment and improvement of retinal function in experimental models with anatomical and functional features resembling those of the human eye. We investigated the effect of allogeneic transplantation of feline Müller glia with the ability to differentiate into cells expressing RGC markers, following ablation of RGCs by N-methyl-d-aspartate (NMDA). Unlike previous observations in the rat, transplantation of hMGSC-derived RGCs into the feline vitreous formed aggregates and elicited a severe inflammatory response without improving visual function. In contrast, allogeneic transplantation of feline MGSC (fMGSC)-derived RGCs into the vitrectomized eye improved the scotopic threshold response (STR) of the electroretinogram (ERG). Despite causing functional improvement, the cells did not attach onto the retina and formed aggregates on peripheral vitreous remnants, suggesting that vitreous may constitute a barrier for cell attachment onto the retina. This was confirmed by observations that cellular scaffolds of compressed collagen and enriched preparations of fMGSC-derived RGCs facilitated cell attachment. Although cells did not migrate into the RGC layer or the optic nerve, they significantly improved the STR and the photopic negative response of the ERG, indicative of increased RGC function. These results suggest that MGSCs have a neuroprotective ability that promotes partial recovery of impaired RGC function and indicate that cell attachment onto the retina may be necessary for transplanted cells to confer neuroprotection to the retina. Significance: Müller glia with stem cell characteristics are present in the adult human retina, but they do not have regenerative ability. These cells, however, have potential for development of cell therapies to treat retinal disease. Using a feline model of retinal ganglion cell (RGC) depletion, cell grafting methods to improve RGC function have been developed. Using cellular scaffolds, allogeneic transplantation of Müller glia-derived RGC promoted cell attachment onto the retina and enhanced retinal function, as judged by improvement of the photopic negative and scotopic threshold responses of the electroretinogram. The results suggest that the improvement of RGC function observed may be ascribed to the neuroprotective ability of these cells and indicate that attachment of the transplanted cells onto the retina is required to promote effective neuroprotection.
Collapse
Affiliation(s)
- Silke Becker
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - Karen Eastlake
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - Hari Jayaram
- National Institute for Health Research Biomedical Research Centre for Ophthalmology, Institute of Ophthalmology, University College London, London, United Kingdom
| | - Megan F Jones
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - Robert A Brown
- Institute of Orthopaedics and Musculoskeletal Science, University College London, London, United Kingdom
| | - Gillian J McLellan
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - David G Charteris
- National Institute for Health Research Biomedical Research Centre for Ophthalmology, Institute of Ophthalmology, University College London, London, United Kingdom
| | - Peng T Khaw
- National Institute for Health Research Biomedical Research Centre for Ophthalmology, Institute of Ophthalmology, University College London, London, United Kingdom
| | - G Astrid Limb
- National Institute for Health Research Biomedical Research Centre for Ophthalmology, Institute of Ophthalmology, University College London, London, United Kingdom
| |
Collapse
|
34
|
Fernández-Sánchez L, Lax P, Campello L, Pinilla I, Cuenca N. Astrocytes and Müller Cell Alterations During Retinal Degeneration in a Transgenic Rat Model of Retinitis Pigmentosa. Front Cell Neurosci 2015; 9:484. [PMID: 26733810 PMCID: PMC4686678 DOI: 10.3389/fncel.2015.00484] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/30/2015] [Indexed: 12/29/2022] Open
Abstract
Purpose: Retinitis pigmentosa includes a group of progressive retinal degenerative diseases that affect the structure and function of photoreceptors. Secondarily to the loss of photoreceptors, there is a reduction in retinal vascularization, which seems to influence the cellular degenerative process. Retinal macroglial cells, astrocytes, and Müller cells provide support for retinal neurons and are fundamental for maintaining normal retinal function. The aim of this study was to investigate the evolution of macroglial changes during retinal degeneration in P23H rats. Methods: Homozygous P23H line-3 rats aged from P18 to 18 months were used to study the evolution of the disease, and SD rats were used as controls. Immunolabeling with antibodies against GFAP, vimentin, and transducin were used to visualize macroglial cells and cone photoreceptors. Results: In P23H rats, increased GFAP labeling in Müller cells was observed as an early indicator of retinal gliosis. At 4 and 12 months of age, the apical processes of Müller cells in P23H rats clustered in firework-like structures, which were associated with ring-like shaped areas of cone degeneration in the outer nuclear layer. These structures were not observed at 16 months of age. The number of astrocytes was higher in P23H rats than in the SD matched controls at 4 and 12 months of age, supporting the idea of astrocyte proliferation. As the disease progressed, astrocytes exhibited a deteriorated morphology and marked hypertrophy. The increase in the complexity of the astrocytic processes correlated with greater connexin 43 expression and higher density of connexin 43 immunoreactive puncta within the ganglion cell layer (GCL) of P23H vs. SD rat retinas. Conclusions: In the P23H rat model of retinitis pigmentosa, the loss of photoreceptors triggers major changes in the number and morphology of glial cells affecting the inner retina.
