1
|
Jia Y, Li Y, Hou W, Wei Z, Zhang T, Wang X, Wang J, Tan H. A comparative assessment of age-related nicotinamide adenine dinucleotide phosphate-diaphorase positivity in the spinal cord and medulla oblongata of pigeons, rats, and mice. Anat Rec (Hoboken) 2025; 308:1391-1409. [PMID: 39086191 DOI: 10.1002/ar.25536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/09/2024] [Accepted: 05/30/2024] [Indexed: 08/02/2024]
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase (N-d) positive neurons have been extensively studied across various animals, and N-d neurodegenerative neurites have been detected in some aged animal models. However, detailed knowledge on N-d positivity and aging-related alterations in the spinal cord and medulla oblongata of pigeons is limited. In this study, we investigated N-d positivity and age-related changes in the pigeon's spinal cord and medulla oblongata and compared them to those in rats and mice. Pigeons, had more N-d neurons in the dorsal horn, around the central canal, and in the column of Terni in the thoracic and lumbar segments, with scattered neurons found in the ventral horn of the spinal segments. N-d neurons were also present in the white matter of the spinal cord. Morphometric analysis revealed that the size of N-d soma in the lumbosacral, cervical, and thoracic regions was substantially altered in aged pigeons compared to young birds. Furthermore, the lumbar to sacral segments underwent significant morphological alterations. The main findings of this study were the presence of age-related N-d positive bodies (ANB) in aged pigeons, predominantly in the external cuneate nucleus (CuE) and occasionally in the gracilis and CuEs. ANBs were also identified in the gracile nuclei and spinal cord in the aged rats and mice, whereas in aged rats, ANBs were detected in the CuE spinal nucleus. Immunohistochemistry showed that the age-related alterations occurred in the cell types and neuropeptides in old animals. The results suggest weak inflammatory response and neuronal dysfunction in the spinal cord in aged pigeons. Our results suggested that the ANB could be a potential aging marker for the central nervous system.
Collapse
Affiliation(s)
- Yunge Jia
- Department of Pathology, Heji Hospital Affiliated of Changzhi Medical College, Changzhi, Shanxi, China
| | - Yinhua Li
- College of Physical Education and Sport Rehabilitation, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Wei Hou
- Department of Anatomy, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Zichun Wei
- Department of Anatomy, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Tianyi Zhang
- Department of Anatomy, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Xinghang Wang
- Department of Anatomy, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Jie Wang
- Department of General Surgery, Changzhi People's Hospital Affiliated of Changzhi Medical College, Changzhi, Shanxi, China
| | - Huibing Tan
- Department of Anatomy, Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
2
|
Li Y, Wei Z, Jia Y, Hou W, Wang Y, Rao C, Xu X, Li H, Sun J, Yu S, Shi G, Du G, Tan H. Aging-related NADPH diaphorase positive neurodegenerations in the sacral spinal cord of aged non-human primates. Sci Rep 2024; 14:27168. [PMID: 39511236 PMCID: PMC11543675 DOI: 10.1038/s41598-024-77974-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024] Open
Abstract
Nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) was used to detect neurodegenerations in aged monkeys. Our previous studies have shown that aging-related NADPH-d positive bodies (ANBs) and megaloneurites appeared in the lumbosacral spinal cord of aged rats and dogs, respectively. To determine the occurrence of megaloneurites and ANBs in non-human primates, we used NADPH-d histochemistry to perform an advanced study of aging-related alterations in aged male monkeys. We identified two distinct abnormal NADPH-d positive alterations, which were expressed as ANBs and megaloneurites, mainly distributed in the superficial dorsal horn, dorsal gray commissure, lateral collateral pathway (LCP) and sacral parasympathetic nucleus of the sacral spinal cord in aged monkeys. Meanwhile, large diameter punctate NADPH-d abnormalities occurred and scattered in the lateral white matter of the LCP and dorsal root entry zone at the same level of megaloneurites in the gray matter. Immunohistochemical results showed that megaloneurites and ANBs are two distinct abnormal alterations, with megaloneurites co-localizing with vasoactive intestinal peptide immunoreactivity, whereas ANBs were not co-localized. Both ANBs and megaloneurites provide consistent evidence that the anomalous NADPH-d alterations in the aged sacral spinal cord are referred to as a specialized aging marker in the pelvic visceral organs in non-human primates.
