1
|
Vivanco-Estela A, Rocha SAD, Escobar-Espinal D, Bálico GG, Caudle RM, Guimaraes FS, Del-Bel E, Nascimento GC. Sex-related differences in cannabidiol's antinociceptive efficacy in a trigeminal neuralgia rodent model. Pain 2025:00006396-990000000-00901. [PMID: 40359363 DOI: 10.1097/j.pain.0000000000003616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 03/03/2025] [Indexed: 05/15/2025]
Abstract
ABSTRACT Trigeminal neuralgia (TN) is a severe orofacial pain condition with sex-specific differences in pain responses. Standard treatments offer limited efficacy and significant side effects. We hypothesized that cannabidiol (CBD) alleviates TN-induced allodynia more effectively than carbamazepine in a sex- and dose-dependent manner through neuroimmune mechanisms, including modulation of glia, Fos protein expression, and oxidative stress in the ventrolateral periaqueductal gray (vlPAG) and spinal trigeminal nucleus caudalis (Sp5c). In an infraorbital nerve constriction model, mechanical allodynia was evaluated in male and female Wistar-Hannover rats. Our study demonstrates the potent antinociceptive effects of CBD in reducing mechanical allodynia in both male and female models of trigeminal neuralgia, without affecting locomotor activity, unlike carbamazepine. Although CBD's analgesic effects were consistent across sexes, carbamazepine showed sex-dependent efficacy. Cannabidiol's effects on Fos-B were region- and sex-dependent: it inhibited Fos-B in the Sp5c in both sexes but only in males in the vlPAG, suggesting sexually dimorphic activation of descendent pain circuits. Cannabidiol prevented superoxide oxidation in the vlPAG in both sexes, with effects on microglia and astrocytes at similar doses, suggesting that glial cells produce the oxidative stress inhibited by CBD. In the Sp5c, CBD modulated Fos-B, superoxide oxidation, microglia, and astrocytes in both sexes, indicating a possible lack of sexual dimorphism in this region. These results highlight CBD's efficacy in managing TN by modulating ascending and descending nociceptive pathways. Beyond its neuronal effects, CBD's analgesic actions in TN may also involve significant modulation of glial cell activity, underscoring the complexity of its therapeutic mechanisms.
Collapse
Affiliation(s)
- Airam Vivanco-Estela
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirão Preto, SP, Brazil
- Department of Oral Surgery, College of Dentistry, University of Florida, Gainesville, FL, United States
| | - Sanderson Araujo da Rocha
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - Daniela Escobar-Espinal
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - Gabriela Gonçalves Bálico
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - Robert M Caudle
- Department of Oral Surgery, College of Dentistry, University of Florida, Gainesville, FL, United States
| | - Francisco S Guimaraes
- Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - Elaine Del-Bel
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - Glauce Crivelaro Nascimento
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
2
|
Hullugundi SK, Dolkas J, Chernov AV, Yaksh TL, Eddinger KA, Angert M, Catroli GF, Strongin AY, Dougherty PM, Li Y, Quehenberger O, Armando A, Shubayev VI. Cholesterol-dependent LXR transcription factor activity represses pronociceptive effects of estrogen in sensory neurons and pain induced by myelin basic protein fragments. Brain Behav Immun Health 2024; 38:100757. [PMID: 38590761 PMCID: PMC10999831 DOI: 10.1016/j.bbih.2024.100757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 03/17/2024] [Indexed: 04/10/2024] Open
Abstract
Background A bioactive myelin basic protein (MBP) fragment, comprising MBP84-104, is released in sciatic nerve after chronic constriction injury (CCI). Intraneural injection (IN) of MBP84-104 in an intact sciatic nerve is sufficient to induce persistent neuropathic pain-like behavior via robust transcriptional remodeling at the injection site and ipsilateral dorsal root ganglia (DRG) and spinal cord. The sex (female)-specific pronociceptive activity of MBP84-104 associates with sex-specific changes in cholesterol metabolism and activation of estrogen receptor (ESR)1 signaling. Methods In male and female normal and post-CCI rat sciatic nerves, we assessed: (i) cholesterol precursor and metabolite levels by lipidomics; (ii) MBP84-104 interactors by mass spectrometry of MBP84-104 pull-down; and (iii) liver X receptor (LXR)α protein expression by immunoblotting. To test the effect of LXRα stimulation on IN MBP84-104-induced mechanical hypersensitivity, the LXRα expression was confirmed along the segmental neuraxis, in DRG and spinal cord, followed by von Frey testing of the effect of intrathecally administered synthetic LXR agonist, GW3965. In cultured male and female rat DRGs exposed to MBP84-104 and/or estrogen treatments, transcriptional effect of LXR stimulation by GW3965 was assessed on downstream cholesterol transporter Abc, interleukin (IL)-6, and pronociceptive Cacna2d1 gene expression. Results CCI regulated LXRα ligand and receptor levels in nerves of both sexes, with cholesterol precursors, desmosterol and 7-DHC, and oxysterol elevated in females relative to males. MBP84-104 interacted with nuclear receptor coactivator (Ncoa)1, known to activate LXRα, injury-specific in nerves of both sexes. LXR stimulation suppressed ESR1-induced IL-6 and Cacna2d1 expression in cultured DRGs of both sexes and attenuated MBP84-104-induced pain in females. Conclusion The injury-released bioactive MBP fragments induce pronociceptive changes by selective inactivation of nuclear transcription factors, including LXRα. By Ncoa1 sequestration, bioactive MBP fragments render LXRα function to counteract pronociceptive activity of estrogen/ESR1 in sensory neurons. This effect of MBP fragments is prevalent in females due to high circulating estrogen levels in females relative to males. Restoring LXR activity presents a promising therapeutic strategy in management of neuropathic pain induced by bioactive MBP.
Collapse
Affiliation(s)
- Swathi K. Hullugundi
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, La Jolla, CA, USA
| | - Jennifer Dolkas
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, La Jolla, CA, USA
| | - Andrei V. Chernov
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, La Jolla, CA, USA
| | - Tony L. Yaksh
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA
| | - Kelly A. Eddinger
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA
| | - Mila Angert
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, La Jolla, CA, USA
| | - Glaucilene Ferreira Catroli
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, La Jolla, CA, USA
| | - Alex Y. Strongin
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Patrick M. Dougherty
- Department of Pain Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yan Li
- Department of Pain Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Aaron Armando
- Lipidomics Core, University of California, San Diego, La Jolla, CA, USA
| | - Veronica I. Shubayev
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, La Jolla, CA, USA
| |
Collapse
|
3
|
Minervini G, Marrapodi MM, La Verde M, Meto A, Siurkel Y, Ronsivalle V, Cicciù M. Pregnancy related factors and temporomandibular disorders evaluated through the diagnostic criteria for temporomandibular disorders (DC/TMD) axis II: a cross sectional study. BMC Oral Health 2024; 24:226. [PMID: 38350935 PMCID: PMC10863208 DOI: 10.1186/s12903-024-03930-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 01/23/2024] [Indexed: 02/15/2024] Open
Abstract
INTRODUCTION Temporomandibular disorder (TMD) is a multifaceted condition impacting the chewing system, with its frequency varying across different age groups and showing a higher incidence in women. The involvement of estrogen in TMD has been examined due to the presence of estrogen receptors in the TMJ area. However, the exact effect of estrogen on TMD is complex. During pregnancy, marked by significant hormonal fluctuations, the impact on TMD has been hypothesized but remains unclear due to inconsistent results from various studies. METHODS In this cross-sectional study, we enrolled 32 pregnant women consecutively. We gathered information on demographics, TMD evaluations (using the Graded Chronic Pain Scale, Jaw Functional Limitation Scale-20, and Oral Behaviors Checklist), and mental health assessments (including Patient Health Questionnaire-9, Patient Health Questionnaire-15, and Generalized Anxiety Disorder-7). We employed descriptive statistics to summarize continuous and categorical data and used t-tests and chi-square tests for comparisons. We also conducted multivariate linear regression, adjusted for demographic factors, to investigate correlations. RESULTS The study group mainly consisted of women aged 30-35 (40.6%) and 25-30 (18.8%). Most participants had completed high school (50%) and were married (71.9%). A notable association was found between younger women (under 30) and higher levels of somatic symptoms (p = 0.008) and generalized anxiety (p = 0.015). Women in their second trimester showed lower severity of somatic symptoms (p = 0.04). A significant link was also observed between depression severity and somatic symptom severity (p = 0.01). However, we found no significant correlations with other TMD-related health aspects. DISCUSSION Our study identified significant associations between psychosomatic and psychological symptoms with variables like age and pregnancy trimester in pregnant women. However, it notably failed to establish a clear relationship between pregnancy-related factors and the severity of temporomandibular disorders (TMD). More comprehensive studies with larger participant pools are necessary to further validate and expand these findings.
Collapse
Affiliation(s)
- Giuseppe Minervini
- Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India.
- Multidisciplinary Department of Medical-Surgical and Odontostomatological Specialties, University of Campania "Luigi Vanvitelli", Naples, 80121, Italy.
| | - Maria Maddalena Marrapodi
- Department of Woman, Child and General and Specialized Surgery, Obstetrics and Gynecology Unit, University of Campania "Luigi Vanvitelli", Largo Madonna delle Grazie 1, Naples, 80138, Italy
| | - Marco La Verde
- Department of Woman, Child and General and Specialized Surgery, Obstetrics and Gynecology Unit, University of Campania "Luigi Vanvitelli", Largo Madonna delle Grazie 1, Naples, 80138, Italy.
| | - Aida Meto
- Department of Dentistry, Faculty of Dental Medicine, University of Aldent, Tirana, Albania
- Clinical Microbiology, School of Dentistry, University of Modena and Reggio Emilia, Modena, Italy
| | - Yuliia Siurkel
- International European University School of Medicine, Akademika Hlushkova Ave, 42В, Kyiv, 03187, Ukraine.
| | - Vincenzo Ronsivalle
- Department of Biomedical and Surgical and Biomedical Sciences, Catania University, Catania, 95123, Italy
| | - Marco Cicciù
- Department of Biomedical and Surgical and Biomedical Sciences, Catania University, Catania, 95123, Italy
| |
Collapse
|
4
|
Modification of oestrogen signalling pathways influences cough induced by citric acid but not capsaicin in the animal model of both sexes. Respir Physiol Neurobiol 2023; 312:104039. [PMID: 36842728 DOI: 10.1016/j.resp.2023.104039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/13/2023] [Accepted: 02/23/2023] [Indexed: 02/28/2023]
Abstract
To clarify the role of oestrogen signalling and the role of oestrogen receptor alpha (ERα) in the cough pathways we performed a study in which coughing was observed in both sexes animal models after the treatment by selective ERα degrader fulvestrant (ICI 182-780) and inhibitor of oestrogen synthesis danazol. Degradation of ERα with the normal plasma oestrogen levels induced by fulvestrant, significantly augments the cough response of female but not male guinea pigs. These changes were observed in citric acid-induced cough. Female guinea pigs responded with an increased count of cough expulsions per challenge time and we also detected shorter cough latency. The capsaicin-induced cough did not change. A similar response was observed after danazol treatment, which decreased the plasma oestrogen level. Our results indicate that the transient receptor potential vanilloid-1 (TRPV1) channel-mediated cough is resistant to the hypoestrous state, while the citric acid-mediated cough is oestrogen-dependent and hypersensitive during the hypoestrous state.