Collapse
Affiliation(s)
| | - Pedro Lax
- Department of Physiology, Genetics and Microbiology, University of Alicante Alicante, Spain
| | - Laura Campello
- Department of Physiology, Genetics and Microbiology, University of Alicante Alicante, Spain
| | - Isabel Pinilla
- Department of Ophthalmology, Aragon Institute for Health Research, Lozano Blesa University Hospital Zaragoza, Spain
| | - Nicolás Cuenca
- Department of Physiology, Genetics and Microbiology, University of AlicanteAlicante, Spain; Institute Ramón Margalef, University of AlicanteAlicante, Spain
| |
Collapse
|
35
|
Fu S, Dong S, Zhu M, Sherry DM, Wang C, You Z, Haigh JJ, Le YZ. Müller Glia Are a Major Cellular Source of Survival Signals for Retinal Neurons in Diabetes. Diabetes 2015; 64:3554-3563. [PMID: 26068541 PMCID: PMC4587642 DOI: 10.2337/db15-0180] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 05/26/2015] [Indexed: 12/22/2022]
Abstract
To dissect the role of vascular endothelial growth factor receptor-2 (VEGFR2) in Müller cells and its effect on neuroprotection in diabetic retinopathy (DR), we disrupted VEGFR2 in mouse Müller glia and determined its effect on Müller cell survival, neuronal integrity, and trophic factor production in diabetic retinas. Diabetes was induced with streptozotocin. Retinal function was measured with electroretinography. Müller cell and neuronal densities were assessed with morphometric and immunohistochemical analyses. Loss of VEGFR2 caused a gradual reduction in Müller glial density, which reached to a significant level 10 months after the onset of diabetes. This observation was accompanied by an age-dependent decrease of scotopic and photopic electroretinography amplitudes and accelerated loss of rod and cone photoreceptors, ganglion cell layer cells, and inner nuclear layer neurons and by a significant reduction of retinal glial cell line-derived neurotrophic factor and brain-derived neurotrophic factor. Our results suggest that VEGFR2-mediated Müller cell survival is required for the viability of retinal neurons in diabetes. The genetically altered mice established in this study can be used as a diabetic animal model of nontoxin-induced Müller cell ablation, which will be useful for exploring the cellular mechanisms of neuronal alteration in DR.
