1
|
Selective sub-nucleus effects of intra-amygdala oxytocin on fear extinction. Behav Brain Res 2020; 393:112798. [PMID: 32653556 DOI: 10.1016/j.bbr.2020.112798] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/16/2020] [Accepted: 07/03/2020] [Indexed: 01/20/2023]
Abstract
There is growing evidence that the neuropeptide oxytocin (OT) modulates fear and extinction in humans and rodents through actions in corticolimbic circuits including the central amygdala (CeA). Prior studies have, however, been limited to subjects that exhibit intact basal extinction, rather than extinction-impaired populations that could potentially therapeutically benefit from viable OT-targeting treatments. Here, we assessed the effects of pre-extinction training infusion of OT into the CeA, or basolateral amygdala (BLA), on extinction in an inbred mouse strain (S1) model of impaired extinction. We found that intra-CeA OT, at a dose of 0.01 μg, enabled extinction memory formation, as evidenced by lesser freezing as compared to vehicle-infused controls on a drug-free retrieval test. Conversely, infusion of a higher, 1.0 μg OT dose, markedly reduced freezing and increased grooming during extinction training and produced elevated freezing on drug-free retrieval. Infusion of the 0.01 μg dose into the BLA was without behavioral effects. Together, our data show that OT acts in a dose-dependent manner within the CeA to promote extinction in otherwise extinction-deficient mice. These findings provide further support for the potential utility of OT as an adjunctive treatment to extinction-based therapies for trauma and anxiety disorders.
Collapse
|
2
|
Kellner M, Salzwedel C, Wortmann V, Urbanowicz T, Boelmans K, Yassouridis A, Stalla GK, Wiedemann K. No acute suppression of cerebrospinal fluid corticotropin-releasing hormone in man by cortisol administration. Psychiatry Res 2013; 210:662-4. [PMID: 23896353 DOI: 10.1016/j.psychres.2013.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 06/18/2013] [Accepted: 07/07/2013] [Indexed: 11/29/2022]
Abstract
Corticotropin-releasing hormone (CRH) in cerebrospinal fluid (CSF) is regarded as index of brain endocrine and behavioral functioning. We investigated the acute effects of intravenous cortisol (100mg) vs. placebo on serial CSF CRH in ten healthy men. CSF CRH concentrations were not significantly suppressed by cortisol within 3h. The origin and regulation of CSF CRH need further research.
Collapse
Affiliation(s)
- Michael Kellner
- University Hospital Hamburg-Eppendorf, Department of Psychiatry and Psychotherapy, Hamburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Brain kinin B₁ receptor contributes to the onset of stereotypic nocifensive behavior in rat. Behav Brain Res 2012; 241:17-26. [PMID: 23219968 DOI: 10.1016/j.bbr.2012.11.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 11/19/2012] [Accepted: 11/23/2012] [Indexed: 12/26/2022]
Abstract
While brain kinin B(1) receptor (B(1)R) is virtually absent in control rats, it contributes to hypertension via a midbrain dopaminergic (DA) mechanism in spontaneously hypertensive rat (SHR) and Angiotensin II (Ang II)-induced hypertension. This study aims at determining whether B(1)R can also affect stereotypic nocifensive behavior through DA and/or other neuromediators in the same models. The selective B(1)R agonist Sar[D-Phe(8)][des-Arg(9)]BK was injected i.c.v. (1 μg/site) to freely behaving SHR (16 weeks), Ang II-hypertensive rats (200 ng/kg/min × 2 weeks, s.c.) and control Wistar-Kyoto rats (WKY). Behavioral activity to the agonist was measured before and after treatment with receptor antagonists (10 μg/site i.c.v. or otherwise stated) for B(1) (SSR240612), tachykinin NK(1) (RP67580), glutamate NMDA (DL-AP5), DA D(1) (SCH23390, 0.2mg/kg s.c.) and D(2) (Raclopride, 0.16 mg/kg s.c.). Other studies included inhibitors (10 μg/site) of NOS (l-NNA) and iNOS (1400W). The possible desensitisation of B(1)R upon repeated intracerebral stimulation was also excluded. B(1)R expression was measured by qRT-PCR in selected areas and by immunohistochemistry in the ventral tegmental area. Results showed that the B(1)R agonist had no effect in WKY, yet it induced nocifensive behavioral manifestations in both models of hypertension (face washing, sniffing, head scratching, rearing, teeth chattering, grooming, digging, licking, wet-dog shakes). These responses were prevented by all antagonists and inhibitors tested, but 1400 W had a less inhibitory effect on most behaviors. Compared with WKY, B(1)R mRNA levels were markedly enhanced in hypothalamus, ventral tegmental area and nucleus accumbens of SHR and Ang II-treated rats. B(1)R was detected on DA neuron of the ventral tegmental area in SHR. Data suggest that kinin B(1)R is upregulated in midbrain DA system in hypertensive rats and its i.c.v. activation induced stereotypic nocifensive behavior that is mediated by several mediators, notably substance P, glutamate, DA and NO.
Collapse
|
4
|
García-Pérez D, Laorden ML, Milanés MV, Núñez C. Glucocorticoids regulation of FosB/ΔFosB expression induced by chronic opiate exposure in the brain stress system. PLoS One 2012; 7:e50264. [PMID: 23185589 PMCID: PMC3503985 DOI: 10.1371/journal.pone.0050264] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 10/18/2012] [Indexed: 11/25/2022] Open
Abstract
Chronic use of drugs of abuse profoundly alters stress-responsive system. Repeated exposure to morphine leads to accumulation of the transcription factor ΔFosB, particularly in brain areas associated with reward and stress. The persistent effects of ΔFosB on target genes may play an important role in the plasticity induced by drugs of abuse. Recent evidence suggests that stress-related hormones (e.g., glucocorticoids, GC) may induce adaptations in the brain stress system that is likely to involve alteration in gene expression and transcription factors. This study examined the role of GC in regulation of FosB/ΔFosB in both hypothalamic and extrahypothalamic brain stress systems during morphine dependence. For that, expression of FosB/ΔFosB was measured in control (sham-operated) and adrenalectomized (ADX) rats that were made opiate dependent after ten days of morphine treatment. In sham-operated rats, FosB/ΔFosB was induced after chronic morphine administration in all the brain stress areas investigated: nucleus accumbens(shell) (NAc), bed nucleus of the stria terminalis (BNST), central amygdala (CeA), hypothalamic paraventricular nucleus (PVN) and nucleus of the solitary tract noradrenergic cell group (NTS-A(2)). Adrenalectomy attenuated the increased production of FosB/ΔFosB observed after chronic morphine exposure in NAc, CeA, and NTS. Furthermore, ADX decreased expression of FosB/ΔFosB within CRH-positive neurons of the BNST, PVN and CeA. Similar results were obtained in NTS-A(2) TH-positive neurons and NAc pro-dynorphin-positive neurons. These data suggest that neuroadaptation (estimated as accumulation of FosB/ΔFosB) to opiates in brain areas associated with stress is modulated by GC, supporting the evidence of a link between brain stress hormones and addiction.