Collapse
|
5
|
Keita-Alassane S, Otis C, Bouet E, Guillot M, Frezier M, Delsart A, Moreau M, Bédard A, Gaumond I, Pelletier JP, Martel-Pelletier J, Beaudry F, Lussier B, Lecomte R, Marchand S, Troncy E. Estrogenic impregnation alters pain expression: analysis through functional neuropeptidomics in a surgical rat model of osteoarthritis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:703-715. [PMID: 35318491 DOI: 10.1007/s00210-022-02231-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/11/2022] [Indexed: 12/20/2022]
Abstract
PURPOSE Several observational studies suggest that estrogens could bias pain perception. To evaluate the influence of estrogenic impregnation on pain expression, a prospective, randomized, controlled, blinded study was conducted in a Sprague-Dawley rat model of surgically induced osteoarthritis (OA). METHODS Female rats were ovariectomized and pre-emptive 17β-estradiol (0.025 mg, 90-day release time) or placebo pellets were installed subcutaneously during the OVX procedures. Thirty-five days after, OA was surgically induced on both 17β-estradiol (OA-E) and placebo (OA-P) groups. Mechanical hypersensitivity was assessed by static weight-bearing (SWB) and paw withdrawal threshold (PWT) tests. Mass spectrometry coupled with high-performance liquid chromatography (HPLC-MS) was performed to quantify the spinal pronociceptive neuropeptides substance P (SP), calcitonin gene-related peptide (CGRP), bradykinin (BK), somatostatin (SST), and dynorphin-A (Dyn-A). RESULTS Compared to control, ovariectomized rats presented higher SP (P = 0.009) and CGRP (P = 0.017) concentrations. OA induction increased the spinal level of SP (+ 33%, P < 0.020) and decreased the release of BK (- 20%, (P < 0.037)). The OA-E rats at functional assessment put more % body weight on the affected hind limb than OA-P rats at D7 (P = 0.027) and D56 (P = 0.033), and showed higher PWT at D56 (P = 0.009), suggesting an analgesic and anti-allodynic effect of 17β-estradiol. Interestingly, the 17β-estradiol treatment counteracted the increase of spinal concentration of Dyn-A (P < 0.016) and CGRP (P < 0.018). CONCLUSION These results clearly indicate that 17β-estradiol interfers with the development of central sensitization and confirm that gender dimorphism should be considered when looking at pain evaluation.
Collapse
Affiliation(s)
- Sokhna Keita-Alassane
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, Saint Hyacinthe, QC, Canada
| | - Colombe Otis
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, Saint Hyacinthe, QC, Canada
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Emilie Bouet
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, Saint Hyacinthe, QC, Canada
| | - Martin Guillot
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, Saint Hyacinthe, QC, Canada
- Charles River Laboratories Montreal ULC, Senneville, QC, Canada
| | - Marilyn Frezier
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, Saint Hyacinthe, QC, Canada
| | - Aliénor Delsart
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, Saint Hyacinthe, QC, Canada
| | - Maxim Moreau
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, Saint Hyacinthe, QC, Canada
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Agathe Bédard
- Charles River Laboratories Montreal ULC, Senneville, QC, Canada
| | - Isabelle Gaumond
- Département de Chirurgie, Département d'anesthésie, Faculté de Médecine Et Des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jean-Pierre Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Johanne Martel-Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Francis Beaudry
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, Saint Hyacinthe, QC, Canada
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Bertrand Lussier
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, Saint Hyacinthe, QC, Canada
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Roger Lecomte
- Sherbrooke Molecular Imaging Center, Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CRCHUS), Sherbrooke, QC, Canada
| | - Serge Marchand
- Département de Chirurgie, Département d'anesthésie, Faculté de Médecine Et Des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CRCHUS), Sherbrooke, QC, Canada
| | - Eric Troncy
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, Saint Hyacinthe, QC, Canada.
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada.
| |
Collapse
|
6
|
Franco-Enzástiga Ú, García G, Murbartián J, González-Barrios R, Salinas-Abarca AB, Sánchez-Hernández B, Tavares-Ferreira D, Herrera LA, Barragán-Iglesias P, Delgado-Lezama R, Price TJ, Granados-Soto V. Sex-dependent pronociceptive role of spinal α 5 -GABA A receptor and its epigenetic regulation in neuropathic rodents. J Neurochem 2020; 156:897-916. [PMID: 32750173 DOI: 10.1111/jnc.15140] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/26/2020] [Accepted: 07/22/2020] [Indexed: 12/23/2022]
Abstract
Extrasynaptic α5 -subunit containing GABAA (α5 -GABAA ) receptors participate in chronic pain. Previously, we reported a sex difference in the action of α5 -GABAA receptors in dysfunctional pain. However, the underlying mechanisms remain unknown. The aim of this study was to examine this sexual dimorphism in neuropathic rodents and the mechanisms involved. Female and male Wistar rats or ICR mice were subjected to nerve injury followed by α5 -GABAA receptor inverse agonist intrathecal administration, L-655,708. The drug produced an antiallodynic effect in nerve-injured female rats and mice, and a lower effect in males. We hypothesized that changes in α5 -GABAA receptor, probably influenced by hormonal and epigenetic status, might underlie this sex difference. Thus, we performed qPCR and western blot. Nerve injury increased α5 -GABAA mRNA and protein in female dorsal root ganglia (DRG) and decreased them in DRG and spinal cord of males. To investigate the hormonal influence over α5 -GABAA receptor actions, we performed nerve injury to ovariectomized rats and reconstituted them with 17β-estradiol (E2). Ovariectomy abrogated L-655,708 antiallodynic effect and E2 restored it. Ovariectomy decreased α5 -GABAA receptor and estrogen receptor α protein in DRG of neuropathic female rats, while E2 enhanced them. Since DNA methylation might contribute to α5 -GABAA receptor down-regulation in males, we examined CpG island DNA methylation of α5 -GABAA receptor coding gene through pyrosequencing. Nerve injury increased methylation in male, but not female rats. Pharmacological inhibition of DNA methyltransferases increased α5 -GABAA receptor and enabled L-655,708 antinociceptive effect in male rats. These results suggest that α5 -GABAA receptor is a suitable target to treat chronic pain in females.
Collapse
Affiliation(s)
- Úrzula Franco-Enzástiga
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| | - Guadalupe García
- Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| | - Janet Murbartián
- Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| | | | - Ana B Salinas-Abarca
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| | - Beatriz Sánchez-Hernández
- Departamento de Genética, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Diana Tavares-Ferreira
- School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, USA
| | - Luis A Herrera
- Cancer Biomedical Research Unit, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Paulino Barragán-Iglesias
- School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, USA.,Department of Physiology and Pharmacology, Center for Basic Sciences, Autonomous University of Aguascalientes, Aguascalientes, Mexico
| | - Rodolfo Delgado-Lezama
- Departamento de Fisiología, Biofísica y Neurociencias, Cinvestav, Zacatenco, Mexico City, Mexico
| | - Theodore J Price
- School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, USA
| | - Vinicio Granados-Soto
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| |
Collapse
|
7
|
Tran M, Braz JM, Hamel K, Kuhn J, Todd AJ, Basbaum AI. Ablation of spinal cord estrogen receptor α-expressing interneurons reduces chemically induced modalities of pain and itch. J Comp Neurol 2020; 528:1629-1643. [PMID: 31872868 PMCID: PMC7317200 DOI: 10.1002/cne.24847] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 11/13/2022]
Abstract
Estrogens are presumed to underlie, at least in part, the greater pain sensitivity and chronic pain prevalence that women experience compared to men. Although previous studies revealed populations of estrogen receptor-expressing neurons in primary afferents and in superficial dorsal horn neurons, there is little to no information as to the contribution of these neurons to the generation of acute and chronic pain. Here we molecularly characterized neurons in the mouse superficial spinal cord dorsal horn that express estrogen receptor α (ERα) and explored the behavioral consequences of their ablation. We found that spinal ERα-positive neurons are largely excitatory interneurons and many coexpress substance P, a marker for a discrete subset of nociceptive, excitatory interneurons. After viral, caspase-mediated ablation of spinal ERα-expressing cells, we observed a significant decrease in the first phase of the formalin test, but in male mice only. ERα-expressing neuron-ablation also reduced pruritogen-induced scratching in both male and female mice. There were no ablation-related changes in mechanical or heat withdrawal thresholds or in capsaicin-induced nocifensive behavior. In chronic pain models, we found no change in Complete Freund's adjuvant-induced thermal or mechanical hypersensitivity, or in partial sciatic nerve injury-induced mechanical allodynia. We conclude that ERα labels a subpopulation of excitatory interneurons that are specifically involved in chemically evoked persistent pain and pruritogen-induced itch.
Collapse
Affiliation(s)
- May Tran
- Department of AnatomyUniversity of CaliforniaSan FranciscoCalifornia
| | - Joao Manuel Braz
- Department of AnatomyUniversity of CaliforniaSan FranciscoCalifornia
| | - Katherine Hamel
- Department of AnatomyUniversity of CaliforniaSan FranciscoCalifornia
| | - Julia Kuhn
- Department of AnatomyUniversity of CaliforniaSan FranciscoCalifornia
| | - Andrew J. Todd
- Spinal Cord Group, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Allan I. Basbaum
- Department of AnatomyUniversity of CaliforniaSan FranciscoCalifornia
| |
Collapse
|
8
|
Fichera G, Polizzi A, Scapellato S, Palazzo G, Indelicato F. Craniomandibular Disorders in Pregnant Women: An Epidemiological Survey. J Funct Morphol Kinesiol 2020; 5:E36. [PMID: 33467252 PMCID: PMC7739292 DOI: 10.3390/jfmk5020036] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 11/16/2022] Open
Abstract
Temporomandibular joint (TMJ) disorder has been reported to be 1.5 to two times more common in women than men. Such a gender-based difference could be attributed to behavioral, hormonal, anatomical, and psychological characteristics. Physiological hormonal differences between genders could be one of the possible explanations for the higher incidence of temporomandibular disorder (TMD) in women. As the plasma level of certain female hormones increases during gestation, it could be assumed that there is a higher prevalence of dysfunctional signs and symptoms in pregnant women. We performed an epidemiological survey based on screening for TMD in a group of 108 pregnant women and found that 72% of young women reported significant signs of TMJ disorders, 9% of the young women reported mild signs of TMJ disorders, and 19% of the included subjects reported no signs or symptoms of TMD. The presence of estrogen receptors in the temporomandibular joint of female baboons could be the basis of an explanation for the increased prevalence of dysfunction in young women reported in the literature and the high feedback we have seen of joint noises in pregnant women. On the basis of the present findings, it could be assumed that gestation period could represent a risk factor for craniomandibular dysfunctions.
Collapse
Affiliation(s)
- Grazia Fichera
- Department of General Surgery and Surgical-Medical Specialties, University of Catania, 95124 Catania, Italy; (G.F.); (S.S.); (G.P.); (F.I.)
| | - Alessandro Polizzi
- Department of General Surgery and Surgical-Medical Specialties, University of Catania, 95124 Catania, Italy; (G.F.); (S.S.); (G.P.); (F.I.)
| | - Simone Scapellato
- Department of General Surgery and Surgical-Medical Specialties, University of Catania, 95124 Catania, Italy; (G.F.); (S.S.); (G.P.); (F.I.)
- Department of Biomedical, Odontostomatological Sciences and of Morphological and Functional Images, University of Messina, 98125 Messina, Italy
| | - Giuseppe Palazzo
- Department of General Surgery and Surgical-Medical Specialties, University of Catania, 95124 Catania, Italy; (G.F.); (S.S.); (G.P.); (F.I.)
| | - Francesco Indelicato
- Department of General Surgery and Surgical-Medical Specialties, University of Catania, 95124 Catania, Italy; (G.F.); (S.S.); (G.P.); (F.I.)
| |
Collapse
|
9
|
Estradiol Replacement Improves High-Fat Diet-Induced Obesity by Suppressing the Action of Ghrelin in Ovariectomized Rats. Nutrients 2020; 12:nu12040907. [PMID: 32224927 PMCID: PMC7230822 DOI: 10.3390/nu12040907] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/17/2020] [Accepted: 03/24/2020] [Indexed: 12/16/2022] Open
Abstract
This study aims to investigate the effects of estradiol replacement on the orexigenic action of ghrelin in ovariectomized (OVX) obese rats fed with a high-fat diet (HFD). Four weeks after OVX at 9 weeks of age, Wistar rats were subcutaneously implanted with either 17β-estradiol (E2) or placebo (Pla) pellets and started on HFD feeding. After 4 weeks, growth hormone-releasing peptide (GHRP)-6, a growth hormone secretagogue receptor (GHSR) agonist injected intraperitoneally, induced changes in HFD intake, and c-Fos-positive neurons in the hypothalamic arcuate nucleus (ARC) were measured in both groups. The ghrelin protein and mRNA levels, as well as GHSR protein in stomach, were analyzed by Western blotting and real-time PCR. HFD increased energy intake and body weight in the Pla group, while it temporarily reduced these in the E2 group. GHRP-6 enhanced HFD intake and activated neurons in the ARC only in the Pla group. Furthermore, gastric ghrelin and GHSR protein levels were lower in the E2 group than in the Pla group, but plasma acyl ghrelin levels were similar in both groups. Our results suggest that E2 replacement improves obesity by inhibiting the orexigenic action of ghrelin via downregulation of ghrelin and its receptor in stomach in HFD-fed OVX rats.