Collapse
Affiliation(s)
- Shuhua Fu
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, China Section of Endocrinology and Diabetes, Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Shuqian Dong
- Section of Endocrinology and Diabetes, Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
| | - Meili Zhu
- Section of Endocrinology and Diabetes, Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - David M Sherry
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Changyun Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhipeng You
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jody J Haigh
- Vascular Cell Biology Unit, VIB Inflammation Research Center, Ghent University, Ghent, Belgium Department for Biomedical Molecular Biology, Ghent University, Ghent, Belgium Mammalian Functional Genetics Laboratory, Division of Blood Cancers, Australian Centre for Blood Diseases, Monash University and Alfred Health Centre, Melbourne, Victoria, Australia Department of Clinical Haematology, Monash University and Alfred Health Centre, Melbourne, Victoria, Australia
| | - Yun-Zheng Le
- Section of Endocrinology and Diabetes, Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK Department of Ophthalmology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK Harold Hamm Diabetes Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
36
|
Vecino E, Rodriguez FD, Ruzafa N, Pereiro X, Sharma SC. Glia-neuron interactions in the mammalian retina. Prog Retin Eye Res 2015; 51:1-40. [PMID: 26113209 DOI: 10.1016/j.preteyeres.2015.06.003] [Citation(s) in RCA: 553] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/18/2015] [Accepted: 06/02/2015] [Indexed: 02/07/2023]
Abstract
The mammalian retina provides an excellent opportunity to study glia-neuron interactions and the interactions of glia with blood vessels. Three main types of glial cells are found in the mammalian retina that serve to maintain retinal homeostasis: astrocytes, Müller cells and resident microglia. Müller cells, astrocytes and microglia not only provide structural support but they are also involved in metabolism, the phagocytosis of neuronal debris, the release of certain transmitters and trophic factors and K(+) uptake. Astrocytes are mostly located in the nerve fibre layer and they accompany the blood vessels in the inner nuclear layer. Indeed, like Müller cells, astrocytic processes cover the blood vessels forming the retinal blood barrier and they fulfil a significant role in ion homeostasis. Among other activities, microglia can be stimulated to fulfil a macrophage function, as well as to interact with other glial cells and neurons by secreting growth factors. This review summarizes the main functional relationships between retinal glial cells and neurons, presenting a general picture of the retina recently modified based on experimental observations. The preferential involvement of the distinct glia cells in terms of the activity in the retina is discussed, for example, while Müller cells may serve as progenitors of retinal neurons, astrocytes and microglia are responsible for synaptic pruning. Since different types of glia participate together in certain activities in the retina, it is imperative to explore the order of redundancy and to explore the heterogeneity among these cells. Recent studies revealed the association of glia cell heterogeneity with specific functions. Finally, the neuroprotective effects of glia on photoreceptors and ganglion cells under normal and adverse conditions will also be explored.
Collapse
Affiliation(s)
- Elena Vecino
- Department of Cell Biology and Histology, University of the Basque Country UPV/EHU, Leioa 48940, Vizcaya, Spain
| | - F David Rodriguez
- Department of Biochemistry and Molecular Biology, E-37007, University of Salamanca, Salamanca, Spain
| | - Noelia Ruzafa
- Department of Cell Biology and Histology, University of the Basque Country UPV/EHU, Leioa 48940, Vizcaya, Spain
| | - Xandra Pereiro
- Department of Cell Biology and Histology, University of the Basque Country UPV/EHU, Leioa 48940, Vizcaya, Spain
| | - Sansar C Sharma
- Department of Ophthalmology, Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA; IKERBASQUE, Basque Foundation for Science at Dept. Cell Biology and Histology, UPV/EHU, Spain
| |
Collapse
|
37
|
Arundic acid attenuates retinal ganglion cell death by increasing glutamate/aspartate transporter expression in a model of normal tension glaucoma. Cell Death Dis 2015; 6:e1693. [PMID: 25789968 PMCID: PMC4385923 DOI: 10.1038/cddis.2015.45] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 01/22/2015] [Accepted: 01/23/2015] [Indexed: 02/07/2023]
Abstract
Glaucoma is the second leading cause of blindness worldwide and is characterized by gradual visual impairment owing to progressive loss of retinal ganglion cells (RGCs) and their axons. Glutamate excitotoxicity has been implicated as a mechanism of RGC death in glaucoma. Consistent with this claim, we previously reported that glutamate/aspartate transporter (GLAST)-deficient mice show optic nerve degeneration that is similar to that observed in glaucoma. Therefore, drugs that upregulate GLAST may be useful for neuroprotection in glaucoma. Although many compounds are known to increase the expression of another glial glutamate transporter, EAAT2/GLT1, few compounds are shown to increase GLAST expression. Arundic acid is a glial modulating agent that ameliorates delayed ischemic brain damage by attenuating increases in extracellular glutamate. We hypothesized that arundic acid neuroprotection involves upregulation of GLAST. To test this hypothesis, we examined the effect of arundic acid on GLAST expression and glutamate uptake. We found that arundic acid induces GLAST expression in vitro and in vivo. In addition, arundic acid treatment prevented RGC death by upregulating GLAST in heterozygous (GLAST+/−) mice. Furthermore, arundic acid stimulates the human GLAST ortholog, EAAT1, expression in human neuroglioblastoma cells. Thus, discovering compounds that can enhance EAAT1 expression and activity may be a novel strategy for therapeutic treatment of glaucoma.