Collapse
Affiliation(s)
- Daniel García-Pérez
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, University School of Medicine, Murcia, Spain
| | - M. Luisa Laorden
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, University School of Medicine, Murcia, Spain
| | - M. Victoria Milanés
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, University School of Medicine, Murcia, Spain
| | - Cristina Núñez
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, University School of Medicine, Murcia, Spain
| |
Collapse
|
5
|
Meng QY, Chen XN, Tong DL, Zhou JN. Stress and glucocorticoids regulated corticotropin releasing factor in rat prefrontal cortex. Mol Cell Endocrinol 2011; 342:54-63. [PMID: 21664419 DOI: 10.1016/j.mce.2011.05.035] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 04/22/2011] [Accepted: 05/23/2011] [Indexed: 11/28/2022]
Abstract
Corticotropin releasing factor (CRF) is considered as the central driving force in the stress response and plays a key role in the pathogenesis of depression. CRF neurons have been identified to locate in most regions of the prefrontal cortex (PFC), a brain region that is highly associated with the control of emotion and cognition. However, little is known on the regulation of CRF in this region. In this study, we aimed to identify the regulatory effect of acute restraint stress and glucocorticoid on PFC CRF and characterize the possible function of CRF in the PFC. We found that acute restraint stress increased and glucocorticoid decreased PFC CRF mRNA expression. The expression of glucocorticoid receptor (GR) was found to colocalize with CRF neurons in the PFC. In addition, recruitment of GR by the CRF promoter was observed in vivo. Specific attention was paid to the effect of CRF on CRF receptor 1 (CRFR1) expression in primary PFC cultures. The results showed that CRF increased CRFR1 expression through the MEK-ERK1/2 pathway. In summary, this study may contribute to the better understanding of CRF functions in the PFC.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Corticotropin-Releasing Hormone/genetics
- Corticotropin-Releasing Hormone/metabolism
- Depression/pathology
- Glucocorticoids/pharmacology
- MAP Kinase Signaling System
- Male
- Prefrontal Cortex/metabolism
- Promoter Regions, Genetic
- RNA, Messenger/biosynthesis
- RNA, Messenger/drug effects
- RNA, Messenger/genetics
- Rats
- Rats, Sprague-Dawley
- Receptors, Corticotropin-Releasing Hormone/genetics
- Receptors, Corticotropin-Releasing Hormone/metabolism
- Receptors, Glucocorticoid/biosynthesis
- Stress, Physiological
Collapse
Affiliation(s)
- Qing-Yuan Meng
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Jinzhai road 96, Hefei 230026, Anhui, PR China
| | | | | | | |
Collapse
|
6
|
Rutherford HJV, Williams SK, Moy S, Mayes LC, Johns JM. Disruption of maternal parenting circuitry by addictive process: rewiring of reward and stress systems. Front Psychiatry 2011; 2:37. [PMID: 21779252 PMCID: PMC3133875 DOI: 10.3389/fpsyt.2011.00037] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 06/09/2011] [Indexed: 01/18/2023] Open
Abstract
Addiction represents a complex interaction between the reward and stress neural circuits, with increasing drug use reflecting a shift from positive reinforcement to negative reinforcement mechanisms in sustaining drug dependence. Preclinical studies have indicated the involvement of regions within the extended amygdala as subserving this transition, especially under stressful conditions. In the addictive situation, the reward system serves to maintain habitual behaviors that are associated with the relief of negative affect, at the cost of attenuating the salience of other rewards. Therefore, addiction reflects the dysregulation between core reward systems, including the prefrontal cortex (PFC), ventral tegmental area (VTA), and nucleus accumbens (NAc), as well as the hypothalamic-pituitary-adrenal axis and extended amygdala of the stress system. Here, we consider the consequences of changes in neural function during or following addiction on parenting, an inherently rewarding process that may be disrupted by addiction. Specifically, we outline the preclinical and human studies that support the dysregulation of reward and stress systems by addiction and the contribution of these systems to parenting. Increasing evidence suggests an important role for the hypothalamus, PFC, VTA, and NAc in parenting, with these same regions being those dysregulated in addiction. Moreover, in addicted adults, we propose that parenting cues trigger stress reactivity rather than reward salience, and this may heighten negative affect states, eliciting both addictive behaviors and the potential for child neglect and abuse.
Collapse
Affiliation(s)
| | - Sarah K. Williams
- Department of Psychiatry, University of North Carolina-Chapel HillChapel Hill, NC, USA
| | - Sheryl Moy
- Department of Psychiatry, University of North Carolina-Chapel HillChapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina-Chapel HillChapel Hill, NC, USA
| | - Linda C. Mayes
- Yale Child Study Center, Yale UniversityNew Haven, CT, USA
| | - Josephine M. Johns
- Department of Psychiatry, University of North Carolina-Chapel HillChapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina-Chapel HillChapel Hill, NC, USA
| |
Collapse
|
7
|
Schulkin J. Evolutionary conservation of glucocorticoids and corticotropin releasing hormone: Behavioral and physiological adaptations. Brain Res 2011; 1392:27-46. [DOI: 10.1016/j.brainres.2011.03.055] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 03/14/2011] [Accepted: 03/22/2011] [Indexed: 02/05/2023]
|
8
|
Weiser MJ, Foradori CD, Handa RJ. Estrogen receptor beta activation prevents glucocorticoid receptor-dependent effects of the central nucleus of the amygdala on behavior and neuroendocrine function. Brain Res 2010; 1336:78-88. [PMID: 20381466 PMCID: PMC2879480 DOI: 10.1016/j.brainres.2010.03.098] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 02/26/2010] [Accepted: 03/27/2010] [Indexed: 11/24/2022]
Abstract
Neuropsychiatric disorders such as anxiety and depression have formidable economic and societal impacts. A dysregulation of the hypothalamo-pituitary-adrenal (HPA) axis leading to elevated endogenous glucocorticoid levels is often associated with such disorders. Chronically high glucocorticoid levels may act upon the central nucleus of the amygdala (CeA) to alter normally adaptive responses into those that are maladaptive and detrimental. In addition to glucocorticoids, other steroid hormones such as estradiol and androgens can also modify hormonal and behavioral responses to threatening stimuli. In particular, estrogen receptor beta (ERbeta) agonists have been shown to be anxiolytic. Consequently, these experiments addressed the hypothesis that the selective stimulation of glucocorticoid receptor (GR) in the CeA would increase anxiety-like behaviors and HPA axis reactivity to stress, and further, that an ERbeta agonist could modulate these effects. Young adult female Sprague-Dawley rats were ovariectomized and bilaterally implanted via stereotaxic surgery with a wax pellet containing the selective GR agonist RU28362 or a blank pellet, to a region just dorsal to the CeA. Four days later, animals were administered the ERbeta agonist S-DPN or vehicle (with four daily sc injections). Anxiety-type behaviors were measured using the elevated plus maze (EPM). Central RU28362 implants caused significantly higher anxiety-type behaviors in the EPM and greater plasma CORT levels than controls given a blank central implant. Moreover, S-DPN treated animals, regardless of type of central implant, displayed significantly lower anxiety-type behaviors and post-EPM plasma CORT levels than vehicle treated controls or vehicle treated animals implanted with RU28362. These results indicate that selective activation of GR within the CeA is anxiogenic, and peripheral administration of an ERbeta agonist can overcome this effect. These data suggest that estradiol signaling via ERbeta prevents glucocorticoid-dependent effects of the CeA on behavior and neuroendocrine function.