Collapse
Affiliation(s)
- Yinhua Li
- Department of Anatomy, Jinzhou Medical University, Linghe District, Jinzhou, Liaoning, 121001, China
- College of Physical Education and Sports Rehabilitation, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Zichun Wei
- Department of Anatomy, Jinzhou Medical University, Linghe District, Jinzhou, Liaoning, 121001, China
| | - Yunge Jia
- Department of Anatomy, Jinzhou Medical University, Linghe District, Jinzhou, Liaoning, 121001, China
| | - Wei Hou
- Department of Anatomy, Jinzhou Medical University, Linghe District, Jinzhou, Liaoning, 121001, China
| | - Yu Wang
- Department of Anatomy, Jinzhou Medical University, Linghe District, Jinzhou, Liaoning, 121001, China
| | - Chenxu Rao
- Department of Anatomy, Jinzhou Medical University, Linghe District, Jinzhou, Liaoning, 121001, China
| | - Ximeng Xu
- Department of Anatomy, Jinzhou Medical University, Linghe District, Jinzhou, Liaoning, 121001, China
| | - Hang Li
- Department of Anatomy, Jinzhou Medical University, Linghe District, Jinzhou, Liaoning, 121001, China
| | - Jingjing Sun
- Department of Anatomy, Jinzhou Medical University, Linghe District, Jinzhou, Liaoning, 121001, China
| | - Shun Yu
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Geming Shi
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Guanghui Du
- Department of Urology, Tongji Medical College Affiliated Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Huibing Tan
- Department of Anatomy, Jinzhou Medical University, Linghe District, Jinzhou, Liaoning, 121001, China.
- Key Laboratory of Neurodegenerative Diseases of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China.
| |
Collapse
|
3
|
Li Y, Jia Y, Hou W, Wei Z, Wen X, Tian Y, Bai L, Wang X, Zhang T, Guo A, Du G, Ma Z, Tan H. De novo aging-related NADPH diaphorase positive megaloneurites in the sacral spinal cord of aged dogs. Sci Rep 2023; 13:22193. [PMID: 38092874 PMCID: PMC10719289 DOI: 10.1038/s41598-023-49594-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023] Open
Abstract
We investigated aging-related changes in nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) in the spinal cord of aged dogs. At all levels of the spinal cord examined, NADPH-d activities were observed in neurons and fibers in the superficial dorsal horn (DH), dorsal gray commissure (DGC) and around the central canal (CC). A significant number of NADPH-d positive macro-diameter fibers, termed megaloneurites, were discovered in the sacral spinal cord (S1-S3) segments of aged dogs. The distribution of megaloneurites was characterized from the dorsal root entry zone (DREZ) into the superficial dorsal horn, along the lateral collateral pathway (LCP) to the region of sacral parasympathetic nucleus (SPN), DGC and around the CC, but not in the cervical, thoracic and lumbar segments. Double staining of NADPH-d histochemistry and immunofluorescence showed that NADPH-d positive megaloneurites co-localized with vasoactive intestinal peptide (VIP) immunoreactivity. We believed that megaloneurites may in part represent visceral afferent projections to the SPN and/or DGC. The NADPH-d megaloneurites in the aged sacral spinal cord indicated some anomalous changes in the neurites, which might account for a disturbance in the aging pathway of the autonomic and sensory nerve in the pelvic visceral organs.