Collapse
|
38
|
|
39
|
Semeraro F, Cancarini A, dell'Omo R, Rezzola S, Romano MR, Costagliola C. Diabetic Retinopathy: Vascular and Inflammatory Disease. J Diabetes Res 2015; 2015:582060. [PMID: 26137497 PMCID: PMC4475523 DOI: 10.1155/2015/582060] [Citation(s) in RCA: 291] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 05/03/2015] [Accepted: 05/13/2015] [Indexed: 02/06/2023] Open
Abstract
Diabetic retinopathy (DR) is the leading cause of visual impairment in the working-age population of the Western world. The pathogenesis of DR is complex and several vascular, inflammatory, and neuronal mechanisms are involved. Inflammation mediates structural and molecular alterations associated with DR. However, the molecular mechanisms underlying the inflammatory pathways associated with DR are not completely characterized. Previous studies indicate that tissue hypoxia and dysregulation of immune responses associated with diabetes mellitus can induce increased expression of numerous vitreous mediators responsible for DR development. Thus, analysis of vitreous humor obtained from diabetic patients has made it possible to identify some of the mediators (cytokines, chemokines, and other factors) responsible for DR pathogenesis. Further studies are needed to better understand the relationship between inflammation and DR. Herein the main vitreous-related factors triggering the occurrence of retinal complication in diabetes are highlighted.
Collapse
Affiliation(s)
- F. Semeraro
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - A. Cancarini
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - R. dell'Omo
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | - S. Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - M. R. Romano
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples, Italy
| | - C. Costagliola
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
- ICRRS Neuromed, Pozzilli, Isernia, Italy
- *C. Costagliola:
| |
Collapse
|
40
|
Karlstetter M, Scholz R, Rutar M, Wong WT, Provis JM, Langmann T. Retinal microglia: just bystander or target for therapy? Prog Retin Eye Res 2014; 45:30-57. [PMID: 25476242 DOI: 10.1016/j.preteyeres.2014.11.004] [Citation(s) in RCA: 407] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/20/2014] [Accepted: 11/25/2014] [Indexed: 10/24/2022]
Abstract
Resident microglial cells can be regarded as the immunological watchdogs of the brain and the retina. They are active sensors of their neuronal microenvironment and rapidly respond to various insults with a morphological and functional transformation into reactive phagocytes. There is strong evidence from animal models and in situ analyses of human tissue that microglial reactivity is a common hallmark of various retinal degenerative and inflammatory diseases. These include rare hereditary retinopathies such as retinitis pigmentosa and X-linked juvenile retinoschisis but also comprise more common multifactorial retinal diseases such as age-related macular degeneration, diabetic retinopathy, glaucoma, and uveitis as well as neurological disorders with ocular manifestation. In this review, we describe how microglial function is kept in balance under normal conditions by cross-talk with other retinal cells and summarize how microglia respond to different forms of retinal injury. In addition, we present the concept that microglia play a key role in local regulation of complement in the retina and specify aspects of microglial aging relevant for chronic inflammatory processes in the retina. We conclude that this resident immune cell of the retina cannot be simply regarded as bystander of disease but may instead be a potential therapeutic target to be modulated in the treatment of degenerative and inflammatory diseases of the retina.
Collapse
Affiliation(s)
- Marcus Karlstetter
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Rebecca Scholz
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Matt Rutar
- The John Curtin School of Medical Research, The Australian National University (ANU), Canberra, Australian Capital Territory, Australia
| | - Wai T Wong
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jan M Provis
- The John Curtin School of Medical Research, The Australian National University (ANU), Canberra, Australian Capital Territory, Australia
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Cologne, Germany.