Collapse
|
10
|
Tashiro A, Bereiter DA. The effects of estrogen on temporomandibular joint pain as influenced by trigeminal caudalis neurons. J Oral Sci 2020; 62:150-155. [PMID: 32132330 DOI: 10.2334/josnusd.19-0405] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The signs and symptoms of persistent temporomandibular joint (TMJ)/muscle disorder (TMJD) pain suggest the existence of a central neural dysfunction or a problem of pain amplification. The etiology of chronic TMJD is not known; however, female sex hormones have been identified as significant risk factors. Converging lines of evidence indicate that the junctional region between the trigeminal subnucleus caudalis (Vc) and the upper cervical spinal cord, termed the Vc/C1-2 region, is the primary site for the synaptic integration of sensory input from TMJ nociceptors. In this paper, the mechanisms behind the estrogen effects on the processing of nociceptive inputs by neurons in the Vc/C1-2 region reported by human and animal studies are reviewed. The Vc/C1-2 region has direct connections to endogenous pain and autonomic control pathways, which are modified by estrogen status and are suggested to be critical for somatomotor and autonomic reflex responses of TMJ-related sensory signals.
Collapse
Affiliation(s)
| | - David A Bereiter
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry
| |
Collapse
|
11
|
Browning KN. Stress-induced modulation of vagal afferents. Neurogastroenterol Motil 2019; 31:e13758. [PMID: 31736236 PMCID: PMC6986320 DOI: 10.1111/nmo.13758] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 10/18/2019] [Accepted: 10/18/2019] [Indexed: 12/13/2022]
Abstract
Vagally dependent gastric functions, including motility, tone, compliance, and emptying rate, play an important role in the regulation of food intake and satiation. Vagal afferent fibers relay sensory information from the stomach, including meal-related information, centrally and initiate co-ordinated autonomic efferent responses that regulate upper gastrointestinal responses. The purpose of this mini-review is to highlight several recent studies which have uncovered the remarkable degree of neuroplasticity within gastric mechanosensitive vagal afferents and the recent study by Li et al, in this issue of Neurogastroenterology and Motility, who show that the mechanosensitivity of gastric vagal afferents is dysregulated in a murine model of chronic stress. The authors demonstrate that both gastric mucosal and tension afferents are hypersensitive following chronic stress, and responses to mucosal stroking and muscle stretch are enhanced significantly. As gastric distension and volumetric signaling is important in satiety signaling and meal termination, this may provide a mechanistic basis for the gastric hypersensitivity associated with stress-associated clinical problems such as functional dyspepsia.
Collapse
Affiliation(s)
- Kirsteen N. Browning
- Department of Neural and Behavioral Sciences Penn State College of Medicine Hershey Pennsylvania
| |
Collapse
|
12
|
Artero-Morales M, González-Rodríguez S, Ferrer-Montiel A. TRP Channels as Potential Targets for Sex-Related Differences in Migraine Pain. Front Mol Biosci 2018; 5:73. [PMID: 30155469 PMCID: PMC6102492 DOI: 10.3389/fmolb.2018.00073] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/10/2018] [Indexed: 12/31/2022] Open
Abstract
Chronic pain is one of the most debilitating human diseases and represents a social and economic burden for our society. Great efforts are being made to understand the molecular and cellular mechanisms underlying the pathophysiology of pain transduction. It is particularly noteworthy that some types of chronic pain, such as migraine, display a remarkable sex dimorphism, being up to three times more prevalent in women than in men. This gender prevalence in migraine appears to be related to sex differences arising from both gonadal and genetic factors. Indeed, the functionality of the somatosensory, immune, and endothelial systems seems modulated by sex hormones, as well as by X-linked genes differentially expressed during development. Here, we review the current data on the modulation of the somatosensory system functionality by gonadal hormones. Although this is still an area that requires intense investigation, there is evidence suggesting a direct regulation of nociceptor activity by sex hormones at the transcriptional, translational, and functional levels. Data are being accumulated on the effect of sex hormones on TRP channels such as TRPV1 that make pivotal contributions to nociceptor excitability and sensitization in migraine and other chronic pain syndromes. These data suggest that modulation of TRP channels' expression and/or activity by gonadal hormones provide novel pathways for drug intervention that may be useful for targeting the sex dimorphism observed in migraine.
Collapse
Affiliation(s)
- Maite Artero-Morales
- Instituto de Biología Molecular y Celular, Universitas Miguel Hernández, Elche, Spain
| | | | | |
Collapse
|
13
|
Tran M, Kuhn JA, Bráz JM, Basbaum AI. Neuronal aromatase expression in pain processing regions of the medullary and spinal cord dorsal horn. J Comp Neurol 2017. [PMID: 28649695 DOI: 10.1002/cne.24269] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In both acute and chronic pain conditions, women tend to be more sensitive than men. This sex difference may be regulated by estrogens, such as estradiol, that are synthesized in the spinal cord and brainstem and act locally to influence pain processing. To identify a potential cellular source of local estrogen, here we examined the expression of aromatase, the enzyme that catalyzes the conversion of testosterone to estradiol. Our studies focused on primary afferent neurons and on their central targets in the spinal cord and medulla as well as in the nucleus of the solitary tract, the target of nodose ganglion-derived visceral afferents. Immunohistochemical staining in an aromatase reporter mouse revealed that many neurons in laminae I and V of the spinal cord dorsal horn and caudal spinal trigeminal nucleus and in the nucleus of the solitary tract express aromatase. The great majority of these cells also express inhibitory interneuron markers. We did not find sex differences in aromatase expression and neither the pattern nor the number of neurons changed in a sciatic nerve transection model of neuropathic pain or in the Complete Freund's adjuvant model of inflammatory pain. A few aromatase neurons express Fos after cheek injection of capsaicin, formalin, or chloroquine. In total, given their location, these aromatase neurons are poised to engage nociceptive circuits, whether it is through local estrogen synthesis or inhibitory neurotransmitter release.
Collapse
Affiliation(s)
- May Tran
- Department of Anatomy, University of California, San Francisco, San Francisco, California
| | - Julia A Kuhn
- Department of Anatomy, University of California, San Francisco, San Francisco, California
| | - João M Bráz
- Department of Anatomy, University of California, San Francisco, San Francisco, California
| | - Allan I Basbaum
- Department of Anatomy, University of California, San Francisco, San Francisco, California
| |
Collapse
|
14
|
Mowa CN, Papka RE. The Role of Sensory Neurons in Cervical Ripening: Effects of Estrogen and Neuropeptides. J Histochem Cytochem 2016; 52:1249-58. [PMID: 15385571 DOI: 10.1177/002215540405201001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Central nervous system nuclei and circuits, such as the medial preoptic, ventromedial and paraventricular nuclei of the hypothalamus, play important roles in reproduction and parturition, and are influenced by estrogen. Peripheral autonomic and sensory neurons also play important roles in pregnancy and parturition. Moreover, the steroid hormone estrogen acts directly, not only on the reproductive tract organs (uterus and cervix), but also on the central and peripheral nerves by regulating expression of various neuronal genes. The peripheral primary afferent neurons innervating the uterine cervix relay mechanical and biochemical sensory information induced by local cervical events and by passage of fetuses, to the spinal cord and supraspinal centers. Consequently, the birth process in mammals is influenced by the combined action of neurons and hormones. Peripheral sensory stimuli, induced physiologically by fetal expulsion or mechanically by vaginocervical stimulation, alter behavior, as well as autonomic and neuroendocrine systems. Recent evidence indicates that primary afferent neurons innervating the cervix, in addition to their sensory effects, likely exert local “efferent” actions on the ripening cervix near term. These efferent effects may involve estrogen-regulated production of such neuropeptides as substance P and calcitonin gene-related peptide in lumbosacral dorsal root ganglia, and their release in the cervix. Collectively, these findings suggest an interrelationship among estrogen, cervix-related sensory neurons, and local cervical events near term.
Collapse
Affiliation(s)
- C N Mowa
- Northeastern Ohio Universities College of Medicine, Department of Neurobiology, 4209 State Rt. 44, P.O. Box 95, Rootstown, OH 44272, USA
| | | |
Collapse
|
15
|
Ciriello J, Caverson MM. Effect of estrogen on vagal afferent projections to the brainstem in the female. Brain Res 2016; 1636:21-42. [PMID: 26835561 DOI: 10.1016/j.brainres.2016.01.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 01/19/2016] [Accepted: 01/25/2016] [Indexed: 12/13/2022]
Abstract
The effects of 17β-estradiol (E) on the distribution and density of brainstem projections of small or large diameter primary vagal afferents were investigated in Wistar rats using transganglionic transport of wheat germ agglutinin- (WGA; preferentially transported by non-myelinated afferent C-fibers; 2%), or cholera toxin B-subunit- (CTB, 5%; preferentially transported by large myelinated afferent A-fibers) conjugated horseradish peroxidase (HRP) in combination with the tetramethylbenzidine method in age matched ovariectomized (OVX) only or OVX and treated with E (OVX+E; 30 pg/ml plasma) females for 12 weeks. Additionally, these projections were compared to aged matched males. Unilateral microinjection of WGA-HRP into the nodose ganglion resulted in dense anterograde labeling bilaterally, with an ipsilateral predominance in several subnuclei of the nucleus of the solitary tract (NTS) and in area postrema that was greatest in OVX+E animals compared to OVX only and males. Moderately dense anterograde labeling was also observed in paratrigeminal nucleus (PAT) of the OVX+E animals. CTB-HRP produced less dense anterograde labeling in the NTS complex, but had a wider distribution within the brainstem including the area postrema, dorsal motor nucleus of the vagus, PAT, the nucleus ambiguus complex and ventrolateral medulla in all groups. The distribution of CTB-HRP anterograde labeling was densest in OVX+E, less dense in OVX only females and least dense in male rats. Little, if any, labeling was found within PAT in males using either WGA-or CTB-HRP. Taken together, these data suggest that small, non-myelinated (WGA-labeled) and large myelinated (CTB-labeled) diameter vagal afferents projecting to brainstem autonomic areas are differentially affected by circulating levels of estrogen. These effects of estrogen on connectivity may contribute to the sex differences observed in central autonomic mechanisms between gender, and in females with and without estrogen.
Collapse
Affiliation(s)
- John Ciriello
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1 Canada.
| | - Monica M Caverson
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1 Canada
| |
Collapse
|
16
|
Vacca V, Marinelli S, Pieroni L, Urbani A, Luvisetto S, Pavone F. 17beta-estradiol counteracts neuropathic pain: a behavioural, immunohistochemical, and proteomic investigation on sex-related differences in mice. Sci Rep 2016; 6:18980. [PMID: 26742647 PMCID: PMC4705539 DOI: 10.1038/srep18980] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 09/02/2015] [Indexed: 01/31/2023] Open
Abstract
Sex differences play a role in pain sensitivity, efficacy of analgesic drugs and prevalence of neuropathic pain, even if the underlying mechanisms are far from being understood. We demonstrate that male and female mice react differently to structural and functional changes induced by sciatic nerve ligature, used as model of neuropathic pain. Male mice show a gradual decrease of allodynia and a complete recovery while, in females, allodynia and gliosis are still present four months after neuropathy induction. Administration of 17β-estradiol is able to significantly attenuate this difference, reducing allodynia and inducing a complete recovery also in female mice. Parallel to pain attenuation, 17β-estradiol treated-mice show a functional improvement of the injured limb, a faster regenerative process of the peripheral nerve and a decreased neuropathy-induced gliosis. These results indicate beneficial effects of 17β-estradiol on neuropathic pain and neuronal regeneration and focuses on the importance of considering gonadal hormones also in clinical studies.