Collapse
Affiliation(s)
- Yinhua Li
- College of Physical Education and Sports Rehabilitation, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
- Department of Anatomy, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Yunge Jia
- Department of Anatomy, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
- Department of Pathology, Heji Hospital Affiliated of Changzhi Medical College, Changzhi, 040611, Shanxi, China
| | - Wei Hou
- Department of Anatomy, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
- Department of Neurology, Suizhou Central Hospital, Wuhan, 441300, China
| | - Zichun Wei
- Department of Anatomy, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Xiaoxin Wen
- Department of Anatomy, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Yu Tian
- Department of Anatomy, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Lu Bai
- Department of Anatomy, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Xinghang Wang
- Department of Anatomy, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Tianyi Zhang
- Department of Anatomy, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Anchen Guo
- Laboratory of Clinical Medicine Research, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
| | - Guanghui Du
- Department of Urology, Tongji Medical College Affiliated Tongji Hospital, Wuhan, 430030, Hubei, China
| | - Zhuang Ma
- College of Physical Education and Sports Rehabilitation, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Huibing Tan
- Department of Anatomy, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China.
- Key Laboratory of Neurodegenerative Diseases of Liaoning Province, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China.
| |
Collapse
|
4
|
The distribution of nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) in the medulla oblongata, spinal cord, cranial and spinal nerves of frog, Microhyla ornata. J Chem Neuroanat 2017; 81:76-86. [DOI: 10.1016/j.jchemneu.2017.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/22/2017] [Accepted: 02/22/2017] [Indexed: 11/22/2022]
|
5
|
Mahmoud MA, Fahmy GH, Moftah MZ, Sabry I. Distribution of nitric oxide-producing cells along spinal cord in urodeles. Front Cell Neurosci 2014; 8:299. [PMID: 25309330 PMCID: PMC4174862 DOI: 10.3389/fncel.2014.00299] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 09/05/2014] [Indexed: 11/24/2022] Open
Abstract
Nitric oxide is a unique neurotransmitter, which participates in many physiological and pathological processes in the organism. There are little data about the neuronal nitric oxide synthase immunoreactivity in the spinal cord of amphibians. In this respect, the present study aims to investigate the distribution of nitric oxide producing cells in the spinal cord of urodele and to find out the possibility of a functional locomotory role to this neurotransmitter. The results of the present study demonstrate a specific pattern of NADPH-d labeling in the selected amphibian model throughout the spinal cord length as NADPH-d-producing cells and fibers were present in almost all segments of the spinal cord of the salamander investigated. However, their number, cytological characteristics and labeling intensity varied significantly. It was noticed that the NO-producing cells (NO-PC) were accumulated in the ventral side of certain segments in the spinal cord corresponding to the brachial and sacral plexuses. In addition, the number of NO-PC was found to be increased also at the beginning of the tail and this could be due to the fact that salamanders are tetrapods having bimodal locomotion, namely swimming and walking.
Collapse
Affiliation(s)
- Mayada A Mahmoud
- Faculty of Medicine, Institut de Neurosciences des Systèmes, Unités Mixtes de Recherche Institut National de la Santé et de la Recherche Médicale 1106, Aix-Marseille University Marseille, France
| | - Gehan H Fahmy
- Zoology Department, Faculty of Science, Alexandria University Alexandria, Egypt
| | - Marie Z Moftah
- Zoology Department, Faculty of Science, Alexandria University Alexandria, Egypt
| | - Ismail Sabry
- Zoology Department, Faculty of Science, Alexandria University Alexandria, Egypt
| |