Collapse
Affiliation(s)
- Michael J. Weiser
- Department of Biomedical Sciences, Neuroscience Division, Colorado State University, Fort Collins, CO
| | - Chad D. Foradori
- Department of Basic Medical Sciences, College of Medicine, University of Arizona, Phoenix, AZ
| | - Robert J. Handa
- Department of Biomedical Sciences, Neuroscience Division, Colorado State University, Fort Collins, CO
- Department of Basic Medical Sciences, College of Medicine, University of Arizona, Phoenix, AZ
| |
Collapse
|
9
|
Briones-Aranda A, Castillo-Salazar M, Picazo O. Adrenalectomy modifies the hippocampal 5-HT1A receptors and the anxiolytic-like effect of 8-OH-DPAT in rats. Pharmacol Biochem Behav 2009; 92:182-9. [DOI: 10.1016/j.pbb.2008.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 11/15/2008] [Accepted: 11/21/2008] [Indexed: 10/21/2022]
|
10
|
Gender differences in corticotropin and corticosterone secretion and corticotropin-releasing factor mRNA expression in the paraventricular nucleus of the hypothalamus and the central nucleus of the amygdala in response to footshock stress or psychological stress in rats. Psychoneuroendocrinology 2009; 34:226-237. [PMID: 18849120 DOI: 10.1016/j.psyneuen.2008.09.003] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 07/14/2008] [Accepted: 09/03/2008] [Indexed: 11/20/2022]
Abstract
Anorexia nervosa is mostly seen in adolescent females, although the gender-differentiation mechanism is unclear. Corticotropin-releasing factor (CRF), a key peptide for stress responses such as inhibition of food intake, increases in arousal and locomotor activity, and gonadal dysfunction, is thought to be involved in the pathophysiology of anorexia nervosa. CRF in the paraventricular nucleus of the hypothalamus (PVN) and CRF in the central nucleus of the amygdala (CeA) are involved in the regulation of stress responses, and gender differences in CRF mRNA expression in these regions in response to various stressors are controversial. We therefore examined CRF gene expression in the PVN and CeA as well as corticotropin (ACTH) and corticosterone secretion in response to a 60-min period of electric footshock (FS) or psychological stress (PS) induced by a communication box in both male and female rats in proestrus or diestrus in an effort to elucidate the mechanism underlying the gender difference in the activity of the hypothalamic-pituitary-adrenal (HPA) axis and the mechanism underlying the remarkable prevalence of anorexia nervosa in females. Female rats in proestrus showed higher basal plasma ACTH and CRF mRNA expression levels in the PVN and CeA than males. Females more rapidly showed higher plasma ACTH and corticosterone levels and a higher CRF mRNA expression level in the PVN in response to FS than males. Although females in both proestrus and diestrus showed significant increases in plasma ACTH and corticosterone and CRF mRNA expression in the PVN in response to PS, no significant responses of the HPA axis to PS were found in males. FS significantly increased CRF mRNA expression in the CeA in both females and males, with significantly higher peaks in females in proestrus than in males, while PS significantly increased CRF mRNA expression in the CeA only in males. These results suggest that gender affects differentially the function of the stress-related regions such as the PVN and CeA. The finding that CRF gene expression in the PVN responds to PS only in females may be a clue to elucidation of the neurobiological mechanism underlying the gender-differential prevalence of anorexia nervosa.
Collapse
|
11
|
Merali Z, Anisman H, James JS, Kent P, Schulkin J. Effects of corticosterone on corticotrophin-releasing hormone and gastrin-releasing peptide release in response to an aversive stimulus in two regions of the forebrain (central nucleus of the amygdala and prefrontal cortex). Eur J Neurosci 2008; 28:165-72. [DOI: 10.1111/j.1460-9568.2008.06281.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Korosi A, Baram TZ. The central corticotropin releasing factor system during development and adulthood. Eur J Pharmacol 2008; 583:204-14. [PMID: 18275957 PMCID: PMC2329668 DOI: 10.1016/j.ejphar.2007.11.066] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Revised: 08/28/2007] [Accepted: 11/07/2007] [Indexed: 11/18/2022]
Abstract
Corticotropin releasing factor (CRH) has been shown to contribute critically to molecular and neuroendocrine responses to stress during both adulthood and development. This peptide and its receptors are expressed in the hypothalamus, as well as in limbic brain areas including amygdala and hippocampus. This is consistent with roles for CRH in mediating the influence of stress on emotional behavior and cognitive function. The expression of CRH and of its receptors in hypothalamus, amygdala and hippocampus is age-dependent, and is modulated by stress throughout life (including the first postnatal weeks). Uniquely during development, the cardinal influence of maternal care on the central stress response governs the levels of central CRH expression, and may alter the 'set-point' of CRH-gene sensitivity to stress in a lasting manner.
Collapse
Affiliation(s)
- Aniko Korosi
- Department of Anatomy, University of California Irvine, Irvine, CA 92697-4475, USA
| | | |
Collapse
|
13
|
Marroni SS, Nakano FN, Gati CDC, Oliveira JAC, Antunes-Rodrigues J, Garcia-Cairasco N. Neuroanatomical and cellular substrates of hypergrooming induced by microinjection of oxytocin in central nucleus of amygdala, an experimental model of compulsive behavior. Mol Psychiatry 2007; 12:1103-17. [PMID: 17505467 DOI: 10.1038/sj.mp.4002015] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Oxytocin (OT) is a neurosecretory nonapeptide synthesized in hypothalamic cells that project to the neurohypophysis as well as to widely distributed sites in the central nervous system. Central OT microinjections induce a variety of cognitive, sexual, reproductive, grooming and affiliative behaviors in animals. Obsessive-compulsive disorder (OCD) includes a range of cognitive and behavioral symptoms that bear some relationship with OT. Here, we study the neuroanatomical and cellular substrates of the hypergrooming induced by administration of OT in the central nucleus of amygdala (CeA). In this context, this hypergrooming is considered as a model of compulsive behavior. Our data suggest a link between the CeA and the hypothalamic grooming area (HGA). The HGA includes parts of the paraventricular nucleus and the dorsal hypothalamic area. Our data on colocalization of OT (immunohistochemistry for peptide), OT receptor (binding assay) and its retrogradely labeled cells after Fluoro-Gold injection in the CeA suggest that CeA and connections are important substrates of the circuit underlying this OT-dependent compulsive behavioral pattern.
Collapse
Affiliation(s)
- S S Marroni
- Neurophysiology and Experimental Neuroethology Laboratory, Ribeirão Preto School of Medicine, University of São Paulo, Avenida Bandeirantes, Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
Fear is an adaptation to danger, but excessive fear underlies diverse forms of mental anguish and pathology. One neural site linked to a sense of adversity is the amygdala, and one neuropeptide, corticotropin-releasing hormone (CRH), is localized within the central nucleus of the amygdala. Glucocorticoids enhance the production of CRH in this region of the brain, resulting in increased attention to external events and, when sustained for longer periods of times, perhaps contributing to anxious depression.
Collapse
Affiliation(s)
- Jay Schulkin
- Department of Physiology and Biophysics, Georgetown University, School of Medicine, Washington, DC, USA.
| |
Collapse
|
15
|
Dallman MF, Pecoraro NC, La Fleur SE, Warne JP, Ginsberg AB, Akana SF, Laugero KC, Houshyar H, Strack AM, Bhatnagar S, Bell ME. Glucocorticoids, chronic stress, and obesity. PROGRESS IN BRAIN RESEARCH 2006; 153:75-105. [PMID: 16876569 DOI: 10.1016/s0079-6123(06)53004-3] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Glucocorticoids either inhibit or sensitize stress-induced activity in the hypothalamo-pituitary-adrenal (HPA) axis, depending on time after their administration, the concentration of the steroids, and whether there is a concurrent stressor input. When there are high glucocorticoids together with a chronic stressor, the steroids act in brain in a feed-forward fashion to recruit a stress-response network that biases ongoing autonomic, neuroendocrine, and behavioral outflow as well as responses to novel stressors. We review evidence for the role of glucocorticoids in activating the central stress-response network, and for mediation of this network by corticotropin-releasing factor (CRF). We briefly review the effects of CRF and its receptor antagonists on motor outflows in rodents, and examine the effects of glucocorticoids and CRF on monoaminergic neurons in brain. Corticosteroids stimulate behaviors that are mediated by dopaminergic mesolimbic "reward" pathways, and increase palatable feeding in rats. Moreover, in the absence of corticosteroids, the typical deficits in adrenalectomized rats are normalized by providing sucrose solutions to drink, suggesting that there is, in addition to the feed-forward action of glucocorticoids on brain, also a feedback action that is based on metabolic well being. Finally, we briefly discuss the problems with this network that normally serves to aid in responses to chronic stress, in our current overindulged, and underexercised society.