| |
Collapse
|
41
|
Zhou F, Zhang Y, Chen D, Su Z, Jin L, Wang L, Hu Z, Ke Z, Song Z. Potential role of Cyr61 induced degeneration of human Müller cells in diabetic retinopathy. PLoS One 2014; 9:e109418. [PMID: 25329584 PMCID: PMC4199605 DOI: 10.1371/journal.pone.0109418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 08/04/2014] [Indexed: 01/07/2023] Open
Abstract
The degeneration of Müller cells has been recognized to involve in the pathogenesis of diabetic retinopathy. However, the mechanism is not yet clear. This study is to explore the potential role of Cyr61, a secreted signaling protein in extracellular matrix, in inducing human Müller cell degeneration in diabetic retinopathy (DR). Twenty patients with proliferative diabetic retinopathy (PDR) and twelve non-diabetic patients were recruited for this study. Vitreous fluid was collected during vitrectomy surgery for Cyr61 ELISA. Human Müller cell line MIO-M1 were cultured to be subconfluent, and then treated with glucose (0–20 mM) or Cyr61 (0–300 ng/ml). Cyr61 expression induced by increasing concentrations of glucose was evaluated by RT-qPCR and Western blot. Effects of Cyr61 on Müller cells viability, migration and apoptosis were observed by MTT assay, Transwell assay, and TUNEL assay. Vitreous Cyr61 levels were observed to be 8-fold higher in patients with PDR (3576.92±1574.58 pg/mL), compared with non-diabetic controls (436.14±130.69 pg/mL). Interestingly, the active PDR group was significantly higher than the quiescent PDR group (P<0.01). In retinal Müller cells culture, high glucose significantly and dose-dependently elevated Cyr61 expression at both mRNA and protein levels. Cyr61 at high concentrations dose-dependently inhibited the viability and migration of Müller cells. TUNEL assay further revealed that high concentration of Cyr61 significantly promoted the cell apoptosis. In conclusion, these findings demonstrated for the first time that the expression of Cyr61 was elevated by high glucose in Müller cells, and Cyr61 inhibited cell viability and migration while induced apoptosis, suggesting the potential role of Cyr61 in Müller cell degeneration. The elevated Cyr61 levels in vitreous fluid of PDR patients further support its role in diabetic retinopathy (DR).
Collapse
Affiliation(s)
- Fen Zhou
- Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yikui Zhang
- Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ding Chen
- Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhitao Su
- Eye Center, Second Affiliated Hospital, College of Medicine, Zhejiang University, China
| | - Ling Jin
- Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lei Wang
- Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhixiang Hu
- Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhisheng Ke
- Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zongming Song
- Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- * E-mail:
| |
Collapse
|
42
|
Garcia TB, Pannicke T, Vogler S, Berk BA, Grosche A, Wiedemann P, Seeger J, Reichenbach A, Herculano AM, Bringmann A. Nerve growth factor inhibits osmotic swelling of rat retinal glial (Müller) and bipolar cells by inducing glial cytokine release. J Neurochem 2014; 131:303-13. [DOI: 10.1111/jnc.12822] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 07/11/2014] [Accepted: 07/14/2014] [Indexed: 01/02/2023]
Affiliation(s)
- Tarcyane Barata Garcia
- Paul Flechsig Institute of Brain Research; University of Leipzig; Leipzig Germany
- Institute of Biological Sciences; Federal University of Pará; Belém Brazil
| | - Thomas Pannicke
- Paul Flechsig Institute of Brain Research; University of Leipzig; Leipzig Germany
| | - Stefanie Vogler
- Paul Flechsig Institute of Brain Research; University of Leipzig; Leipzig Germany
| | - Benjamin-Andreas Berk
- Paul Flechsig Institute of Brain Research; University of Leipzig; Leipzig Germany
- Institute of Veterinary Anatomy; University of Leipzig; Leipzig Germany
| | - Antje Grosche
- Institute of Human Genetics; University of Regensburg; Regensburg Germany
| | - Peter Wiedemann
- Department of Ophthalmology and Eye Hospital; University of Leipzig; Leipzig Germany
| | - Johannes Seeger
- Institute of Veterinary Anatomy; University of Leipzig; Leipzig Germany
| | - Andreas Reichenbach
- Paul Flechsig Institute of Brain Research; University of Leipzig; Leipzig Germany
| | | | - Andreas Bringmann
- Department of Ophthalmology and Eye Hospital; University of Leipzig; Leipzig Germany
| |
Collapse
|
43
|
Jindal V. Neurodegeneration as a primary change and role of neuroprotection in diabetic retinopathy. Mol Neurobiol 2014; 51:878-84. [PMID: 24826918 DOI: 10.1007/s12035-014-8732-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 04/29/2014] [Indexed: 02/06/2023]
Abstract
Diabetic retinopathy (DR) was earlier recognized as a vascular disease, but nowadays, it is considered as a neurovascular disorder. Neuronal death is the primary change which leads to various vascular changes which are visible to an ophthalmologist. But these changes are feature of an advanced disease and can affect vision at any moment of time. There are various evidences which suggests that glutamate excitotoxicity, hyperhomocysteinemia, kynurenic acid, and erythro-poietin plays important role in causation of retinal ganglionic cell apoptosis in diabetic patients. Adaptive optics, a new imaging technique, also showed that loss of photoreceptors (specialized neurons) is the early change in diabetic retinopathy. These changes suggest DR as a neurovascular disorder. Neuroprotective agents also showed good results in delaying progression of DR especially memantine, insulin receptor activation, and neurotrophic factors. More research in this field will help us to find novel therapeutic measures for DR, which can delay or even stop progression of DR at a very early stage.