Collapse
|
6
|
Bombardi C, Grandis A, Gardini A, Cozzi B. Nitrergic Neurons in the Spinal Cord of the Bottlenose Dolphin (Tursiops truncatus). Anat Rec (Hoboken) 2013; 296:1603-14. [DOI: 10.1002/ar.22766] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 05/13/2013] [Accepted: 05/23/2013] [Indexed: 12/11/2022]
Affiliation(s)
- Cristiano Bombardi
- Department of Veterinary Medical Science; University of Bologna; Via Tolara di Sopra, 50 40064 Ozzano dell'Emilia (BO) Italy
| | - Annamaria Grandis
- Department of Veterinary Medical Science; University of Bologna; Via Tolara di Sopra, 50 40064 Ozzano dell'Emilia (BO) Italy
| | - Anna Gardini
- Department of Veterinary Medical Science; University of Bologna; Via Tolara di Sopra, 50 40064 Ozzano dell'Emilia (BO) Italy
| | - Bruno Cozzi
- Department of Comparative Biomedicine and Food Science; University of Padova; Viale dell'Università 16 35020 Legnaro (PD) Italy
| |
Collapse
|
7
|
Dávidová A, Schreiberová A, Kolesár D, Capková L, Krizanová O, Lukácová N. Spinal cord transection significantly influences nNOS-IR in neuronal circuitry that underlies the tail-flick reflex activity. Cell Mol Neurobiol 2009; 29:879-86. [PMID: 19291395 PMCID: PMC11505792 DOI: 10.1007/s10571-009-9370-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Accepted: 02/12/2009] [Indexed: 10/21/2022]
Abstract
AIM Spinal cord transection interrupts supraspinal input and leads to the development of prominent spasticity. In this study, we investigated the effect of rat spinal cord transection performed at low thoracic level on changes in (i) neuronal nitric oxide synthase immunoreactivity (nNOS-IR), and (ii) the level of neuronal nitric oxide synthase (nNOS) protein in the neuronal circuitry that underlies tail-flick reflex. METHODS nNOS-IR was detected by immunohistochemistry and the level of nNOS protein was determined by the Western blot analysis. The tail-flick reflex was tested by a noxious thermal stimulus delivered to the tail of experimental animals. After surgery, experimental animals survived for 7 days. RESULTS A significant increase in the level of nNOS protein was found 1 week after thoracic transection in the L2-L6 segments. Immunohistochemical analysis discovered that this increase may be a result of (1) a high nNOS-IR in a large number of axons, located predominantly in the dorsal columns (DCs) of lower lumbosacral segments, and (2) a slight increase of density in nNOS-IR in motoneurons. On the other hand the number of nNOS-IR neurons in the superficial dorsal horn and in area surrounded the central canal (CC) was greatly reduced. The tail-flick response was immediate in animals after spinal transection, while control rats responded to thermal stimulus with a slight delay. However, the tail-flick latency in experimental animals was significantly higher than in control. CONCLUSION These data indicate that transection of the spinal cord significantly influences nNOS-IR in neuronal circuitry that underlies the tail-flick reflex activity.
Collapse
Affiliation(s)
- Alexandra Dávidová
- Institute of Neurobiology, Slovak Academy of Sciences, 040 01 Kosice, Slovak Republic.
| | | | | | | | | | | |
Collapse
|
8
|
Marsala J, Lukácová N, Kolesár D, Sulla I, Gálik J, Marsala M. The distribution of primary nitric oxide synthase- and parvalbumin- immunoreactive afferents in the dorsal funiculus of the lumbosacral spinal cord in a dog. Cell Mol Neurobiol 2007; 27:475-504. [PMID: 17387607 PMCID: PMC11517177 DOI: 10.1007/s10571-007-9140-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Accepted: 02/12/2007] [Indexed: 10/23/2022]
Abstract