Collapse
Affiliation(s)
- Mary F Dallman
- University of California at San Francisco, San Francisco, CA 94143-0444, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Fenoglio KA, Chen Y, Baram TZ. Neuroplasticity of the hypothalamic-pituitary-adrenal axis early in life requires recurrent recruitment of stress-regulating brain regions. J Neurosci 2006; 26:2434-42. [PMID: 16510721 PMCID: PMC2408688 DOI: 10.1523/jneurosci.4080-05.2006] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Revised: 01/18/2006] [Accepted: 01/21/2006] [Indexed: 01/18/2023] Open
Abstract
An eloquent example of experience-induced neuroplasticity involves the enduring effects of daily "handling" of rat pups on the expression of genes regulating hormonal and behavioral responses to stress. Handling-evoked augmentation of maternal care of pups induces long-lasting reduction of hypothalamic corticotropin releasing hormone (CRH) expression and upregulates hippocampal glucocorticoid receptor levels. These changes promote a lifelong attenuation of hormonal stress responses. We have found previously that handling-evoked downregulation of CRH expression occurs already by postnatal day 9, implicating it as an early step in this experience-induced neuroplasticity. Here, we investigated the neuronal pathways and cellular mechanisms involved. CRH mRNA expression in hypothalamic paraventricular nucleus (PVN) diminished after daily handling but not after handling once only, indicating that "recurrent" handling was required for this effect. Return of handled pups to their cage provoked a burst of nurturing behavior in dams that, in turn, induced transient, coordinate Fos expression in selected regions of the pups' brains. These included central nucleus of the amygdala (ACe) and bed nucleus of the stria terminals (BnST), regions that are afferent to PVN and influence CRH expression there. Whereas handling once sufficed to evoke Fos expression within ACe and BnST, expression in thalamic paraventricular nucleus, a region involved in storing and processing stress-related experience, required recurrent handling. Fos induction in all three regions elicited reduced transcription factor phosphorylation, followed by attenuated activation of CRH gene transcription within the PVN. These studies provide a neurobiological foundation for the profound neuroplasticity of stress-related genes evoked by early-life experience.
Collapse
|
17
|
Zelena D, Filaretova L, Mergl Z, Barna I, Tóth ZE, Makara GB. Hypothalamic paraventricular nucleus, but not vasopressin, participates in chronic hyperactivity of the HPA axis in diabetic rats. Am J Physiol Endocrinol Metab 2006; 290:E243-50. [PMID: 16144820 DOI: 10.1152/ajpendo.00118.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diabetes mellitus (DM), as chronic stress activates the hypothalamo-pituitary-adrenocortical axis. We examined whether arginine vasopressin (AVP) and the hypothalamic paraventricular nucleus (PVN) participate in DM-induced chronic stress symptoms. AVP-deficient Brattleboro or PVN-lesioned Wistar rats were used with heterozygous or sham-operated controls. The rats were studied 2 wk after a single injection of streptozotocin. The appearance of DM (enhanced water consumption and blood glucose elevation) and the chronic stress-like somatic changes (body weight decrease, thymus involution, adrenal gland hypertrophy) were not influenced by the lack of AVP. By contrast, PVN lesion significantly attenuated DM-induced thymus involution and adrenal gland hypertrophy as well as the increase in water consumption. The corticotropin-releasing hormone mRNA in PVN was diminished by DM and elevated by the lack of AVP without interaction. DM elevated the proopiomelanocortin (POMC) mRNA in the anterior lobe of the pituitary. The lack of AVP had no effect, whereas lesioning the PVN significantly diminished the elevation. The elevated basal corticosterone plasma levels detectable in DM were influenced neither by the lack of AVP nor by lesioning the PVN. Thus the lack of AVP had no influence on DM-induced chronic stress symptoms, but lesioning the PVN attenuated part of them. However, the lack of elevation in POMC mRNA after PVN lesion, together with the maintained corticosterone elevation, suggests that direct adrenal gland activation occurs in untreated DM.
Collapse
Affiliation(s)
- Dóra Zelena
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Szigony 43, Hungary.
| | | | | | | | | | | |
Collapse
|
18
|
Schulkin J, Morgan MA, Rosen JB. A neuroendocrine mechanism for sustaining fear. Trends Neurosci 2005; 28:629-35. [PMID: 16214230 DOI: 10.1016/j.tins.2005.09.009] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Revised: 08/22/2005] [Accepted: 09/22/2005] [Indexed: 11/25/2022]
Abstract
Fear is an adaptive response to recognition of a potentially dangerous event. Glucocorticoids are essential for maintaining a wide variety of behavioral events by their regulation of numerous genes; one such gene encodes corticotrophin-releasing hormone (CRH). CRH is involved in diverse behavioral responses to changing environmental demands. In this review, we focus on one aspect of glucocorticoid regulation of CRH--namely, fear-related responses to diverse classes of adverse events, such as those represented by contextual and cue-specific stimuli. Three extra-hypothalamic forebrain sites appear crucial for fear-related behavioral responses: the amygdala and the bed nucleus of the stria terminalis for sustaining adaptive fear-related behaviors, and the medial prefrontal cortex for modulating fear-related behaviors. Central regulation of CRH by glucocorticoids is important for adaptive and sustained fear-related behaviors, and its aberration is associated with anxiety and depressive disorders.
Collapse
Affiliation(s)
- Jay Schulkin
- Department of Physiology and Biophysics, Georgetown University, Washington, DC 20007, USA.
| | | | | |
Collapse
|
19
|
Forray MI, Gysling K. Role of noradrenergic projections to the bed nucleus of the stria terminalis in the regulation of the hypothalamic-pituitary-adrenal axis. ACTA ACUST UNITED AC 2005; 47:145-60. [PMID: 15572169 DOI: 10.1016/j.brainresrev.2004.07.011] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2004] [Indexed: 10/26/2022]
Abstract
The bed nucleus of the stria terminalis (BNST) plays an important role in the regulation of the hypothalamic-pituitary-adrenal (HPA) axis during stress and it is a major extrahypothalamic relay to the paraventricular nucleus of the hypothalamus (PVN) from the amygdala and the hippocampus. In this review, we discuss the anatomical, neurochemical and behavioral evidence that substantiate a role for noradrenergic terminals of the anterior BNST in the regulation of the HPA axis. We propose the hypothesis that BNST noradrenaline (NA) participates in the regulation of the hippocampal inhibitory influence on the HPA axis activation. The observation that NA exerts a tonic inhibitory effect upon glutamatergic transmission in the anterior BNST supports this hypothesis. We also discuss the known mechanisms involved in the regulation of BNST NA extracellular levels and the possible interactions between NA and corticotropin-releasing hormone (CRH), and of CRH with glutamate (GLU) in the regulation of the HPA axis activity exerted by the BNST. The evidence discussed in the present review situates the BNST as a key extrahypothalamic center that relays and integrates limbic and autonomic information related to stress responses suggesting that dysregulation in the functioning of the BNST may underlie the pathophysiology of stress-related psychiatric disorders.