Collapse
Affiliation(s)
- Valentina Vacca
- CNR-National Research Council, Institute of Cell Biology and Neurobiology, 00143 Roma, Italy.,IRCCS Fondazione Santa Lucia, 00143 Roma, Italy
| | - Sara Marinelli
- CNR-National Research Council, Institute of Cell Biology and Neurobiology, 00143 Roma, Italy.,IRCCS Fondazione Santa Lucia, 00143 Roma, Italy
| | - Luisa Pieroni
- IRCCS Fondazione Santa Lucia, 00143 Roma, Italy.,Department of Experimental Medicine and Surgery, Division of Biochemistry, University of "Tor Vergata", 00133 Roma, Italy
| | - Andrea Urbani
- IRCCS Fondazione Santa Lucia, 00143 Roma, Italy.,Department of Experimental Medicine and Surgery, Division of Biochemistry, University of "Tor Vergata", 00133 Roma, Italy
| | - Siro Luvisetto
- CNR-National Research Council, Institute of Cell Biology and Neurobiology, 00143 Roma, Italy.,IRCCS Fondazione Santa Lucia, 00143 Roma, Italy
| | - Flaminia Pavone
- CNR-National Research Council, Institute of Cell Biology and Neurobiology, 00143 Roma, Italy.,IRCCS Fondazione Santa Lucia, 00143 Roma, Italy
| |
Collapse
|
17
|
Association between estrogen levels and temporomandibular disorders: a systematic literature review. MENOPAUSE REVIEW 2015; 14:260-70. [PMID: 26848299 PMCID: PMC4733902 DOI: 10.5114/pm.2015.56538] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 11/18/2015] [Indexed: 11/19/2022]
Abstract
Introduction To evaluate whether the hypothesis that estrogen levels are associated with temporomandibular disorders (TMD) in humans can be confirmed or contradicted by available literature. Material and methods A systematic review based on the content of PubMed, Scopus, and Cochrane Library databases was performed. Studies were identified using a combination of key words ‘temporomandibular disorder’ and ‘estrogen’. Nine studies were included into our review. Results The relationship between estrogen levels and TMD was found in seven out of nine reviewed papers. Results from two papers suggest that a high estrogen level is associated with an increased prevalence of TMD. Five additional papers found a relationship between a low estrogen level and an increase in TMD pain. In considering the value of evidence and inconsistencies of results in the reviewed publications, we state that there is weak evidence to support the hypothesis that estrogen levels are associated with TMD. Conclusions Results of reviewed studies were divergent and sometimes contradictory. One possible explanation is that estrogen influences TMD pain processing differently than temporomandibular joints (TMJ) structures, as shown in many animal studies. Estrogen may influence TMD pain processing differently than TMJ structures. We suggest consideration of the dual action of estrogen when planning future studies on its association with TMD.
Collapse
|
18
|
Ovarian hormones and chronic pain: A comprehensive review. Pain 2014; 155:2448-2460. [DOI: 10.1016/j.pain.2014.08.027] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 08/15/2014] [Accepted: 08/20/2014] [Indexed: 01/19/2023]
|
19
|
Mónica Brauer M, Smith PG. Estrogen and female reproductive tract innervation: cellular and molecular mechanisms of autonomic neuroplasticity. Auton Neurosci 2014; 187:1-17. [PMID: 25530517 DOI: 10.1016/j.autneu.2014.11.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 11/18/2014] [Accepted: 11/20/2014] [Indexed: 02/08/2023]
Abstract
The female reproductive tract undergoes remarkable functional and structural changes associated with cycling, conception and pregnancy, and it is likely advantageous to both individual and species to alter relationships between reproductive tissues and innervation. For several decades, it has been appreciated that the mammalian uterus undergoes massive sympathetic axon depletion in late pregnancy, possibly representing an adaptation to promote smooth muscle quiescence and sustained blood flow. Innervation to other structures such as cervix and vagina also undergo pregnancy-related changes in innervation that may facilitate parturition. These tissues provide highly tractable models for examining cellular and molecular mechanisms underlying peripheral nervous system plasticity. Studies show that estrogen elicits rapid degeneration of sympathetic terminal axons in myometrium, which regenerate under low-estrogen conditions. Degeneration is mediated by the target tissue: under estrogen's influence, the myometrium produces proteins repulsive to sympathetic axons including BDNF, neurotrimin, semaphorins, and pro-NGF, and extracellular matrix components are remodeled. Interestingly, nerve depletion does not involve diminished levels of classical sympathetic neurotrophins that promote axon growth. Estrogen also affects sympathetic neuron neurotrophin receptor expression in ways that appear to favor pro-degenerative effects of the target tissue. In contrast to the uterus, estrogen depletes vaginal autonomic and nociceptive axons, with the latter driven in part by estrogen-induced suppression of BMP4 synthesis. These findings illustrate that hormonally mediated physiological plasticity is a highly complex phenomenon involving multiple, predominantly repulsive target-derived factors acting in concert to achieve rapid and selective reductions in innervation.
Collapse
Affiliation(s)
- M Mónica Brauer
- Laboratory of Cell Biology, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay.
| | - Peter G Smith
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, United States; Institute for Neurological Discoveries, University of Kansas Medical Center, Kansas City, KS 66160, United States.
| |
Collapse
|
20
|
Expression of estrogen receptors α and β in the trigeminal mesencephalic nucleus of adult women and men. Ann Anat 2014; 196:416-22. [PMID: 25060183 DOI: 10.1016/j.aanat.2014.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 06/03/2014] [Accepted: 06/03/2014] [Indexed: 01/01/2023]
Abstract
Temporomandibular disorders are more prevalent in women than in men and phases of pain relate to the estrous cycle. Several studies described the location of estrogen receptors (ER) in the temporomandibular joint (TMJ), the masseteric muscles and cartilage, but it was unknown whether they are also expressed within the pseudounipolar neurons of the trigeminal mesencephalic nucleus, which receives direct sensory inputs from these structures. Therefore, we studied expression of ERα and ERβ protein in the trigeminal mesencephalic nucleus of ten human brains (five female/five male). Both receptors were uniformly expressed on neurons, but not other cell types within the target structure. Thus, sensory inputs from the TMJ and adjacent structures are likely to be modulated by estrogen at the level of the first sensory neuron which may underlie the well-known correlation of pain incidence and phases of the estrous cycle.
Collapse
|
21
|
Reichling DB, Green PG, Levine JD. The fundamental unit of pain is the cell. Pain 2013; 154 Suppl 1:S2-9. [PMID: 23711480 DOI: 10.1016/j.pain.2013.05.037] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 04/12/2013] [Accepted: 05/20/2013] [Indexed: 12/22/2022]
Abstract
The molecular/genetic era has seen the discovery of a staggering number of molecules implicated in pain mechanisms [18,35,61,69,96,133,150,202,224]. This has stimulated pharmaceutical and biotechnology companies to invest billions of dollars to develop drugs that enhance or inhibit the function of many these molecules. Unfortunately this effort has provided a remarkably small return on this investment. Inevitably, transformative progress in this field will require a better understanding of the functional links among the ever-growing ranks of "pain molecules," as well as their links with an even larger number of molecules with which they interact. Importantly, all of these molecules exist side-by-side, within a functional unit, the cell, and its adjacent matrix of extracellular molecules. To paraphrase a recent editorial in Science magazine [223], although we live in the Golden age of Genetics, the fundamental unit of biology is still arguably the cell, and the cell is the critical structural and functional setting in which the function of pain-related molecules must be understood. This review summarizes our current understanding of the nociceptor as a cell-biological unit that responds to a variety of extracellular inputs with a complex and highly organized interaction of signaling molecules. We also discuss the insights that this approach is providing into peripheral mechanisms of chronic pain and sex dependence in pain.
Collapse
Affiliation(s)
- David B Reichling
- Department of Medicine, Division of Neuroscience, University of California-San Francisco, San Francisco, CA, USA; Department of Oral and Maxillofacial Surgery, Division of Neuroscience, University of California-San Francisco, San Francisco, CA, USA
| | | | | |
Collapse
|
22
|
Long-term estradiol-17β administration changes the population of paracervical ganglion neurons supplying the ovary in adult gilts. J Mol Neurosci 2013; 50:424-33. [PMID: 23329259 DOI: 10.1007/s12031-012-9950-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Accepted: 12/28/2012] [Indexed: 12/22/2022]
Abstract
The aim of this study was to determine the influence of estradiol-17β (E(2)) overdose on the number and distribution of ovarian parasympathetic neurons in the paracervical ganglion (PCG) in adult pigs. To identify the neurons innervating gonads on day 3 of the estrous cycle, the ovaries of both the control and experimental gilts were injected with retrograde neuronal tracer Fast Blue. From next day to the expected day 20 of the second studied cycle, experimental gilts were injected with E(2), while control gilts received oil. The PCG were then collected and processed for double-labeling immunofluorescence. Injections of E(2) increased the E(2) level in the peripheral blood approximately four- to fivefold and reduced the following in the PCG: the total number of Fast Blue-positive neurons; the number of perikarya in the lateral part of the PCG; the numbers of vesicular acetylcholine transporter (VAChT)(+)/somatostatin(+), VAChT(+)/vasoactive intestinal polypeptide (VIP)(+), VAChT(+)/neuronal isoform of nitric oxide synthase(+), VAChT(+)/VIP(-), VAChT(+)/dopamine β-hydroxylase (DβH)(-), VAChT(-)/VIP(-), and VAChT(-)/DβH(-) perikarya; and the total number of perikarya expressing estrogen receptors (ERs) subtype α and/or β. In summary, long-term E(2) treatment of adult gilts downregulates the population of both cholinergic and ERs expressing the PCG ovary-projecting neurons. Our results suggest that elevated E(2) levels occurring during pathological states may regulate gonadal function(s) by affecting ovary-supplying neurons.
Collapse
|
23
|
Systemic and topical hormone therapies reduce vaginal innervation density in postmenopausal women. Menopause 2012; 19:630-5. [PMID: 22205148 DOI: 10.1097/gme.0b013e31823b8983] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Menopause is often accompanied by vaginal discomfort including burning, itching, dryness, and spontaneous or provoked pain. Although the direct effects of estrogen withdrawal on vaginal cells are implicated, surgical menopause in rodents causes autonomic and sensory nerves to proliferate, suggesting that indirect effects mediated by changes in vaginal innervation may contribute. We assessed whether postmenopausal women display hormone-dependent changes in vaginal innervation. METHODS Vaginal biopsies from 20 postmenopausal women undergoing surgery for stress urinary incontinence and pelvic organ prolapse were fixed and immunostained for the pan-neuronal marker protein gene product 9.5, sympathetic marker tyrosine hydroxylase, parasympathetic marker vasoactive intestinal polypeptide, and sensory nociceptor marker calcitonin gene-related peptide. Innervation density was measured as an apparent percentage of the section area occupied by immunofluorescent axons. Specimens were grouped according to whether participants received systemic hormone therapy (HT), topical (vaginal) HT, or no HT. RESULTS Women not receiving HT showed relatively high levels of total innervation, with most axons expressing tyrosine hydroxylase or vasoactive intestinal polypeptide immunoreactivity. In women receiving systemic HT, overall innervation was reduced, as were presumptive parasympathetic, sympathetic, and sensory axon populations. Topical HT elicited more dramatic reductions in innervation than in systemic HT. CONCLUSIONS Hormone therapy reduces autonomic and sensory vaginal innervation density, which may, in part, contribute to relief from vaginal discomfort. Moreover, topical therapy is more effective than systemic therapy, which may help explain the greater improvement reported with topical compared with systemic HT.