1. The aim of the present study was to examine the distribution of unmyelinated, small-diameter myelinated neuronal nitric oxide synthase immunoreactive (nNOS-IR) axons and large-diameter myelinated neuronal nitric oxide synthase and parvalbumin-immunoreactive (PV-IR) axons in the dorsal funiculus (DF) of sacral (S1-S3) and lumbar (L1-L7) segments of the dog.2. nNOS and PV immunohistochemical methods were used to demonstrate the presence of nNOS-IR and PV-IR in the large-diameter myelinated, presumed to be proprioceptive, axons in the DF along the lumbosacral segments.3. Fiber size and density of nNOS-IR and PV-IR axons were used to compartmentalize the DF into five compartments (CI-CV). The first compartment (CI) localized in the lateralmost part of the DF, containing both unmyelinated and small-diameter myelinated nNOS-IR axons, is homologous with the dorsolateral fasciculus, or Lissauer tract. The second compartment (CII) having similar fiber organization as CI is situated more medially in sacral segments. Rostrally, in lower lumbar segments, CII moves more medially, and at upper lumbar level, CII reaches the dorsomedial angle of the DF and fuses with axons of CIV. CIII is the largest in the DF and the only one containing large-diameter myelinated nNOS-IR and PV-IR axons. The largest nNOS-IR and PV-IR axons of CIII (8.0-9.2 mum in diameter), presumed to be stem Ia proprioceptive afferents, are located in the deep portion of the DF close to the dorsal and dorsomedial border of the dorsal horn. The CIV compartment varies in shape, appearing first as a small triangular area in S3 and S2 segments, homologous with the Philippe-Gombault triangle. Beginning at S1 level, CIV acquires a more elongated shape and is seen throughout the lumbar segments as a narrow band of fibers extending just below the dorsal median septum in approximately upper two-thirds of the DF. The CV is located in the basal part of the DF. In general, CV is poor in nNOS-IR fibers; among them solitary PV-IR fibers are seen.4. The analysis of the control material and the degeneration of the large- and medium-caliber nNOS-IR fibers after unilateral L7 and S1 dorsal rhizotomy confirmed that large-caliber nNOS-IR and and PV-IR axons, presumed to be proprioceptive Ia axons, and their ascending and descending collaterals are present in large number in the DF of the lumbosacral intumescence. However, in the DF of the upper lumbar segments, the decrease in the number of nNOS-IR and PV-IR fibers is quite evident.
Collapse
Affiliation(s)
- Jozef Marsala
- Institute of Neurobiology, Slovak Academy of Sciences, Soltésovej 4, 040 01 Kosice, Slovak Republic.
| | | | | | | | | | | |
Collapse
|
9
|
Marsala J, Orendácová J, Lukácová N, Vanický I. Traumatic injury of the spinal cord and nitric oxide. PROGRESS IN BRAIN RESEARCH 2007; 161:171-83. [PMID: 17618976 DOI: 10.1016/s0079-6123(06)61011-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In the current report, we summarize our findings related to the involvement of nitric oxide (NO) in the pathology of spinal cord trauma. We initially studied the distribution of nitric oxide synthase (NOS)-immunolabeled and/or nicotinamide adenine dinucleotide phosphate diaphorase (NADPHd; which is highly colocalized with NOS)-stained somata and fibers in the spinal cord of the rabbit. Segmental and laminar distribution of NADPHd-stained neurons in the rabbit revealed a large number of NADPHd-stained neurons in the spinal cord falling into six categories, N1-N6, while others could not be classified. Large numbers of NADPHd-stained neurons were identified in the superficial dorsal horn and around the central canal. Four morphologically distinct kinds of NADPHd-stained axons 2.5-3.5 microm in diameter were identified throughout the white matter in the spinal cord. Moreover, a massive occurrence of axonal NADPHd-staining was detected in the juxtagriseal layer of the ventral funiculus along the rostrocaudal axis. The prominent NADPHd-stained fiber bundles were identified in the mediobasal and central portion of the ventral funiculus. The sulcomarginal fasciculus was found in the basal and medial portion of the ventral funiculus in all cervical and thoracic segments. Since the discovery that NO may act as a neuronal transmitter, an increasing interest has focused on its ability to modulate synaptic function. NO passes through cell membranes without specific release or uptake mechanisms inducing changes in signal-related functions by several means. In particular, the activation of the soluble guanylyl cyclases (sGC), the formation of cyclic guanosine 3',5'-monophosphate (cGMP) and the action of cGMP-dependent protein kinases has been