Collapse
Affiliation(s)
- María Inés Forray
- Department of Pharmacy, Faculty of Chemistry, Catholic University of Chile, Santiago, Chile.
| | | |
Collapse
|
20
|
Santibañez M, Gysling K, Forray MI. Adrenalectomy decreases corticotropin-releasing hormone gene expression and increases noradrenaline and dopamine extracellular levels in the rat lateral bed nucleus of the stria terminalis. J Neurosci Res 2005; 81:140-52. [PMID: 15931675 DOI: 10.1002/jnr.20538] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The bed nucleus of the stria terminalis (BNST) has a high density of corticotropin-releasing hormone (CRH)-containing neurons that are significantly innervated by noradrenergic and dopaminergic nerve terminals. This limbic structure is involved in the extrahypothalamic response to stress. The purpose of the present work is to study whether the absence of glucocorticoids, induced by a long-term adrenalectomy, regulates CRH gene expression and noradrenaline and dopamine extracellular levels in the rat BNST. The results showed that adrenalectomy decreases CRH mRNA in the dorsal lateral BNST but not in the ventral lateral BNST. Adrenalectomy also decreases CRH-like immunoreactivity both in BNST subnuclei and in the central nucleus of the amygdala. In addition, adrenalectomy significantly increases noradrenaline and dopamine extracellular levels in the lateral BNST. The present results suggest that adrenalectomy regulates CRH gene expression and noradrenaline and dopamine extracellular levels in the BNST in an opposite way. Thus, the present study adds novel evidence further supporting that the BNST and the central nucleus of the amygdala form part of an adrenal steroid-sensitive extrahypothalamic circuit that has been involved in fear and anxiety responses and in clinical syndromes such as melancholic depression, posttraumatic stress disorders, and addiction.
Collapse
Affiliation(s)
- Marcos Santibañez
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Catholic University of Chile, Santiago, Chile
| | | | | |
Collapse
|
21
|
Korte SM, Koolhaas JM, Wingfield JC, McEwen BS. The Darwinian concept of stress: benefits of allostasis and costs of allostatic load and the trade-offs in health and disease. Neurosci Biobehav Rev 2004; 29:3-38. [PMID: 15652252 DOI: 10.1016/j.neubiorev.2004.08.009] [Citation(s) in RCA: 676] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Accepted: 08/09/2004] [Indexed: 12/22/2022]
Abstract
Why do we get the stress-related diseases we do? Why do some people have flare ups of autoimmune disease, whereas others suffer from melancholic depression during a stressful period in their life? In the present review possible explanations will be given by using different levels of analysis. First, we explain in evolutionary terms why different organisms adopt different behavioral strategies to cope with stress. It has become clear that natural selection maintains a balance of different traits preserving genes for high aggression (Hawks) and low aggression (Doves) within a population. The existence of these personality types (Hawks-Doves) is widespread in the animal kingdom, not only between males and females but also within the same gender across species. Second, proximate (causal) explanations are given for the different stress responses and how they work. Hawks and Doves differ in underlying physiology and these differences are associated with their respective behavioral strategies; for example, bold Hawks preferentially adopt the fight-flight response when establishing a new territory or defending an existing territory, while cautious Doves show the freeze-hide response to adapt to threats in their environment. Thus, adaptive processes that actively maintain stability through change (allostasis) depend on the personality type and the associated stress responses. Third, we describe how the expression of the various stress responses can result in specific benefits to the organism. Fourth, we discuss how the benefits of allostasis and the costs of adaptation (allostatic load) lead to different trade-offs in health and disease, thereby reinforcing a Darwinian concept of stress. Collectively, this provides some explanation of why individuals may differ in their vulnerability to different stress-related diseases and how this relates to the range of personality types, especially aggressive Hawks and non-aggressive Doves in a population. A conceptual framework is presented showing that Hawks, due to inefficient management of mediators of allostasis, are more likely to be violent, to develop impulse control disorders, hypertension, cardiac arrhythmias, sudden death, atypical depression, chronic fatigue states and inflammation. In contrast, Doves, due to the greater release of mediators of allostasis (surplus), are more susceptible to anxiety disorders, metabolic syndromes, melancholic depression, psychotic states and infection.
Collapse
Affiliation(s)
- S Mechiel Korte
- Animal Sciences Group, Wageningen University and Research Centre, Box 65, Edelhertweg 15, 8200 AB Lelystad, The Netherlands.
| | | | | | | |
Collapse
|
22
|
Khan S, Milot M, Lecompte-Collin J, Plamondon H. Time-dependent changes in CRH concentrations and release in discrete brain regions following global ischemia: effects of MK-801 pretreatment. Brain Res 2004; 1016:48-57. [PMID: 15234251 DOI: 10.1016/j.brainres.2004.04.062] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2004] [Indexed: 10/26/2022]
Abstract
The excitatory actions of corticotropin-releasing hormone (CRH) in the brain and the neuroprotective effects of CRH antagonists in models of ischemia suggest a role for this peptide in the cascade of events leading to cellular damage. The present study aimed to characterize endogenous activation of CRH in discrete brain regions following global ischemia. Time-dependent changes in CRH concentrations were assessed in 10 brain regions including hippocampal, parahippocampal, and hypothalamic regions as well as the amygdala and the frontal cortex at three post-ischemic intervals: 4, 24, and 72 h (Experiment 1). The impact of pretreatment with a neuroprotective dose of the NMDA antagonist (5R,10S)-(+)-5-Methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (MK-801; hydrogen maleate) on 24-h ischemia-induced CRH concentrations in the 10 brain regions was also determined (Experiment 2). In vivo microdialysis was used to assess dynamic fluctuations in CRH release at the dorsal hippocampus (CA1 pyramidal layer) and central nucleus of the amygdala (CeA; Experiment 3). Our findings revealed a rapid elevation of CRH concentrations at the piriform cortex (Pir) and hypothalamic nuclei following global ischemia. This was followed by decreased CRH concentrations at the amygdala, the frontal cortex (FC), the CA3, and the hypothalamus 24-h post-ischemia. MK-801 reversed the decreases in the hypothalamic nuclei but not in the other brain regions. Seventy-two hours post-ischemia, CRH levels returned to control values in all regions except the dentate gyrus (DG) where elevated CRH levels were observed. In vivo, a significant increase in CRH release in response to global ischemia was found at the CeA with no alterations at the CA1. These findings support brain region-specific ischemia-induced CRH alterations and suggest that CRH actions to mediate neuronal damage at the hippocampal CA1 layer may be indirect.