Collapse
|
24
|
Jana B, Lata M, Bulc M, Całka J. Long term estradiol-17β administration changes population of the dorsal root ganglia neurons innervating the ovary in the sexually mature gilts. Neuropeptides 2012; 46:157-65. [PMID: 22677207 DOI: 10.1016/j.npep.2012.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/30/2012] [Accepted: 05/15/2012] [Indexed: 01/09/2023]
Abstract
The influence of estradiol-17β (E₂) overdose on the number and distribution of neurons in the dorsal root ganglia (DRGs) supplying the ovary of adult pigs was investigated. The numbers of ovarian substance P (SP)-, calcitonin gene-related peptide (CGRP)-, galanin (GAL)-, pituitary adenylate cyclase-activating polypeptide (PACAP)-, neuronal isoform of nitric oxide synthase (nNOS)- and estrogen receptors (ERs)-immunoreactive perikarya were also determined. On day 3 of the estrous cycle, the ovaries of both the control and experimental gilts were injected with retrograde tracer Fast Blue. From day 4 of the estrous cycle to the expected day 20 of the second studied cycle, the experimental gilts were injected with E₂, while the control gilts received oil. The DRGs Th16-L5 were then collected and processed for double-labelling immunofluorescence. Injections of E₂ increased the E₂ level in the peripheral blood ∼4-5-fold and reduced the following in the DRGs: the total number of Fast Blue-positive perikarya, the number of large perikarya, the population of perikarya in the L2 and L3 ganglia, the numbers of SP- and/or CGRP-, PACAP-, nNOS-immunoreactive perikarya and the number of large perikarya expressing ERs subtype α and β. These results show that long-term E₂ treatment of adult gilts affects both the spatial and neurochemical organization pattern of ovary sensory innervation. Our findings suggest that elevated E₂ levels occurring during pathological states may regulate the transmission of sensory modalities from the ovary to the spinal cord.
Collapse
Affiliation(s)
- Barbara Jana
- Division of Reproductive Biology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, 10-747 Olsztyn, Tuwima 10, Poland.
| | | | | | | |
Collapse
|
25
|
Brunt VE, Miner JA, Meendering JR, Kaplan PF, Minson CT. 17β-estradiol and progesterone independently augment cutaneous thermal hyperemia but not reactive hyperemia. Microcirculation 2011; 18:347-55. [PMID: 21426437 DOI: 10.1111/j.1549-8719.2011.00095.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE We examined the impact of estradiol and progesterone on skin LH and RH in 25 healthy women. METHODS Subjects were studied three times over 10-12 days. Endogenous sex hormones were suppressed with a GnRHa. Subjects were studied on day 4 of suppression (study day 1), three to four days later following treatment with either 17β-estradiol or progesterone (study day 2), and another three to four days later, following treatment with both estradiol and progesterone (study day 3). Subjects underwent identical LH and RH protocols on all study days. LH is characterized by an initial peak in blood flow, followed by a prolonged plateau. A brief nadir is seen between the phases. RESULTS Blood flow values are expressed as percent maximum CVC. Estradiol alone increased initial peak CVC from 71 ± 2% to 79 ± 2% (p = 0.001). Progesterone alone increased initial peak CVC from 72 ± 2% to 78 ± 2% (p = 0.046). Neither estradiol nor progesterone increased plateau CVC. No significant changes were seen between study days 2 and 3 for either group. No differences were observed in RH. CONCLUSIONS Both estradiol and progesterone increased initial peak CVC during LH, without altering plateau CVC. There was no additive effect of estradiol and progesterone.
Collapse
Affiliation(s)
- Vienna E Brunt
- Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| | | | | | | | | |
Collapse
|
26
|
Schober J, Weil Z, Pfaff D. How generalized CNS arousal strengthens sexual arousal (and vice versa). Horm Behav 2011; 59:689-95. [PMID: 20950622 DOI: 10.1016/j.yhbeh.2010.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 09/23/2010] [Accepted: 10/02/2010] [Indexed: 12/22/2022]
Abstract
Heightened states of generalized CNS arousal are proposed here to facilitate sexual arousal in both males and females. Genetic, pharmacologic and biophysical mechanisms by which this happens are reviewed. Moreover, stimulation of the genital epithelia, as triggers of sex behavior, is hypothesized to lead to a greater generalized arousal in a manner that intensifies sexual motivation. Finally, launched from histochemical studies intended to characterize cells in the genital epithelium, a surprising idea is proposed that links density of innervation with the efficiency of wound healing and with the capacity of that epithelium to stimulate generalized CNS arousal. Thus, bidirectional arousal-related mechanisms that foster sexual behaviors are envisioned as follows: from specific to generalized (as with genital stimulation) and from generalized to specific.
Collapse
Affiliation(s)
- Justine Schober
- Laboratory of Neurobiology and Behavior, The Rockefeller University, NY, USA
| | | | | |
Collapse
|
27
|
Koszykowska M, Całka J, Gańko M, Jana B. Long-term estradiol-17β administration reduces population of neurons in the sympathetic chain ganglia supplying the ovary in adult gilts. Exp Mol Pathol 2011; 91:353-61. [PMID: 21545801 DOI: 10.1016/j.yexmp.2011.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 04/08/2011] [Accepted: 04/08/2011] [Indexed: 12/18/2022]
Abstract
Elevated levels of endogenous estrogens occurring in the course of pathological states of ovaries (follicular cysts, tumors) as well as xenoestrogens may result in hyperestrogenism. In rat, a close relationship between estrogens and sympathetic and sensory neurons supplying the genito-urinary system was reported. Recently, we have shown that long-term estradiol-17β (E(2)) administration affected morphological and immunochemical organization of the sympathetic ovarian neurons in the caudal mesenteric ganglion of adult gilts. In this study, the influence of E(2) overdose on the number and distribution of neurons in the sympathetic chain ganglia (SChG) projecting to the ovary of adult pigs was investigated. The numbers of ovarian dopamine-β-hydroxylase (DβH-), neuropeptide Y (NPY-), somatostatin (SOM-), galanin (GAL-) and estrogen receptors (ERs-) immunoreactive perikarya as well as the density of the intraganglionic nerve fibers containing DβH and/or NPY, SOM, GAL were also determined. On day 3 of the estrous cycle the ovaries of both the control and experimental gilts were injected with retrograde neuronal tracer Fast Blue, to identify the neurons innervating gonads. From day 4 of the estrous cycle to the expected day 20 of the second studied cycle, the experimental gilts were injected with E(2), while the control gilts were receiving oil. After the last E(2)/oil injection, the SChG Th16-S2 were collected and processed for double-labeling immunofluorescence. Injections of E(2): (1) increased the E(2) level in the peripheral blood ~4-5 fold, (2) reduced the total number of Fast Blue-positive postganglionic neurons in the ganglia under investigation, (3) decreased the number of perikarya in the L2-L4 ganglia, (4) reduced the number of perikarya in the ventral, dorsal and central regions of the SChG, (5) decreased the numbers of DβH(+)/NPY(+) and DβH(+)/GAL(+) perikarya and the numbers of DβH(+) but NPY(-), SOM(-) and GAL(-) perikarya in the SChG, (6) decreased the number of perikarya expressing ERs subtype α and β, and (7) decreased the total number of the intraganglionic nerve fibers containing DβH and/or NPY. These results show that long-term E(2) treatment of adult gilts down-regulates the population of both noradrenergic and ERs expressing the SChG ovary supplying neurons. Our findings suggest also that elevated E(2) levels that occur during pathological states may regulate gonadal function(s) by affecting ovary supplying neurons.
Collapse
Affiliation(s)
- Marlena Koszykowska
- Division of Reproductive Endocrinology and Pathophysiology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, 10-747 Olsztyn, Tuwima 10, Poland
| | | | | | | |
Collapse
|
28
|
Ma B, Yu LH, Fan J, Cong B, He P, Ni X, Burnstock G. Estrogen modulation of peripheral pain signal transduction: involvement of P2X(3) receptors. Purinergic Signal 2011; 7:73-83. [PMID: 21484099 DOI: 10.1007/s11302-010-9212-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 12/16/2010] [Indexed: 11/27/2022] Open
Abstract
There is evidence that gonadal hormones may affect the perception of painful stimulation, although the underlying mechanisms remain unclear. This investigation was undertaken to determine whether the adenosine 5'-triphosphate (ATP) receptor subunit, P2X(3), is involved in the modulatory action of estrogen in peripheral pain signal transduction in dorsal root ganglion (DRG). The mechanical pain behavior test, real-time quantitative reverse transcription-polymerase chain reaction analysis, and Western blot methods were used to determine the mean relative concentrations and functions of P2X(3) receptors in DRG in sham, ovariectomized (OVX), and estradiol replacement (OVX+E(2)) female rats and in sham and orchiectomized male rats. The mechanical hyperalgesia appeared after ovariectomy, which was subsequently reversed after estradiol replacement, whereas it was not observed after orchiectomy in male rats. Plantar injection of 2'(3')-O-(2,4,6-trinitrophenyl) ATP (TNP-ATP), a P2X(3) and P2X(2/3) receptor antagonist, resulted in an increase of the pain threshold force in OVX rats while had no effect on sham rats. Furthermore, A-317491, a selective P2X(3)/P2X(2/3) receptor antagonist, significantly reversed the hyperalgesia of OVX rats. Injection of ATP into the plantars also caused a significant increase of the paw withdrawal duration in OVX rats compared with that seen in the sham group, which became substantially attenuated by TNP-ATP. P2X(3) receptors expressed in DRG were significantly increased in both mRNA and protein levels after ovariectomy and then reversed after estrogen replacement, while a similar increase was not observed after orchiectomy in male rats. Furthermore, P2X(3) mRNA was significantly decreased 24 h after the application of 17β-estradiol in a concentration-dependent manner in cultured DRG neurons. ICI 182,780, an estrogen receptor antagonist, blocked the reduction in the protein level. These results suggest that the female gonadal hormone, 17β-estradiol, might participate in the control of peripheral pain signal transduction by modulating P2X(3) receptor-mediated events in primary sensory neurons, probably through genomic mechanisms.
Collapse
Affiliation(s)
- Bei Ma
- Department of Physiology, Shanghai Second Military Medical University, Shanghai, 200433, People's Republic of China,
| | | | | | | | | | | | | |
Collapse
|
29
|
Bereiter DA, Okamoto K. Neurobiology of estrogen status in deep craniofacial pain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 97:251-84. [PMID: 21708314 DOI: 10.1016/b978-0-12-385198-7.00010-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pain in the temporomandibular joint (TMJ) region often occurs with no overt signs of injury or inflammation. Although the etiology of TMJ-related pain may involve multiple factors, one likely risk factor is female gender or estrogen status. Evidence is reviewed from human and animal studies, supporting the proposition that estrogen status acts peripherally or centrally to influence TMJ nociceptive processing. A new model termed the "TMJ pain matrix" is proposed as critical for the initial integration of TMJ-related sensory signals in the lower brainstem that is both modified by estrogen status, and closely linked to endogenous pain and autonomic control pathways.
Collapse
Affiliation(s)
- David A Bereiter
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA
| | | |
Collapse
|
30
|
Koszykowska M, Calka J, Szwajca P, Jana B. Long-term estradiol-17β administration decreases the number of neurons in the caudal mesenteric ganglion innervating the ovary in sexually mature gilts. J Reprod Dev 2010; 57:62-71. [PMID: 20881351 DOI: 10.1262/jrd.10-061s] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effect of estradiol-17β (E(2)) on the number and distribution of neurons in the caudal mesenteric ganglion (CaMG) supplying the ovary of adult pigs was investigated. Also, the numbers of ovarian dopamine-β-hydroxylase (DβH-), neuropeptide Y (NPY-), somatostatin (SOM-), galanin (GAL-) and estrogen receptor (ER)-immunoreactive perikarya as well as the density of the intraganglionic nerve fibers containing DβH and/or NPY, SOM, GAL were determined. E(2) was administered i.m. from day 4 of the first studied estrous cycle to the expected day 20 of the second studied cycle. Injections of E(2) (1) increased the E(2) level in the peripheral blood approximately 4-5 fold, (2) decreased the number of small-sized Fast Blue-positive postganglionic neurons in the CaMG, (3) decreased the number of small perikarya in the ventral, dorsal and central regions of the CaMG, (4) decreased the number of large perikarya in the dorsal and central regions, (5) decreased the number of small and large perikarya in the CaMG that were DβH(+)/NPY(+), (6) decreased the number of small DβH(+) but NPY(-) perikarya, (7) decreased the number of small perikarya coded DβH(+)/SOM(+) and DβH(+)/SOM(-), (8) decreased the number of small DβH(+)/GAL(-) perikarya, (9) decreased the number of small and large perikarya expressing ER subtypes α and β and (10) decreased the total number of nerve fibers in the CaMG containing DβH and/or NPY and DβH and/or GAL. These results show that long-term E(2) treatment of adult gilts downregulates the populations of both noradrenergic and ERs expressing ovarian neurons in the CaMG. Our findings suggest also that elevated E(2) levels that occur during pathological states may regulate gonadal function(s) by affecting ovary supplying neurons.