identified as the main signal transduction pathways of NO in the nervous system including spinal cord. It is known that the intracellular level of cGMP is strictly controlled by its rate of synthesis via guanylyl cyclases (GC) and/or by the rate of its degradation via 3',5'-cyclic nucleotide phosphodiesterases (PDE). GC can be divided into two main groups, i.e., the membrane-bound or particular guanylyl cyclase (pGC) and the cytosolic or sGC. In the spinal cord, the activation of pGC has only been demonstrated for natriuretic peptides, which stimulate cGMP accumulation in GABA-ergic structures in laminae I-III of the rat cervical spinal cord. These neurons are involved in controlling the action of the locomotor circuit. In view of the abundance of NO-responsive structures in the brain, it is proposed that NO-cGMP signaling will be part of neuronal information processing at many levels. In relation to this, we found that surgically induced Th7 constriction of 24 h duration stimulated both the constitutive NOS activity and cGMP level by 120 and 131%, respectively, in non-compartmentalized white matter of Th8-Th9 segments, located just caudally to the site of injury. NO-mediated cGMP formation was only slightly increased in the dorsal funiculus of Th5-Th9 segments. There are some other sources that may influence the NO-mediated cGMP formation in spinal cord. A high level of glutamate produced at the site of the lesion and an excessive accumulation of intracellular Ca2+ may stimulate NOS activity and create suitable conditions for NO synthesis and its adverse effect on white matter. An increased interest has focused on the role of NO at the site of injury and in areas located close to the epicenter of the impact site and, in these connections an upregulation of NOS was noted in neurons and interneurons. However, the upregulation of NOS expression was also seen in interneurons located just rostrally and caudally to the lesion. A quantitative analysis of laminar distribution of multiple cauda equina constriction (MCEC) induced NADPHd-stained neurons revealed a considerable increase in these neurons in laminae VIII-IX 8h postconstriction, and a highly statistically significant increase of such neurons in laminae VII-X 5 days postconstriction in the lumbosacral segments. Concurrently, the number of NADPHd-stained neurons on laminae I-II in LS segments was greatly reduced. It is concluded that a greater understanding of NO changes after spinal cord trauma is essential for the possibility of targeting this pathway therapeutically.
Collapse
Affiliation(s)
- Jozef Marsala
- Institute of Neurobiology, Slovak Academy of Sciences, Kosice, Slovak Republic.
| | | | | | | |
Collapse
|
10
|
Marsala J, Lukácová N, Kolesár D, Kuchárová K, Marsala M. Nitrergic proprioceptive afferents originating from quadriceps femoris muscle are related to monosynaptic Ia-motoneuron stretch reflex circuit in the dog. Cell Mol Neurobiol 2006; 26:1387-412. [PMID: 16724275 PMCID: PMC11520608 DOI: 10.1007/s10571-006-9038-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
1. The aim of the present study was to examine the occurrence of the neuronal nitric oxide synthase immunoreactivity in the stretch reflex circuit pertaining to the quadriceps femoris muscle in the dog. 2. Immunohistochemical processing for neuronal nitric oxide synthase and histochemical staining for nicotinamide adenine dinucleotide phosphate diaphorase were used to demonstrate the presence of neuronal nitric oxide synthase in the proprioceptive afferents issuing in the quadriceps femoris muscle. The retrograde tracer Fluorogold injected into the quadriceps femoris muscle was used to detect the proprioceptive afferents and their entry into the L5 and L6 dorsal root ganglia. 