Collapse
Affiliation(s)
- Samir Khan
- University of Michigan, Department of Psychiatry, VA Medical Center, Ann Arbor, MI, USA
| | | | | | | |
Collapse
|
23
|
Fenoglio KA, Brunson KL, Avishai-Eliner S, Chen Y, Baram TZ. Region-specific onset of handling-induced changes in corticotropin-releasing factor and glucocorticoid receptor expression. Endocrinology 2004; 145:2702-6. [PMID: 15044366 PMCID: PMC3088480 DOI: 10.1210/en.2004-0111] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Early-life experience including maternal care profoundly influences hormonal stress responses during adulthood. Daily handling on postnatal day (P) 2-9, eliciting augmented maternal care upon returning pups to their cage, permanently modifies the expression of the stress neuromodulators corticotropin-releasing factor (CRF) and glucocorticoid receptor (GR). We have previously demonstrated reduced hypothalamic CRF expression already at the end of the handling period, followed by enhanced hippocampal GR mRNA levels (by P45). However, the initial site(s) and time of onset of these enduring changes have remained unclear. Therefore, we used semiquantitative in situ hybridization to delineate the spatiotemporal evolution of CRF and GR expression throughout stress-regulatory brain regions in handled (compared with undisturbed) pups. Enhanced CRF mRNA expression was apparent in the amygdaloid central nucleus (ACe) of handled pups already by P6. By P9, the augmented CRF mRNA levels persisted in ACe, accompanied by increased peptide expression in the bed nucleus of the stria terminalis and reduced expression in the paraventricular nucleus. The earliest change in GR consisted of reduced expression in the ACe of handled pups on P9, a time point when hippocampal GR expression was not yet affected. Thus, altered gene expression in ACe, bed nucleus of the stria terminalis as well as paraventricular nucleus may contribute to the molecular cascade by which handling (and increased maternal care) influences the stress response long term.
Collapse
Affiliation(s)
- Kristina A Fenoglio
- 19182 Jamboree Boulevard, University of California, Irvine, Med Sci I Room B160, Irvine, California 92697-4475, USA
| | | | | | | | | |
Collapse
|
24
|
Thompson BL, Erickson K, Schulkin J, Rosen JB. Corticosterone facilitates retention of contextually conditioned fear and increases CRH mRNA expression in the amygdala. Behav Brain Res 2004; 149:209-15. [PMID: 15129783 DOI: 10.1016/s0166-4328(03)00216-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The present study examined the effects of glucocorticoid administration on emotional memory and on corticotropin-releasing hormone (CRH) mRNA expression in the central nucleus of the amygdala (CeA) and the paraventricular nucleus of the hypothalamus (PVN). This was tested by administering repeated corticosterone (CORT) within a contextual fear conditioning paradigm. Rats received 2.5 mg/kg (s.c.) CORT or placebo twice a day for five and a half days and, 2 h after the last injection, rats were given one-trial contextual fear conditioning. When tested for retention of conditioned fear 6 days later, the CORT-treated rats displayed more fear-conditioned freezing in the retention test than vehicle-treated rats, which was not accounted for by an increase in footshock responsivity nor elevated plasma CORT. Another group of rats was fear conditioned prior to CORT administration, followed 24 h later by the five and a half days of CORT, and tested 6 days later; conditioned fear was not enhanced in these rats. Finally, CORT administration produced an increase of CRH mRNA in the CeA and a decrease in the PVN. The data suggest that repeated administration of CORT given before fear conditioning facilitates the acquisition of emotional memory, whereas CORT given after consolidation does not increase emotional memory.
Collapse
Affiliation(s)
- Barbara L Thompson
- Department of Psychology and Neuroscience Program, University of Delaware, 108 Wolf Hall, Newark, DE 19716, USA
| | | | | | | |
Collapse
|
25
|
Zelena D, Mergl Z, Foldes A, Kovács KJ, Tóth Z, Makara GB. Role of hypothalamic inputs in maintaining pituitary-adrenal responsiveness in repeated restraint. Am J Physiol Endocrinol Metab 2003; 285:E1110-7. [PMID: 14534078 DOI: 10.1152/ajpendo.00219.2003] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of hypothalamic structures in the regulation of chronic stress responses was studied by lesioning the mediobasal hypothalamus or the paraventricular nucleus of hypothalamus (PVH). Rats were acutely (60 min) and/or repeatedly (for 7 days) restrained. In controls, a single restraint elevated the plasma adrenocorticotropin (ACTH), corticosterone, and prolactin levels. Repeated restraint produced all signs of chronic stress, including decreased body and thymus weights, increased adrenal weight, basal corticosterone levels, and proopiomelanocortin (POMC) mRNA expression in the anterior pituitary. Some adaptation to repeated restraint of the ACTH response, but not of other hormonal responses, was seen. Lesioning of the mediobasal hypothalamus abolished the hormonal response and POMC mRNA activation to acute and/or repeated restraint, suggesting that the hypothalamo-pituitary-adrenal axis activation during repeated restraint is centrally driven. PVH lesion inhibited the ACTH and corticosterone rise to the first restraint by approximately 50%. In repeatedly restrained rats with PVH lesion, the ACTH response to the last restraint was reduced almost to basal control levels, and the elevation of POMC mRNA level was prevented. PVH seems to be important for the repeated restraint-induced ACTH and POMC mRNA stimulation, but it appears to partially mediate other restraint-induced hormonal changes.
Collapse
Affiliation(s)
- D Zelena
- Laboratory of Stress Research, Institute of Experimental Medicine, Hungarian Academy of Sciences, 1450 Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
26
|
Maj M, Turchan J, Smiałowska M, Przewłocka B. Morphine and cocaine influence on CRF biosynthesis in the rat central nucleus of amygdala. Neuropeptides 2003; 37:105-10. [PMID: 12747942 DOI: 10.1016/s0143-4179(03)00021-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The central nucleus of the amygdala is a CRF-containing limbic brain site which mediates both fear-like and avoidance behaviors; moreover it has been hypothesized that atypical stress responses may contribute to compulsive drug use. Therefore, we studied in rat amygdala the level of CRF mRNA by in situ hybrydization, and the level of the peptide using immunocytochemistry after acute and chronic administration of morphine and cocaine and after their withdrawal. Acute injection of morphine (20 mg/kg i.p.) increased CRF mRNA level, but did not change significantly CRF immunoreactivity in the central nucleus of the amygdala. Chronic morphine administration significantly increased the level of CRF mRNA 3, 24 and 48 h after the last dose. Both, acute and chronic cocaine administration increased CRF mRNA, but the peptide level was decreased only after acute cocaine administration. However, in the late withdrawal (48 h after the last dose of cocaine) both mRNA and the peptide levels tended to decrease. The above data suggest that amygdalar CRF system activity is potently activated after administration of morphine and cocaine, and that activation of this system observed at the time of withdrawal from morphine may be responsible for aversion and anxiety related to these states; therefore a CRF1 receptor may be a target for prospective pharmacotherapies of the withdrawal from abused drugs.
Collapse
Affiliation(s)
- M Maj
- Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, PL 31-343, Krakow, Poland
| | | | | | | |
Collapse
|
27
|
Korte SM, De Boer SF. A robust animal model of state anxiety: fear-potentiated behaviour in the elevated plus-maze. Eur J Pharmacol 2003; 463:163-75. [PMID: 12600708 DOI: 10.1016/s0014-2999(03)01279-2] [Citation(s) in RCA: 203] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Fear (i.e., decreased percentage time spent on open-arm exploration) in the elevated plus-maze can be potentiated by prior inescapable stressor exposure, but not by escapable stress. The use of fear-potentiated plus-maze behaviour has several advantages as compared to more traditional animal models of anxiety. (a) In contrast to the traditional (spontaneous) elevated plus-maze, which measures innate fear of open spaces, fear-potentiated plus-maze behaviour reflects an enhanced anxiety state (allostatic state). This "state anxiety" can be defined as an unpleasant emotional arousal in face of threatening demands or dangers. A cognitive appraisal of threat is a prerequisite for the experience of this type of emotion. (b) Depending on the stressor used (e.g., fear of shock, predator odour, swim stress, restraint, social defeat, predator stress (cat)), this enhanced anxiety state can last from 90 min to 3 weeks. Stress effects are more severe when rats are isolated in comparison to group housing. (c) Drugs can be administered in the absence of the original stressor and after stressor exposure. As a consequence, retrieval mechanisms are not affected by drug treatment. (d) Fear-potentiated plus-maze behaviour is sensitive to proven/putative anxiolytics and anxiogenics which act via mechanisms related to the benzodiazepine-gamma-aminobutyric acid receptor, but it is also sensitive to corticotropin-releasing receptor antagonists and glucocorticoid receptor antagonists and serotonin receptor agonists/antagonists complex (high predictive validity). (e) Fear-potentiated plus-maze behaviour is very robust, and experiments can easily be replicated in other labs. (f) Fear-potentiated plus-maze behaviour can be measured both in males and females. (g) Neural mechanisms involved in contextual fear conditioning, fear potentiation and state anxiety can be studied.Thus, fear-potentiated plus-maze behaviour may be a valuable measure in the understanding of neural mechanisms involved in the development of anxiety disorders and in the search for novel anxiolytics. Finally, the involvement of corticotropin-releasing factor and corticosteroid-corticotropin-releasing factor interactions in the production of fear-potentiated plus-maze behaviour are discussed.