Collapse
Affiliation(s)
- Marlena Koszykowska
- Division of Reproductive Endocrinology and Pathophysiology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Olsztyn, Poland
| | | | | | | |
Collapse
|
31
|
Koszykowska M, Kozłowska A, Wojtkiewicz J, Skobowiat C, Majewski M, Jana B. Distribution and chemical coding of sympathetic neurons in the caudal mesenteric ganglion projecting to the ovary in sexually mature gilts. Acta Vet Hung 2010; 58:389-403. [PMID: 20713329 DOI: 10.1556/avet.58.2010.3.11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The distribution and co-localisation patterns of dopamine-beta-hydroxylase (DβH), neuropeptide Y (NPY), somatostatin (SOM) and galanin (GAL) were investigated by use of retrograde neuronal tracing and double-labelling immunofluorescence techniques in the caudal mesenteric ganglion (CaMG) neurons supplying the ovary of adult pigs. The existence and density of nerve fibres that are immunoreactive (IR) for the above-mentioned neuroactive substances were also evaluated. Injections of a fluorescent tracer (Fast Blue; FB) into the ovaries revealed the presence of small- (76.38%) and large-sized (23.62%) FB-positive postganglionic neurons in the CaMG. Noradrenergic FB-positive cells were simultaneously NPY- (43.38%), SOM- (18.77%) and GAL- (18.31%) IR. Of the examined FB-positive neurons, 53.49% were DβH-IR but NPY-immunonegative (IN), 79.06% were DβH-IR but SOM-IN, and 77.16% were DβH-IR but GAL-IN. Small- or large-sized subsets of traced neurons were supplied by only one or a few nerve fibres, exhibiting DβH-, NPY-, SOM- and/or GAL-IR. Our data show the specific morphological as well as immunochemical structural organisation of the sympathetic neurons in the CaMG in adult gilts. The occurrence of an abundant population of noradrenergic perikarya in the CaMG may suggest their important physiological role in the regulation of gonadal function(s) in these animals.
Collapse
Affiliation(s)
- Marlena Koszykowska
- 1 Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences Division of Reproductive Endocrinology and Pathophysiology 10-747 Olsztyn Tuwima 10 Poland
| | - Anna Kozłowska
- 1 Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences Division of Reproductive Endocrinology and Pathophysiology 10-747 Olsztyn Tuwima 10 Poland
| | - Joanna Wojtkiewicz
- 2 University of Warmia and Mazury Department of Human Physiology, Faculty of Medical Sciences Olsztyn Poland
| | - Cezary Skobowiat
- 3 University of Warmia and Mazury Division of Clinical Physiology, Department of Functional Morphology, Faculty of Veterinary Medicine Olsztyn Poland
| | - Mariusz Majewski
- 2 University of Warmia and Mazury Department of Human Physiology, Faculty of Medical Sciences Olsztyn Poland
| | - Barbara Jana
- 1 Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences Division of Reproductive Endocrinology and Pathophysiology 10-747 Olsztyn Tuwima 10 Poland
| |
Collapse
|
32
|
Cheng Y, Keast JR. Effects of estrogens and bladder inflammation on mitogen-activated protein kinases in lumbosacral dorsal root ganglia from adult female rats. BMC Neurosci 2009; 10:156. [PMID: 20035635 PMCID: PMC2806406 DOI: 10.1186/1471-2202-10-156] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 12/28/2009] [Indexed: 01/07/2023] Open
Abstract
Background Interstitial cystitis is a chronic condition associated with bladder inflammation and, like a number of other chronic pain states, symptoms associated with interstitial cystitis are more common in females and fluctuate during the menstrual cycle. The aim of this study was to determine if estrogens could directly modulate signalling pathways within bladder sensory neurons, such as extracellular signal-related kinase (ERK) and p38 mitogen-activated protein (MAP) kinases. These signalling pathways have been implicated in neuronal plasticity underlying development of inflammatory somatic pain but have not been as extensively investigated in visceral nociceptors. We have focused on lumbosacral dorsal root ganglion (DRG) neurons projecting to pelvic viscera (L1, L2, L6, S1) of adult female Sprague-Dawley rats and performed both in vitro and in vivo manipulations to compare the effects of short- and long-term changes in estrogen levels on MAPK expression and activation. We have also investigated if prolonged estrogen deprivation influences the effects of lower urinary tract inflammation on MAPK signalling. Results In studies of isolated DRG neurons in short-term (overnight) culture, we found that estradiol and estrogen receptor (ER) agonists rapidly stimulated ER-dependent p38 phosphorylation relative to total p38. Examination of DRGs following chronic estrogen deprivation in vivo (ovariectomy) showed a parallel increase in total and phosphorylated p38 (relative to β-tubulin). We also observed an increase in ERK1 phosphorylation (relative to total ERK1), but no change in ERK1 expression (relative to β-tubulin). We observed no change in ERK2 expression or phosphorylation. Although ovariectomy increased the level of phosphorylated ERK1 (vs. total ERK1), cyclophosphamide-induced lower urinary tract inflammation did not cause a net increase of either ERK1 or ERK2, or their phosphorylation. Inflammation did, however, cause an increase in p38 protein levels, relative to β-tubulin. Prior ovariectomy did not alter the response to inflammation. Conclusions These results provide new insights into the complex effects of estrogens on bladder nociceptor signalling. The diversity of estrogen actions in these ganglia raises the possibility of developing new ways to modulate their function in pelvic hyperactivity or pain states.
Collapse
Affiliation(s)
- Ying Cheng
- Pain Management Research Institute, Kolling Institute of Medical Research, University of Sydney at Royal North Shore Hospital, St Leonards NSW 2065, Australia.
| | | |
Collapse
|
33
|
Fan J, Yu LH, Zhang Y, Ni X, Ma B, Burnstock G. Estrogen altered visceromotor reflex and P2X(3) mRNA expression in a rat model of colitis. Steroids 2009; 74:956-62. [PMID: 19628002 DOI: 10.1016/j.steroids.2009.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 06/24/2009] [Accepted: 07/07/2009] [Indexed: 12/30/2022]
Abstract
P2X(3) and P2X(2/3) receptors are expressed in peripheral tissues and dorsal root ganglia (DRG) and participate in peripheral pain. However, the mechanisms underlying P2X receptor-mediated nociception at different ovarial hormone levels has not been examined. In this study, 24 female rats were randomly divided into sham-operated (sham), ovariectomized (OVX), estrogen-treated, and estrogen-progesterone-treated groups with colitis. In each group, the visceromotor reflex (VMR) to colorectal distension was tested and the DRG were harvested for a real-time PCR analysis of P2X(3) and P2X(2) receptor mRNA. In OVX rats with colitis we found that the VMR to colorectal distension and P2X(3) receptor mRNA in DRG were both significantly decreased. Estrogen replacement reversed the decrease. However, neither the VMR nor the P2X(3) mRNA level in DRG from OVX colitis rats was reversed by the complex of estrogen and progesterone. Patch-clamp recording showed that in colitis rats, estradiol rapidly potentiated the sustained and transient currents evoked by ATP to 336+/-49% and 122+/-12% of controls, respectively, in a subpopulation of DRG neurons, which were blocked by ICI 182, 780, an antagonist of the estrogen receptor. Whereas progesterone rapidly inhibited the transient currents induced by ATP to 67+/-10% of control and had no effect on the sustained currents evoked by the same agonist. These results indicate that P2X(3) receptors are likely to be an important contributor to the altered colonic functions in colitis rats, where the underlying mechanisms are closely related to endogenous estrogen modulation.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Colitis/genetics
- Colitis/pathology
- Colitis/physiopathology
- Colitis/surgery
- Colon/drug effects
- Colon/innervation
- Colon/metabolism
- Colon/physiopathology
- Disease Models, Animal
- Electric Conductivity
- Estrogens/pharmacology
- Female
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/physiopathology
- Gene Expression Regulation/drug effects
- Humans
- Motor Activity/drug effects
- Neurons/drug effects
- Neurons/metabolism
- Ovariectomy
- Progesterone/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Purinergic P2/genetics
- Receptors, Purinergic P2X2
- Receptors, Purinergic P2X3
- Reflex/drug effects
- Viscera/drug effects
- Viscera/innervation
- Viscera/physiopathology
Collapse
Affiliation(s)
- Juan Fan
- Department of Physiology, Second Military Medical University, 800, Xiangyin Road, Shanghai, 200433, PR China
| | | | | | | | | | | |
Collapse
|
34
|
Dun SL, Brailoiu GC, Gao X, Brailoiu E, Arterburn JB, Prossnitz ER, Oprea TI, Dun NJ. Expression of estrogen receptor GPR30 in the rat spinal cord and in autonomic and sensory ganglia. J Neurosci Res 2009; 87:1610-9. [PMID: 19125412 DOI: 10.1002/jnr.21980] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The G protein-coupled receptor GPR30 has recently been identified as a nonnuclear estrogen receptor. Reverse transcriptase-polymerase chain reaction revealed expression of GPR30 mRNA in varying quantities in the rat spinal cord, dorsal root ganglia, nodose ganglia, trigeminal ganglia, hippocampus, brain stem, and hypothalamus. Immunohistochemical studies that used a rabbit polyclonal antiserum against the human GPR30 C-terminus revealed a fine network of GPR30-immunoreactive (irGPR30) cell processes in the superficial layers of the spinal cord; some of which extended into deeper laminae. A population of neurons in the dorsal horn and ventral horn were irGPR30. Dorsal root, nodose, and trigeminal ganglionic neurons displayed varying intensities of irGPR30. Positively labeled neurons were detected in the major pelvic ganglion, but not in the superior cervical ganglion. A population of chromaffin cells in the adrenal medulla was irGPR30, so were cells of the zona glomerulosa. Double-labeling the adrenal medulla with GPR30 antiserum and tyrosine hydroxylase antibody or phenylethanolamine-N-methyltransferase antiserum revealed that irGPR30 is expressed in the majority of tyrosine hydroxylase-positive chromaffin cells. Last, some of the myenteric ganglion cells were irGPR30. Tissues processed with preimmune serum resulted in no staining. Voltage-sensitive dye imaging studies showed that the selective GPR30 agonist G-1 (1, 10, and 100 nM) depolarized cultured spinal neurons in a concentration-dependent manner. Collectively, our result provides the first evidence that GPR30 is expressed in neurons of the dorsal and ventral horn as well as in sensory and autonomic neurons, and activation of GPR30 by the selective agonist G-1 depolarizes cultured spinal neurons.
Collapse
Affiliation(s)
- Siok L Dun
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Tashiro A, Okamoto K, Bereiter DA. Morphine modulation of temporomandibular joint-responsive units in superficial laminae at the spinomedullary junction in female rats depends on estrogen status. Eur J Neurosci 2009; 28:2065-74. [PMID: 19046387 DOI: 10.1111/j.1460-9568.2008.06488.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The influence of analgesic agents on neurons activated by stimulation of the temporomandibular joint (TMJ) region is not well defined. The spinomedullary junction [trigeminal subnucleus caudalis (Vc)/C(1-2)] is a major site of termination for TMJ sensory afferents. To determine whether estrogen status influences opioid-induced modulation of TMJ units, the classical opioid analgesic, morphine, was given to ovariectomized (OvX) rats and OvX rats treated for 2 days with low-dose (LE2) or high-dose (HE2) 17beta-estradiol-3-benzoate. Under thiopental anesthesia, TMJ units in superficial and deep laminae at the Vc/C(1-2) junction were activated by injection of ATP (1 mm) directly into the joint space. In superficial laminae, morphine inhibited evoked activity in units from OvX and LE2 rats in a dose-related and naloxone-reversible manner, whereas units from HE2 rats were not inhibited. By contrast, in deep laminae, morphine reduced TMJ-evoked unit activity similarly in all groups. Morphine reduced the background activity of units in superficial and deep laminae and resting arterial pressure similarly in all groups. Morphine applied to the dorsal surface of the Vc/C(1-2) junction inhibited all units independently of E2 treatment. Quantitative polymerase chain reaction and immunoblots revealed a similar level of expression for mu-opioid receptors at the Vc/C(1-2) junction in LE2 and HE2 rats. These results indicated that estrogen status differentially affected morphine modulation of TMJ unit activity in superficial, but not deep, laminae at the Vc/C(1-2) junction in female rats. The site(s) for estrogen influence on morphine-induced modulation of TMJ unit activity was probably outside the medullary dorsal horn.