3. A noticeable number of medium-sized intensely nitric oxide synthase immunolabelled somata (1000-2000 microm(2) square area) was found in control animals in the dorsolateral part of L5 and L6 dorsal root ganglia along with large-caliber intraganglionic nitric oxide synthase immunolabelled fibers, presumed to be Ia axons. Before entering the dorsal funiculus the large-caliber nitric oxide synthase immunolabelled fibers of the L5 and L6 dorsal roots formed a massive medial bundle, which upon entering the dorsal root entry zone reached the dorsolateral part of the dorsal funiculus and were distributed here in a funnel-shaped fashion. The largest nitric oxide synthase immunolabelled fibers, 8.0-9.2 microm in diameter, remained close to the dorsal horn, while medium-sized fibers were seen dispersed across the medial portion of the dorsal funiculus. Single, considerably tapered nitric oxide synthase immunolabelled fibers, 2.2-4.6 microm in diameter, were seen to proceed in ventrolateral direction until they reached the mediobasal portion of the dorsal horn and the medial part of lamina VII. In lamina IX, only short fragments of nitric oxide synthase immunoreactive fibers and their terminal ramifications could be seen. Nitric oxide synthase immunolabelled terminals varying greatly in size were identified in control material at the base of the dorsal horn, in the vicinity of motoneurons ventrally and ventrolaterally in L5 and L6 segments and in Clarke's column of L3 and L4 segments. Injections of the retrograde tracer Fluorogold into the quadriceps femoris muscle and cut femoral nerve, combined with nitric oxide synthase immunohistochemistry of the L5 and L6 dorsal root ganglia, confirmed the existence of a number of medium-sized nitric oxide synthase immunoreactive and Fluorogold-fluorescent somata presumed to be proprioceptive Ia neurons (1000-2000 microm(2) square area) in the dorsolateral part of both dorsal root ganglia. L5 and L6 dorsal rhizotomy caused a marked depletion of nitric oxide synthase immunoreactivity in the medial bundle of the L5 and L6 dorsal roots and in the dorsal funiculus of L5 and L6 segments. 4. The analysis of control material and the degeneration of the large- and medium-caliber nitric oxide synthase immunoreactive Ia fibers in the dorsal funiculus of L5 and L6 segments confirmed the presence of nitric oxide synthase in the afferent limb of the monosynaptic Ia-motoneuron stretch reflex circuit related to the quadriceps femoris muscle.
Collapse
Affiliation(s)
- Jozef Marsala
- Institute of Neurobiology, Slovak Academy of Sciences, Kosice, Slovak Republic.
| | | | | | | | | |
Collapse
|
11
|
Lukácová N, Kolesár D, Marsala M, Marsala J. Immunohistochemical, histochemical and radioassay analysis of nitric oxide synthase immunoreactivity in the lumbar and sacral dorsal root ganglia of the dog. Cell Mol Neurobiol 2006; 26:17-44. [PMID: 16633899 PMCID: PMC11521380 DOI: 10.1007/s10571-006-8843-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Accepted: 09/29/2005] [Indexed: 12/18/2022]
Abstract
In this study, immunohistochemistry for neuronal nitric oxide synthase (bNOS-IR), nicotinamide adenine dinucleotide phosphate diaphorase histochemistry (NADPHd) and nitric oxide synthase radioassay were used to study the occurrence, number and distribution pattern of nitric oxide synthesizing neurons in the lumbar (L1-L7) and sacral (S1-S3) dorsal root ganglia of the dog. Nitric oxide synthase immunolabelling was present in a large number of small- (area <1,000 microm(2)) and medium-sized (area 1,000-2,000 microm(2)) as well as in a limited number of large-sized (area >2000 microm(2)) neurons. Although neuronal nitric oxide synthase immunolabelling and histochemical staining provided intense staining of multiple small- and medium-sized neurons in all lumbar and sacral dorsal root ganglia, immuno-labelled or histochemically stained somata exhibited little topographic distribution in individual dorsal root ganglia. Great heterogeneity was noticed in the immunolabelling of medium-sized nitric oxide synthase immunopositive neurons ranging from lightly immuno-labelled somata to heavily immunoreactive ones with completely obscured nuclei. Both staining procedures proved to be highly effective in visualizing intraganglionic fibers of various diameters. In general, the largest fibers revealed at the peripheral end of lumbar and sacral dorsal root ganglia were larger, 6.49-9.35 mum in diameter, while those running centrally and proceeding into the dorsal roots were about 