Collapse
Affiliation(s)
- Vishal Jindal
- , H. No. 102 GHS 51 sector 20, Panchkula, Haryana, India,
| |
Collapse
|
44
|
Kucharska J, Del Río P, Arango-Gonzalez B, Gorza M, Feuchtinger A, Hauck SM, Ueffing M. Cyr61 activates retinal cells and prolongs photoreceptor survival in rd1 mouse model of retinitis pigmentosa. J Neurochem 2014; 130:227-40. [PMID: 24593181 DOI: 10.1111/jnc.12704] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 02/27/2014] [Accepted: 02/27/2014] [Indexed: 01/08/2023]
Abstract
Subretinal injections with glial cell line-derived neurotrophic factor (GDNF) rescue morphology as well as function of rod cells in mouse and rat animal models of retinitis pigmentosa. At the same time, it is postulated that this effect is indirect, mediated by activation of retinal Müller glial (RMG) cells. Here, we show that Cyr61/CCN1, one of the secreted proteins up-regulated in primary RMG after glial cell line-derived neurotrophic factor stimulation, provides neuroprotective and pro-survival capacities: Recombinant Cyr61 significantly reduced photoreceptor (PR) cells death in organotypic cultures of Pde6b(rd1) retinas. To identify stimulated pathways in the retina, we treated Pde6b(rd1) retinal explants with Cyr61 and observed an overall increase in activated Erk1/2 and Stat3 signalling molecules characterized by activation-site-specific phosphorylation. To identify Cyr61 retinal target cells, we isolated primary porcine PR, RMG and retinal pigment epithelium (RPE) cells and exposed them separately to Cyr61. Here, RMG as well as RPE cells responded with induced phosphorylation of Erk1/2, Stat3 and Akt. In PR, no increase in phosphorylation in any of the studied proteins was detected, suggesting an indirect neuroprotective effect of Cyr61. Cyr61 may thus act as an endogenous pro-survival factor for PR, contributing to the complex repertoire of neuroprotective activities generated by RMG and RPE cells. We propose the following model of Cyr61 neuroprotection within the retina: Cyr61 stimulates retinal Müller glial (RMG) and retinal pigment epithelium (RPE) cells and activates PI3K/Akt, mitogen-activated protein kinase(MAPK)/Erk and Janus kinase(JAK)/Stat-signalling pathways in these cells. Phosphorylated Stat3 and Erk1/2 presumably translocate to the nucleus, induce transcriptional changes, which increase secretion of neuroprotective agents that protect photoreceptors (PR) from mutation-induced death.