Collapse
Affiliation(s)
- S Mechiel Korte
- ID-Lelystad, Institute for Animal Science and Health, Edelhertweg 15, P.O. Box 65, The Netherlands.
| | | |
Collapse
|
28
|
Makino S, Hashimoto K, Gold PW. Multiple feedback mechanisms activating corticotropin-releasing hormone system in the brain during stress. Pharmacol Biochem Behav 2002; 73:147-58. [PMID: 12076734 DOI: 10.1016/s0091-3057(02)00791-8] [Citation(s) in RCA: 179] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Stress-associated disorders such as melancholic depression are characterized by persistent hypothalamic-pituitary-adrenocortical (HPA) axis activation and intensive anxiety. Corticotropin-releasing hormone (CRH) appears to play an essential role in pathophysiology of such disorders. In an attempt to elucidate possible mechanisms underlying persistent activation of CRH in the central nervous system (CNS), we examined responses of hypothalamic and extrahypothalamic CRH systems to the stressors (immobilization stress or psychological stress) and interactions between these CRH systems and glucocorticoids in rats. We propose multiple feedback loops activating central CRH system: (1) attenuation of glucocorticoid-induced negative feedback on the activity of the hypothalamic and brainstem nuclei during chronic stress, (2) autoregulation of CRH biosynthesis in the hypothalamic paraventricular nucleus (PVN) through up-regulation of Type-1 CRH receptor (CRHR-1), and (3) glucocorticoid-mediated positive effects on the amygdaloid CRH system. Stress initially activates the hypothalamic CRH system, resulting in the hypersecretion of glucocorticoids from the adrenal gland. In addition, the psychological component of the stressor stimulates the amygdaloid CRH system. In the chronic phase of stress, down-regulation of GR in the PVN and other brain structures such as the locus coeruleus (LC) fails to restrain hyperfunction of the HPA axis, and persistent activation of the HPA axis further up-regulates the amygdaloid CRH system. Thus, the hypothalamic and the amygdaloid CRH systems cooperatively constitute stress-responsive, anxiety-producing neurocircuitry during chronic stress, which is responsible for the clinical manifestations of stress-associated disorders. Effects of tricyclic antidepressants (TCAs), which appear to mitigate the above mentioned multiple feedback loop forming the vicious circle to activate central CRH systems, will also be discussed.
Collapse
Affiliation(s)
- Shinya Makino
- Second Department of Internal Medicine, Kochi Medical School, Okoh-cho, Nankoku, Japan.
| | | | | |
Collapse
|
29
|
Walker CD, Toufexis DJ, Burlet A. Hypothalamic and limbic expression of CRF and vasopressin during lactation: implications for the control of ACTH secretion and stress hyporesponsiveness. PROGRESS IN BRAIN RESEARCH 2001; 133:99-110. [PMID: 11589148 DOI: 10.1016/s0079-6123(01)33008-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Lactation is associated with physiological and behavioral changes that optimize conditions for development of the offspring. Although neuroendocrine and emotional stress responses are blunted, the central mechanisms involved are unclear. In addition to a reduction in stimulatory noradrenergic inputs to paraventricular nucleus (PVN) neurons, we demonstrate that lactation induces: (1) unique phenotypic changes in neuropeptide expression by hypothalamic PVN neurons (reduced expression of corticotropin-releasing factor (CRF) mRNA and increased expression of vasopressin mRNA in parvocellular PVN neurons); and (2) changes in pituitary sensitivity to CRF (reduced) and vasopressin (increased) as a consequence of differential CRF/vasopressin secretion into the hypophysial portal blood. Neurons in the bed nucleus of the stria terminalis (BNST) and the central amygdala (CeA) that are implicated in the control of the hypothalamopituitary-adrenal axis also display changes in lactation: expression of CRF mRNA in the CeA is reduced, consistent with the diminished responsiveness to acoustic startle observed in nursing mothers. In contrast, expression of CRF mRNA is increased in the dorsolateral portion of the BNST, probably because of the tonic increases in endogenous glucocorticoid production during this period. Using immuno-targeted lesions of CRF or vasopressin in the PVN of virgin females, we have shown that CRF neurons of the PVN send inhibitory projections to the dorsolateral portion of the BNST and stimulatory inputs to CRF neurons in the CeA. Thus, it is possible that lactation-induced changes in the activity of parvocellular PVN neurons might also modulate the expression of neuropeptides and neurotransmitters in the BNST and the amygdala.
Collapse
Affiliation(s)
- C D Walker
- Douglas Hospital Research Center, Department of Psychiatry, McGill University, Montreal, Canada.
| | | | | |
Collapse
|
30
|
Laugero KD, Bell ME, Bhatnagar S, Soriano L, Dallman MF. Sucrose ingestion normalizes central expression of corticotropin-releasing-factor messenger ribonucleic acid and energy balance in adrenalectomized rats: a glucocorticoid-metabolic-brain axis? Endocrinology 2001; 142:2796-804. [PMID: 11415998 DOI: 10.1210/endo.142.7.8250] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Both CRF and norepinephrine (NE) inhibit food intake and stimulate ACTH secretion and sympathetic outflow. CRF also increases anxiety; NE increases attention and cortical arousal. Adrenalectomy (ADX) changes CRF and NE activity in brain, increases ACTH secretion and sympathetic outflow and reduces food intake and weight gain; all of these effects are corrected by administration of adrenal steroids. Unexpectedly, we recently found that ADX rats drinking sucrose, but not saccharin, also have normal caloric intake, metabolism, and ACTH. Here, we show that ADX (but not sham-ADX) rats prefer to consume significantly more sucrose than saccharin. Voluntary ingestion of sucrose restores CRF and dopamine-beta-hydroxylase messenger RNA expression in brain, food intake, and caloric efficiency and fat deposition, circulating triglyceride, leptin, and insulin to normal. Our results suggest that the brains of ADX rats, cued by sucrose energy (but not by nonnutritive saccharin) maintain normal activity in systems that regulate neuroendocrine (hypothalamic-pituitary-adrenal), behavioral (feeding), and metabolic functions (fat deposition). We conclude that because sucrose ingestion, like glucocorticoid replacement, normalizes energetic and neuromodulatory effects of ADX, many of the actions of the steroids on the central nervous system under basal conditions may be indirect and mediated by signals that result from the metabolic effects of adrenal steroids.