Collapse
Affiliation(s)
- A Tashiro
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA.
| | | | | |
Collapse
|
36
|
Anesetti G, Lombide P, Chávez-Genaro R. Prepubertal estrogen exposure modifies neurotrophin receptor expression in celiac neurons and alters ovarian innervation. Auton Neurosci 2009; 145:35-43. [DOI: 10.1016/j.autneu.2008.10.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 10/10/2008] [Accepted: 10/22/2008] [Indexed: 01/19/2023]
|
37
|
Xu S, Cheng Y, Keast JR, Osborne PB. 17beta-estradiol activates estrogen receptor beta-signalling and inhibits transient receptor potential vanilloid receptor 1 activation by capsaicin in adult rat nociceptor neurons. Endocrinology 2008; 149:5540-8. [PMID: 18617618 PMCID: PMC2584594 DOI: 10.1210/en.2008-0278] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
There is mounting evidence that estrogens act directly on the nervous system to affect the severity of pain. Estrogen receptors (ERs) are expressed by sensory neurons, and in trigeminal ganglia, 17beta-estradiol can indirectly enhance nociception by stimulating expression and release of prolactin, which increases phosphorylation of the nociceptor transducer transient receptor potential vanilloid receptor 1 (TRPV1). Here, we show that 17beta-estradiol acts directly on dorsal root ganglion (DRG) sensory neurons to reduce TRPV1 activation by capsaicin. Capsaicin-induced cobalt uptake and the maximum TRPV1 current induced by capsaicin were inhibited when isolated cultured DRGs neurons from adult female rats were exposed to 17beta-estradiol (10-100 nm) overnight. There was no effect of 17beta-estradiol on capsaicin potency, TRPV1 activation by protons (pH 6-4), and P2X currents induced by alpha,beta-methylene-ATP. Diarylpropionitrile (ERbeta agonist) also inhibited capsaicin-induced TRPV1 currents, whereas propylpyrazole triol (ERalpha agonist) and 17alpha-estradiol (inactive analog) were inactive, and 17beta-estradiol conjugated to BSA (membrane-impermeable agonist) caused a small increase. TRPV1 inhibition was antagonized by tamoxifen (1 microm), but ICI182870 (10 microm) was a potent agonist and mimicked 17beta-estradiol. We conclude that TRPV1 in DRG sensory neurons can be inhibited by a nonclassical estrogen-signalling pathway that is downstream of intracellular ERbeta. This affects the vanilloid binding site targeted by capsaicin but not the TRPV1 activation site targeted by protons. These actions could curtail the nociceptive transducer functions of TRPV1 and limit chemically induced nociceptor sensitization during inflammation. They are consistent with clinical reports that female pelvic pain can increase after reductions in circulating estrogens.
Collapse
Affiliation(s)
- Shenghong Xu
- Pain Management Research Institute, The University of Sydney at Royal North Shore Hospital, St. Leonards, New South Wales 2065, Australia
| | | | | | | |
Collapse
|
38
|
Tang B, Ji Y, Traub RJ. Estrogen alters spinal NMDA receptor activity via a PKA signaling pathway in a visceral pain model in the rat. Pain 2008; 137:540-549. [PMID: 18068901 DOI: 10.1016/j.pain.2007.10.017] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Revised: 09/12/2007] [Accepted: 10/15/2007] [Indexed: 01/24/2023]
Abstract
Pain symptoms in several chronic pain disorders in women, including irritable bowel syndrome, fluctuate with the menstrual cycle suggesting a gonadal hormone component. In female rats, estrogens modulate visceral sensitivity although the underlying mechanism(s) are unknown. In the present study the effects of 17-beta estradiol on N-methyl-D-aspartate (NMDA) receptor signaling of colorectal nociceptive processing in the spinal cord were examined. Estrogen receptor alpha and the NR1 subunit of the NMDA receptor are co-expressed in dorsal horn neurons, supporting a direct action of estradiol on NMDA receptors. Intrathecal administration of the NMDA receptor antagonist D(-)-2-amino-5-phosphonopentanoic acid (APV) dose-dependently attenuated the visceromotor response with greater potency in ovariectomized (OVx) rats compared to OVx with estradiol replacement (E2) rats. Estradiol significantly increased protein expression of NR1 in the lumbosacral spinal cord compared to OVx rats. Colorectal distention significantly increased phosphorylation of NR1ser-897, a PKA phosphorylation site on the NR1 subunit in E2, but not OVx rats. Intrathecal administration of a PKA inhibitor significantly attenuated the visceromotor response, decreased NR1 phosphorylation and increased the potency of APV to attenuate the visceromotor response compared to vehicle-treated E2 rats. These data suggest that estradiol increases spinal processing of visceral nociception by increasing NMDA receptor NR1 subunit expression and increasing site-specific receptor phosphorylation on the NR1 subunit contributing to an increase in NMDA receptor activity.
Collapse
Affiliation(s)
- Bin Tang
- Department of Biomedical Sciences, Research Center for Neuroendocrine Influence on Pain, University of Maryland Dental School, 7 South, 650 W. Baltimore, St. Baltimore, MD 21201, USA
| | | | | |
Collapse
|
39
|
Abstract
Our understanding of the process and initiation of sexual arousal is being enhanced by both animal and human studies, inclusive of basic science principles and research on clinical outcomes. Sexual arousal is dependent on neural (sensory and cognitive) factors, hormonal factors, genetic factors and, in the human case, the complex influences of culture and context. Sexual arousal activates the cognitive and physiologic processes that can eventually lead to sexual behavior. Sexual arousal comprises a particular subset of central nervous system arousal functions which depend on primitive, fundamental arousal mechanisms that cause generalized brain activity, but are manifest in a sociosexual context. The neurophysiology of sexual arousal is seen as a bidirectional system universal to all vertebrates. The following review includes known neural and genomic mechanisms of a hormone-dependent circuit for simple sex behavior. New information about hormone effects on causal steps related to sex hormones' nuclear receptor isoforms expressed by hypothalamic neurons continues to enrich our understanding of this neurophysiology.
Collapse
Affiliation(s)
- Justine M Schober
- Hamot Medical Center, 333 State Street, Suite 201, Erie, PA 16507, USA.
| | | |
Collapse
|
40
|
Yoshida J, Aikawa K, Yoshimura Y, Shishido K, Yanagida T, Yamaguchi O. The effects of ovariectomy and estrogen replacement on acetylcholine release from nerve fibres and passive stretch-induced acetylcholine release in female rat bladder. Neurourol Urodyn 2007; 26:1050-5. [PMID: 17480029 DOI: 10.1002/nau.20438] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
AIMS The present study investigated the effects of ovariectomy and estrogen replacement on the release of acetylcholine (Ach) from cholinergic neurons as well as on the tetrodotoxin (TTX)-insensitive stretch-induced Ach release in isolated rat detrusor. In addition, the above effects on rat micturition characteristics were also studied. METHODS Thirty female rats randomly received a sham operation, ovariectomy, or ovariectomy plus estrogen replacement. Using metabolic cages, micturition parameters were recorded. Then, in vitro functional experiments that included the measurements of nerve-mediated detrusor muscle contraction, Ach release from nerve fibres, and stretch-induced TTX-insensitive Ach release were performed. Ach release was measured using microdialysis and high-performance liquid chromatography. RESULTS Ovariectomized rats showed a significant decrease in voided volume and significant increase in 24-hr frequency of voiding. Ovariectomy caused the significant increase in both TTX-insensitive basal Ach release and TTX-insensitive stretch-induced Ach release. On the other hand, ovariectomy caused a significant decrease in Ach release from nerve fibres, resulting in the decrease in the contractile responses of detrusor muscle to electrical nerve stimulation. Estrogen replacement restored these alterations induced by ovariectomy. CONCLUSIONS Our findings showed that as a results of estrogen deficiency, Ach release from nerve fibres decreased, suggesting that this reduction of Ach released from cholinergic nerves may cause the decrease in detrusor contractility. Furthermore, this study also demonstrated that stretch-induced TTX-insensitive Ach release was increased by ovariectomy. This may be a contributing factor to the development of overactive bladder in elderly women.
Collapse
Affiliation(s)
- Junya Yoshida
- Department of Urology, Fukushima Medical University, Fukushima, Japan.
| | | | | | | | | | | |
Collapse
|
41
|
Hertel J, Williams NI, Olmsted-Kramer LC, Leidy HJ, Putukian M. Neuromuscular performance and knee laxity do not change across the menstrual cycle in female athletes. Knee Surg Sports Traumatol Arthrosc 2006; 14:817-22. [PMID: 16470385 DOI: 10.1007/s00167-006-0047-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Accepted: 09/05/2005] [Indexed: 10/25/2022]
Abstract
Female athletes incur anterior cruciate ligament ruptures at a rate at least twice that of male athletes. Hypothesized factors for the increased injury risk in females include biomechanical, neuromuscular, and hormonal differences between genders. A wealth of literature exists examining these potential predispositions individually, but the interactions between these factors have not been examined extensively. Our purpose was to investigate changes in neuromuscular control and laxity at the knee across the menstrual cycle of healthy females. Fourteen female collegiate athletes with normal, documented ovulatory menstrual cycles, confirmed ovulation, and no history of serious knee injury participated. The presence and timing of ovulation was determined during a screening cycle with ovulation detection kits and during an experimental cycle with collection of daily urine samples and subsequent analysis of urinary estrone-3-glucuronide (E3G) and pregnanediol-3-glucoronide (PdG), which correlate with circulating estrogen and progesterone. Each subject had measures of knee neuromuscular performance and laxity once during the mid-follicular, ovulatory, and mid-luteal stages of her menstrual cycle. The test battery included assessments of knee flexion and extension peak torque, passive knee joint position sense, and postural control in single leg stance. Knee joint laxity was measured with an arthrometer. Analyses of variance revealed that E3G and PdG levels were significantly different across the three testing sessions, but there were no significant differences in the measures of strength, joint position sense, postural control, or laxity. No significant correlations were found between changes in E3G or PdG levels and changes in the performance and laxity measures between sessions. These results suggest that neuromuscular control and knee joint laxity do not change substantially across the menstrual cycle of females despite varying estrogen and progesterone levels.
Collapse
Affiliation(s)
- Jay Hertel
- University of Virginia, Charlottesville, VA 22904-4407, USA.
| | | | | | | | | |
Collapse
|
42
|
Bereiter DA, Cioffi JL, Bereiter DF. Oestrogen receptor-immunoreactive neurons in the trigeminal sensory system of male and cycling female rats. Arch Oral Biol 2006; 50:971-9. [PMID: 15893734 DOI: 10.1016/j.archoralbio.2005.03.010] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Accepted: 03/04/2005] [Indexed: 12/31/2022]
Abstract
Many common craniofacial pain conditions are more prevalent in women than men and may be related to the phase of the menstrual cycle. Long-term effects of oestrogen in the nervous system are produced by receptor-mediated [oestrogen receptor alpha (ERalpha) and beta (ERbeta) isoforms] mechanisms; however, it is not known if the distribution of ER-positive neurons in the trigeminal system is similar in males and females. Quantitative immunocytochemistry was used to compare the distribution of ERalpha-labelled neurons in the trigeminal brainstem complex (TBC) and ganglion of male and female rats at different stages of the oestrous cycle. A high density of ERalpha-labelled neurons was seen in the superficial laminae (I-III) throughout the trigeminal subnucleus caudalis (Vc) and the upper cervical dorsal horn. Counts of ERalpha-positive neurons in laminae I-III were similar for prooestrous and dioestrous females, while males had fewer cells. The deeper laminae (IV-V) of the Vc and the cervical dorsal horn had few ERalpha-positive neurons in all groups. At the region surrounding the central canal at caudal levels of the Vc, prooestrous females had more ERalpha-positive neurons than dioestrous females or males. Few labelled cells were seen rostral to the trigeminal subnucleus interpolaris/caudalis transition region (Vi/Vc) in any group. In the trigeminal ganglion, prooestrous and dioestrous females had a moderate (8-10%) number of nuclear-labelled small or medium-sized neurons, while males had fewer labelled cells (4.5%). Qualitatively, the pattern of staining for ERbeta was similar, although weaker, than for ERalpha in the trigeminal dorsal horn or ganglion. These results were consistent with the hypothesis that oestrogen acts through trigeminal ganglion cells and caudal portions of the Vc to modulate sensory and autonomic aspects of craniofacial pain in a sex-related manner.