Collapse
Affiliation(s)
- Joanna Kucharska
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany; Research Unit Protein Science, Helmholtz Zentrum München, Neuherberg, Germany
| | | | | | | | | | | | | |
Collapse
|
45
|
Trophic factors in the pathogenesis and therapy for retinal degenerative diseases. Surv Ophthalmol 2014; 59:134-65. [PMID: 24417953 DOI: 10.1016/j.survophthal.2013.09.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 09/11/2013] [Accepted: 09/17/2013] [Indexed: 12/27/2022]
Abstract
Trophic factors are endogenously secreted proteins that act in an autocrine and/or paracrine fashion to affect vital cellular processes such as proliferation, differentiation, and regeneration, thereby maintaining overall cell homeostasis. In the eye, the major contributors of these molecules are the retinal pigment epithelial (RPE) and Müller cells. The primary paracrine targets of these secreted proteins include the photoreceptors and choriocapillaris. Retinal degenerative diseases such as age-related macular degeneration and retinitis pigmentosa are characterized by aberrant function and/or eventual death of RPE cells, photoreceptors, choriocapillaris, and other retinal cells. We discuss results of in vitro and in vivo animal studies in which candidate trophic factors, either singly or in combination, were used in an attempt to ameliorate photoreceptor and/or retinal degeneration. We also examine current trophic factor therapies as they relate to the treatment of retinal degenerative diseases in clinical studies.
Collapse
|
46
|
Hauck SM, von Toerne C, Ueffing M. The Neuroprotective Potential of Retinal Müller Glial Cells. RETINAL DEGENERATIVE DISEASES 2014; 801:381-7. [DOI: 10.1007/978-1-4614-3209-8_48] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
47
|
Wahl V, Vogler S, Grosche A, Pannicke T, Ueffing M, Wiedemann P, Reichenbach A, Hauck S, Bringmann A. Osteopontin inhibits osmotic swelling of retinal glial (Müller) cells by inducing release of VEGF. Neuroscience 2013; 246:59-72. [DOI: 10.1016/j.neuroscience.2013.04.045] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 04/15/2013] [Accepted: 04/17/2013] [Indexed: 12/19/2022]
|
48
|
Wang L, Deng QQ, Wu XH, Yu J, Yang XL, Zhong YM. Upregulation of glutamate-aspartate transporter by glial cell line-derived neurotrophic factor ameliorates cell apoptosis in neural retina in streptozotocin-induced diabetic rats. CNS Neurosci Ther 2013; 19:945-53. [PMID: 23870489 DOI: 10.1111/cns.12150] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 06/04/2013] [Accepted: 06/11/2013] [Indexed: 11/28/2022] Open
Abstract
AIMS Dysfunction of glutamate uptake, largely mediated by the glutamate-aspartate transporter (GLAST), may lead to retinal cell apoptosis in diabetic retinopathy. The aim of this study is to examine how cell apoptosis and the expression level of GLAST in neural retina of a diabetic rat model are changed and whether the neuroretinal apoptosis could be ameliorated by the administration of glial cell line-derived neurotrophic factor (GDNF). METHODS Diabetes was induced by intraperitoneal injection of streptozotocin (STZ) in Sprague-Dawley rats. GLAST protein expression levels were determined by Western blotting, whereas apoptosis of retinal neurons was evaluated by TUNEL staining. To assess the role of GDNF in ameliorating the STZ-induced retinal changes, GDNF/GDNF with siRNA directed against GLAST was injected into the vitreous after STZ injection. RESULTS In rat retinas 4 weeks after the onset of STZ-induced diabetes, TUNEL-positive cells were significantly increased, whereas GLAST levels were significantly reduced. Intraocular administration of GDNF at the early stage of diabetes remarkably increased the GLAST levels and decreased TUNEL-positive signals in the retinas. These effects of GDNF were largely abolished by coadministration of GLAST siRNA. CONCLUSIONS GDNF, administrated at the early stage of diabetes, could rescue retinal cells from neurodegeneration by upregulating the expression of GLAST.