Collapse
Affiliation(s)
- K D Laugero
- Department of Physiology, University of California San Francisco, San Francisco, California 94143-0444, USA
| | | | | | | | | |
Collapse
|
31
|
Smiałowska M, Bajkowska M, Heilig M, Obuchowicz E, Turchan J, Maj M, Przewłocki R. Pharmacological studies on the monoaminergic influence on the synthesis and expression of neuropeptide Y and corticotropin releasing factor in rat brain amygdala. Neuropeptides 2001; 35:82-91. [PMID: 11384203 DOI: 10.1054/npep.2001.0849] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Our earlier findings concerning the 6-OHDA lesion suggested dopaminergic regulation of neuropeptide Y (NPY) and corticotropin releasing factor (CRF) synthesis and expression in amygdala neurons. On the other hand, some other studies indicated that not only dopamine, but also other monoamines may modulate peptidergic neurons. Therefore the present study examined the effect of pharmacological deprivation of monoaminergic influences on NPY and CRF neurons in rat brain amygdala by means of in situ hybridization and immunohistochemical methods. It was found that NPY mRNA expression in the amygdala decreased after 24h blockade of dopaminergic D1 and D2 receptors, by haloperidol or SCH23390. At the same time the NPY-peptide expression measured immunohistochemically was not significantly changed. A prolonged, 14-day, blockade of dopaminergic receptors by haloperidol induced an opposite effect, an increase in NPY mRNA expression. Impairment of the serotonergic transmission by blockade of 5-HT synthesis using p-chlorophenylalanine, as well as attenuation of the noradrenergic transmission by NA depletion from terminals by DSP4, did not significantly change NPY mRNA expression or the mean number of NPY-immunoreactive neurons in the amygdala. Only a decrease in the staining intensity observed as a decreased number of darkly stained neurons was found after both compounds. Neither the dopamine receptor blockade nor the impairment of serotonergic or noradrenergic transmission changed CRF mRNA or the peptide expression in the amygdala. The obtained results indicate that in rat brain amygdala, of all the monoamines, dopamine seems to be the most important modulator of NPY biosynthesis and expression. The effect of blockade of dopaminergic receptors is biphasic: first it induces a decrease and then - after prolonged treatment an increase in NPY mRNA. Serotonergic and noradrenergic systems in the amygdala seem to be connected with regulation of NPY release rather than the biosynthesis.
Collapse
Affiliation(s)
- M Smiałowska
- Department of Neurobiology, Institute of Pharmacology, Kraków, Poland.
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Corticosteroids play extremely important roles in fear and anxiety. The mechanisms by which corticosteroids exert their effects on behavior are often indirect, because, although corticosteroids do not regulate behavior, they induce chemical changes in particular sets of neurons making certain behavioral outcomes more likely in certain contexts as a result of the strengthening or weakening of particular neural pathways. The timing of corticosteroid increase (before, during or after exposure to a stressor) determines whether and how behavior is affected. The present review shows that different aspects of fear and anxiety are affected differentially by the occupation of the mineralocorticoid receptor (MR) or glucocorticoid receptor (GR) at different phases of the stress response. Corticosteroids, at low circulating levels, exert a permissive action via brain MRs on the mediation of acute freezing behavior and acute fear-related plus-maze behavior. Corticosteroids, at high circulating levels, enhance acquisition, conditioning and consolidation of an inescapable stressful experience via GR-mechanisms. Brain GR-occupation also promotes processes underlying fear potentiation. Fear potentiation can be seen as an adjustment in anticipation of changing demands. However, such feed-forward regulation may be particularly vulnerable to dysfunction. MR and/or GR mechanisms are involved in fear extinction. Brain MRs may be involved in the extinction of passive avoidance, and GRs may be involved in mediating the extinction of active avoidance. In the developing brain, corticosteroids play a facilitatory role in the ontogeny of freezing behavior, probably via GRs in the dorsal hippocampus, and their influence on the development of the septo-hippocampal cholinergic system. Corticosteroids can exert maladaptive rather than adaptive effects when their actions via MRs and GRs are chronically unbalanced due to chronic stress. Both mental health of humans and animal welfare is likely to be seriously threatened after psychosocial stress, prolonged stress, prenatal stress or postnatal stress, especially when maternal care or social support is absent, because these can chronically dysregulate the central MR/GR balance. In such circumstances the normally adaptive corticosteroid responses can become maladaptive.
Collapse
Affiliation(s)
- S M Korte
- ID-Lelystad, Institute for Animal Science and Health B.V., Edelhertweg 15, PO Box 65, 8200 AB, Lelystad, Netherlands.
| |
Collapse
|
33
|
Palkovits M. Stress-induced expression of co-localized neuropeptides in hypothalamic and amygdaloid neurons. Eur J Pharmacol 2000; 405:161-6. [PMID: 11033323 DOI: 10.1016/s0014-2999(00)00549-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This short review summarizes the effect of various stressful stimuli on the expression of neuropeptides which co-localize in corticotrophin releasing hormone (CRH)-synthesizing neurons in the hypothalamic paraventricular nucleus, as well as in oxytocin and vasopressin neurons in the supraoptic nucleus. Stress-induced changes failed to act on CRH neurons in the central amygdaloid nucleus but formalin-evoked pain enhanced galanin mRNA expression in the medial subdivision of this nucleus. Changes in the expression of enkephalin, galanin, dynorphin and cholecystokinin mRNA in response to restraint and formalin-induced pain are documented in hypothalamic and amygdaloid nuclei by in situ hybridization histochemical technique.
Collapse
Affiliation(s)
- M Palkovits
- Laboratory of Neuromorphology, Semmelweis University Budapest, Tüzoltó u. 58, H-1094, Budapest, Hungary.
| |
Collapse
|
34
|
Smiałowska M, Bajkowska M, Prezewłocka B, Maj M, Turchan J, Przewłocki R. Effect of 6-hydroxydopamine on neuropeptide Y and corticotropin-releasing factor expression in rat amygdala. Neuroscience 2000; 94:1125-32. [PMID: 10625052 DOI: 10.1016/s0306-4522(99)00393-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The influence of dopaminergic denervation on neuropeptide Y and corticotropin-releasing factor-containing neurons in the amygdala was investigated in rats by examining the effects of a selective, unilateral 6-hydroxydopamine lesion of mesencephalic dopaminergic neurons in both the substantia nigra and the ventral tegmental area on these peptides and their messenger RNA expression, observed eight to 10 days after the lesion. The studies were conducted by immunocytochemical and in situ hybridization methods. Neuropeptide Y or corticotropin-releasing factor-immunoreactive neurons were counted in sections of the amygdala under a microscope, and the messenger RNA expression was measured as optical density units in autoradiograms. A significant increase in both neuropeptide Y and corticotropin-releasing factor messenger RNA expression was found in the amygdala on the lesioned side in comparison with the contralateral one, as well as with the ipsilateral side of vehicle-injected controls. Immunohistochemical studies showed that the number of neuropeptide Y-immunoreactive neurons increased in the whole amygdala on the lesioned side. At the same time, the number of corticotropin-releasing factor-immunoreactive neurons grouped in the central amygdaloid nucleus declined, and so did the staining intensity. The obtained results indicate that dopaminergic denervation stimulates the synthesis of neuropeptide Y and corticotropin-releasing factor in rat amygdala, but the peptide levels are differently regulated, which points to a diverse release of these peptides.
Collapse
Affiliation(s)
- M Smiałowska
- Department of Neurobiology, Institute of Pharmacology, Polish Academy of Sciences, Kraków
| | | | | | | | | | | |
Collapse
|