Collapse
Affiliation(s)
- D A Bereiter
- Department of Surgery, Rhode Island Hospital/Brown Medical School, 593 Eddy Street 222 Nursing Arts, Providence, RI 02903, USA.
| | | | | |
Collapse
|
43
|
Gazza F, Botti M, Minelli LB, Ragionieri L, Acone F, Panu R, Palmieri G. Double labelling immunohistochemistry on the nerve fibres of retractor clitoridis muscle of the sow. Vet Res Commun 2006; 29 Suppl 2:191-4. [PMID: 16244953 DOI: 10.1007/s11259-005-0040-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- F Gazza
- Department of Animal Health, Section of Anatomy of Veterinary Medicine Interesting Animals, Faculty of Veterinary Medicine, University of Parma, Via del Taglio, 8, 43100, Parma, Italy.
| | | | | | | | | | | | | |
Collapse
|
44
|
Keast JR. Plasticity of pelvic autonomic ganglia and urogenital innervation. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 248:141-208. [PMID: 16487791 DOI: 10.1016/s0074-7696(06)48003-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pelvic ganglia contain a mixture of sympathetic and parasympathetic neurons and provide most of the motor innervation of the urogenital organs. They show a remarkable sensitivity to androgens and estrogens, which impacts on their development into sexually dimorphic structures and provide an array of mechanisms by which plasticity of these neurons can occur during puberty and adulthood. The structure of pelvic ganglia varies widely among species, ranging from rodents, which have a pair of large ganglia, to humans, in whom pelvic ganglion neurons are distributed in a large, complex plexus. This plexus is frequently injured during pelvic surgical procedures, yet strategies for its repair have yet to be developed. Advances in this area will come from a better understanding of the effects of injury on the cellular signaling process in pelvic neurons and also the role of neurotrophic factors during development, maintenance, and repair of these axons.
Collapse
Affiliation(s)
- Janet R Keast
- Pain Management Research Institute, University of Sydney at Royal North Shore Hospital, St Leonards, New South Wales, Australia
| |
Collapse
|
45
|
Kuba T, Kemen LM, Quinones-Jenab V. Estradiol administration mediates the inflammatory response to formalin in female rats. Brain Res 2005; 1047:119-22. [PMID: 15893295 DOI: 10.1016/j.brainres.2005.04.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Revised: 03/23/2005] [Accepted: 04/01/2005] [Indexed: 11/27/2022]
Abstract
Female rats demonstrate higher pain sensitivity than do males in various nociceptive assays of inflammation. In the present study, we found that estradiol (20%) replacement in ovariectomized rats attenuated the chronic phase of the formalin response but only at high formalin concentrations thought to rely on peripheral inflammation. An inactive isomer of estradiol, alpha-estradiol, failed to result in the same attenuation (P > 0.05). Our results suggest that estradiol's actions in inflammatory responses are mediated through genomic estrogen receptor-mediated mechanisms.
Collapse
Affiliation(s)
- Tzipora Kuba
- Department of Psychology, Biopsychology Subprogram, Hunter College, The City University of New York, 695 Park Avenue, New York, NY 10021, USA
| | | | | |
Collapse
|
46
|
Ma B, Rong W, Dunn PM, Burnstock G. 17beta-estradiol attenuates alpha, beta-meATP-induced currents in rat dorsal root ganglion neurons. Life Sci 2005; 76:2547-58. [PMID: 15769479 DOI: 10.1016/j.lfs.2004.10.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2004] [Accepted: 10/15/2004] [Indexed: 10/25/2022]
Abstract
The effects of 17beta-estradiol on the alpha,beta-me ATP-induced currents were studied on dorsal root ganglion (DRG) neurons using whole-cell recording technique. Three types of currents (transient, sustained or biphasic) were evoked by alpha,beta-me ATP in acutely dissociated DRG neurons. When neurons were pre-incubated with 17beta-estradiol (10-1000 nM) for 4 min, an inhibition of the transient current and the transient component of the biphasic current was observed. In contrast, 17beta-estradiol did not have any significant effect on the sustained current evoked by alpha,beta-meATP. The inhibitory effects were concentration-dependent, reversible and could be blocked by the estradiol receptor inhibitor, ICI 182,780 (1 microM). However, bovine serum albumin-conjugated 17beta-estradiol (17beta-estradiol-BSA, 10 nM) failed to mimic the effects of 17beta-estradiol. 17alpha-estradiol, the inactive isoform, did not have significant effects on alphabeta-meATP-induced currents, either. Sustained currents induced by ATP (100 microM) in nodose ganglion (NG), superior cervical ganglion (SCG) and otic ganglion (OTG) neurons were not affected by 17beta-estradiol. These results suggest that the female gonadal hormone, 17beta-estradiol, might participate in control of pain by modulating P2X3 receptor-mediated events in sensory neurons.
Collapse
Affiliation(s)
- Bei Ma
- Department of Physiology, Second Military Medical University, 800, Xiangyin Road, Shanghai, 200433, China.
| | | | | | | |
Collapse
|
47
|
Okamoto K, Tashiro A, Hirata H, Bereiter DA. Differential modulation of TMJ neurons in superficial laminae of trigeminal subnucleus caudalis/upper cervical cord junction region of male and cycling female rats by morphine. Pain 2005; 114:203-11. [PMID: 15733646 DOI: 10.1016/j.pain.2004.12.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2004] [Revised: 12/06/2004] [Accepted: 12/13/2004] [Indexed: 10/25/2022]
Abstract
Sex differences in the cellular responses to morphine were examined in an animal model of temporomandibular joint (TMJ) pain. TMJ-responsive neurons were recorded in the superficial laminae at the trigeminal subnucleus caudalis/upper cervical cord (Vc/C(2)) junction region, the initial site of synaptic integration for TMJ afferents, in male and cycling female rats under barbiturate anesthesia. Unit activity was evoked by local injection of bradykinin into the TMJ capsule at 30 min intervals and the effects of morphine sulfate (0.03-3 mg/kg, i.v.) were assessed by a cumulative dose regimen. Morphine caused a dose-related inhibition of bradykinin-evoked unit activity in males and diestrous females in a naloxone-reversible manner, while evoked unit activity in proestrous females was not reduced. The apparent sex hormone-related aspect of morphine analgesia was selective for evoked unit activity, since the spontaneous activity of TMJ units was reduced similarly in all groups, while the convergent cutaneous receptive field area of TMJ units did not change in any group. These results were consistent with the hypothesis that sex hormone status interacts with pain control systems to modify neural activity at the level of the Vc/C(2) junction region relevant for TMD pain.
Collapse
Affiliation(s)
- K Okamoto
- Department of Surgery, Rhode Island Hospital, Brown Medical School, Providence, RI 02903, USA
| | | | | | | |
Collapse
|
48
|
Erskine MS, Lehmann ML, Cameron NM, Polston EK. Co-regulation of female sexual behavior and pregnancy induction: an exploratory synthesis. Behav Brain Res 2004; 153:295-315. [PMID: 15265625 DOI: 10.1016/j.bbr.2004.01.026] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2003] [Revised: 12/20/2003] [Accepted: 01/11/2004] [Indexed: 11/20/2022]
Abstract
This paper will review both new and old data that address the question of whether brain mechanisms involved in reproductive function act in a coordinated way to control female sexual behavior and the induction of pregnancy/pseudopregnancy (P/PSP) by vaginocervical stimulation. Although it is clear that female sexual behavior, including pacing behavior, is important for induction of P/PSP, there has been no concerted effort to examine whether or how common mechanisms may control both functions. Because initiation of P/PSP requires that the female receive vaginocervical stimulation, central mechanisms controlling P/PSP may be modulated by or interactive with those that control female sexual behavior. This paper presents a synthesis of the literature and recent data from our lab for the purpose of examining whether there are interactions between behavioral and neuroendocrine mechanisms which reciprocally influence both reproductive functions.
Collapse
Affiliation(s)
- Mary S Erskine
- Department of Biology, Boston University, 5 Cummington Street, Boston, MA 02215, USA.
| | | | | | | |
Collapse
|
49
|
Lehmann ML, Erskine MS. Induction of pseudopregnancy using artificial VCS: importance of lordosis intensity and prestimulus estrous cycle length. Horm Behav 2004; 45:75-83. [PMID: 15019793 DOI: 10.1016/j.yhbeh.2003.09.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2003] [Revised: 09/04/2003] [Accepted: 09/05/2003] [Indexed: 12/18/2022]
Abstract
In cycling female rats, vaginocervical stimulation (VCS) received naturally during mating or by artificial mechanical stimulation induces neuroendocrine and behavioral responses that are critical for reproduction, including bi-circadian prolactin surges which result in pregnancy or an 8-14-day diestrous period called pseudopregnancy (PSP). Following mating, the incidence of PSP is higher when females receive high (10) as opposed to low (3-5) numbers of intromissions. Therefore, a threshold level of VCS must be exceeded before hypothalamic changes required for PSP can occur. This study characterized the threshold curve for PSP induction for artificial VCS (VCS-a). Proestrous females were given 1, 2, 3, 4, or 8 VCS-a applied with a glass rod using 200 g of force for 2 s, with an 8-min interval between stimulations. The lordosis response (LR) to the stimulus was measured on a scale of increasing intensity from 0 to 3, and the occurrence of PSP was measured by daily vaginal lavage. In contrast to previous findings, VCS-a induced robust lordosis responses without concurrent flank and perineal stimulation. The frequency of PSP induction did not increase in females as a function of amounts of VCS-a. However, the occurrence of PSP was strongly tied to the maximum lordosis response (LR(max)) observed. PSP was observed only among multiply stimulated females that showed the highest LR(max) (3.0) to at least one of the stimulations. Multiply stimulated females that showed a LR(max) < 3.0 or females that received only one VCS-a never became PSP. PSP and a stronger LR(max) were more likely to occur in females that had 5-day compared to 4-day prestimulus estrous cycle lengths. We conclude that central mechanisms important for VCS-induced PSP and lordosis may be potentiated by estradiol's actions in estrogen-concentrating forebrain areas.
Collapse
|
50
|
Kovacic U, Sketelj J, Bajrović FF. Sex-related difference in collateral sprouting of nociceptive axons after peripheral nerve injury in the rat. Exp Neurol 2004; 184:479-88. [PMID: 14637117 DOI: 10.1016/s0014-4886(03)00269-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Possible sex-related differences in the extent of collateral sprouting of noninjured nociceptive axons after peripheral nerve injury were examined. In the first experiment, peroneal, tibial, and saphenous nerves were transected and ligated in female and male rats. Eight weeks after nerve injury, skin pinch tests revealed that the nociceptive area of the noninjured sural nerve in the instep skin expanded faster in females; the final result was a 30% larger increase in females than in males. In the second experiment, the end-to-side nerve anastomosis was used as a model for axon sprouting. In addition to the previous procedure, the end of an excised peroneal nerve segment was sutured to the side of the intact sural nerve. Eight weeks later, collateral sprouting of nociceptive axons into the anastomosed peroneal nerve segment was assessed by the nerve pinch test and axon counting. There was no significant difference with respect to the percentages of male and female rats with a positive nerve pinch test. The number of myelinated axons in the anastomosed nerve segment was significantly larger in female (456 +/- 217) than in male (202 +/- 150) rats, but the numbers of unmyelinated axons were not significantly different. In normal sural nerves, the numbers of either all myelinated axons or thin myelinated axons did not significantly differ between the two sexes. Therefore, the more extensive collateral axon sprouting observed in female than in male rats is probably due to the higher sprouting capacity of thin myelinated sensory axons in females.
Collapse
Affiliation(s)
- U Kovacic
- Institute of Pathophysiology, Medical Faculty, University of Ljubljana, Zalosbreve;ka 4, 1000, Ljubljana, Slovenia
| | | | | |
Collapse
|