Collapse
Affiliation(s)
- Lu Wang
- Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
49
|
Taylor L, Arnér K, Engelsberg K, Ghosh F. Effects of glial cell line-derived neurotrophic factor on the cultured adult full-thickness porcine retina. Curr Eye Res 2013; 38:503-15. [PMID: 23373824 DOI: 10.3109/02713683.2013.763989] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND The tissue culture system offers a possibility to study factors involved in neuronal survival which may be important in a transplantation paradigm. The use of adult tissue in this setting poses specific challenges since traditionally mature neurons survive poorly in vitro. In the current paper, we have explored effects of glial cell line-derived neurotrophic factor (GDNF) on cultures of adult porcine retina. METHODS Full-thickness retinal sheets were isolated from adult porcine eyes and were cultured for 5 or 10 days under standard culture conditions with or without GDNF added to the culture medium. The grafts were analyzed morphologically using hematoxylin and eosin staining, immunohistochemistry and transferase dUTP nick end labeling (TUNEL) labeling. Retinas derived from normal adult porcine eyes were used as controls. RESULTS After 5 d in vitro (DIV), cultures without GDNF showed dissolving retinal lamination while specimens cultured with GDNF displayed the normal laminated morphology. At 10 DIV, the untreated cultures had been reduced to a degenerated cell mass, while the GDNF-cultured specimens retained thin but distinguishable retinal layers. TUNEL labeling confirmed these results. Immunohistochemical labelings and outer nuclear layer thickness measurements showed an increased preservation of photoreceptors and horizontal cells in the GDNF-treated group. CONCLUSIONS The procedure of culturing retina involves several steps causing severe traumatic effects on the tissue, such as ganglion cell axotomy, interruption of the blood flow as well as separation from the retinal pigment epithelium (RPE). In this paper, we have shown that addition of GDNF in the culture medium attenuates the effect of these steps, resulting in enhanced preservation of several retinal neuronal subtypes. The results may be of importance for research in retinal transplantation where storage time of the donor tissue prior to transplantation is a critical issue.
Collapse
Affiliation(s)
- Linnéa Taylor
- Department of Ophthalmology, Lund University Hospital, Lund, Sweden.
| | | | | | | |
Collapse
|
50
|
Ola MS, Nawaz MI, Khan HA, Alhomida AS. Neurodegeneration and neuroprotection in diabetic retinopathy. Int J Mol Sci 2013; 14:2559-2572. [PMID: 23358247 PMCID: PMC3588002 DOI: 10.3390/ijms14022559] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 01/12/2013] [Accepted: 01/17/2013] [Indexed: 02/06/2023] Open
Abstract
Diabetic retinopathy is widely considered to be a neurovascular disease. This is in contrast to its previous identity as solely a vascular disease. Early in the disease progression of diabetes, the major cells in the neuronal component of the retina consist of retinal ganglion cells and glial cells, both of which have been found to be compromised. A number of retinal function tests also indicated a functional deficit in diabetic retina, which further supports dysfunction of neuronal cells. As an endocrinological disorder, diabetes alters metabolism both systemically and locally in several body organs, including the retina. A growing body of evidences indicates increased levels of excitotoxic metabolites, including glutamate, branched chain amino acids and homocysteine in cases of diabetic retinopathy. Also present, early in the disease, are decreased levels of folic acid and vitamin-B12, which are potential metabolites capable of damaging neurons. These altered levels of metabolites are found to activate several metabolic pathways, leading to increases in oxidative stress and decreases in the level of neurotrophic factors. As a consequence, they may damage retinal neurons in diabetic patients. In this review, we have discussed those potential excitotoxic metabolites and their implications in neuronal damage. Possible therapeutic targets to protect neurons are also discussed. However, further research is needed to understand the exact molecular mechanism of neurodegeneration so that effective neuroprotection strategies can be developed. By protecting retinal neurons early in diabetic retinopathy cases, damage of retinal vessels can be protected, thereby helping to ameliorate the progression of diabetic retinopathy, a leading cause of blindness worldwide.
Collapse
Affiliation(s)
- Mohammad Shamsul Ola
- Department of Biochemistry, Faculty of Science, King Saud University, Riyadh 11415, Saudi Arabia; E-Mails: (M.I.N.); (H.A.K.); (A.S.A.)
| | - Mohd Imtiaz Nawaz
- Department of Biochemistry, Faculty of Science, King Saud University, Riyadh 11415, Saudi Arabia; E-Mails: (M.I.N.); (H.A.K.); (A.S.A.)
| | - Haseeb A. Khan
- Department of Biochemistry, Faculty of Science, King Saud University, Riyadh 11415, Saudi Arabia; E-Mails: (M.I.N.); (H.A.K.); (A.S.A.)
| | - Abdullah S. Alhomida
- Department of Biochemistry, Faculty of Science, King Saud University, Riyadh 11415, Saudi Arabia; E-Mails: (M.I.N.); (H.A.K.); (A.S.A.)
| |
Collapse
|