30% reduced, ranging between 5.32 and 8.67 microm in diameter. Peripherally, the occurrence of nitric oxide synthase detected in axonal profiles, and confirmed histochemically, in the specimens of the femoral and sciatic nerves, is the first indication of the presence of nitric oxide synthase in the peripheral processes of somata located in L4-S2 dorsal root ganglia. Large and thin central nitric oxide synthase immunoreactive processes of L1-S3 dorsal root ganglion neurons segregate shortly before entering the spinal cord, the former making a massive medial bundle in the dorsal root accompanied by a slim lateral bundle penetrating Lissauer's tract. Quantitative assessment of the distribution of bNOS-IR and/or NADPHd-stained neurons showed a peculiar pattern in relation to spinal levels. Apparent incongruity was found in the total number of NADPHd-stained versus bNOS-IR neurons, demonstrating a clear prevalence of small bNOS-IR somata in all lumbar ganglia, while medium-sized NADPHd-stained somata clearly prevailed all along the rostrocaudal axis with a peak in L5 ganglion. While the number of small bNOS-IR neurons clearly outnumbered NADPHd-stained and NADPHd-unstained somata in S1-S3 ganglia, an inverse relation appeared comparing the total number of medium-sized NADPHd-stained and NADPHd-unstained somata compared with the number of moderate and intense bNOS-IR neurons. Densitometry of bNOS-IR and NADPHd-stained neurons in lumbar and sacral ganglia revealed two distinct subsets of densitometric profiles, one relating to more often found medium-sized bNOS immuno-labelled and the other, characteristic for moderately bNOS immunoreactive somata of the same cell size. Considerable differences in catalytic nitric oxide synthase activity, determined by conversion of [(3)H]arginine to [(3)H]citrulline were obtained in lumbosacral dorsal root ganglia all along the lumbosacral intumescence, the lowest (0.898+/- 0.2 dpm/min/microg protein) being in the L4 dorsal root ganglion and the highest (4.194+/-0.2 dpm/min/microg protein) in the S2 dorsal root ganglion.
Collapse
Affiliation(s)
- Nadezda Lukácová
- Slovak Academy of Sciences, Institute of Neurobiology, Kosice, Slovak Republic.
| | | | | | | |
Collapse
|
12
|
Bordieri L, Bonaccorsi di Patti MC, Miele R, Cioni C. Partial cloning of neuronal nitric oxide synthase (nNOS) cDNA and regional distribution of nNOS mRNA in the central nervous system of the Nile tilapia Oreochromis niloticus. ACTA ACUST UNITED AC 2005; 142:123-33. [PMID: 16274840 DOI: 10.1016/j.molbrainres.2005.09.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Revised: 09/23/2005] [Accepted: 09/29/2005] [Indexed: 01/21/2023]
Abstract
A constitutive NOS complementary DNA (cDNA) was partially cloned by RT-PCR from the brain of a teleost, the Nile tilapia (Oreochromis niloticus), using degenerate primers against conserved regions of NOS. The predicted 206-long amino acid sequence showed a high degree of identity with other vertebrate neuronal NOS (nNOS) protein sequences. In addition, phylogenetic analysis revealed that Nile tilapia NOS clustered with other known nNOS. Using the coupled reaction of semi-quantitative RT-PCR and Southern blotting, the basal tissue expression pattern of the cloned nNOS gene was investigated in discrete areas of the central nervous system (CNS) and in the heart and skeletal muscle tissue. As revealed, expression of nNOS transcripts was detected in all the CNS regions examined, whereas nNOS gene was not expressed in the heart and skeletal muscle. The distribution pattern of nNOS gene expression showed the highest expression levels in the forebrain followed by the optic tectum, the brainstem and the spinal cord, whereas scarce expression was detected in the cerebellum. Cellular expression of nNOS mRNA was analyzed in the CNS by means of in situ hybridization. According to the RT-PCR results, most nNOS mRNA expressing neurons are localized in the telencephalon and diencephalon, whereas in the mesencephalic optic tectum, the brainstem and the spinal cord, nNOS mRNA expressing neurons are relatively more scattered. A very low hybridization signal was detected in the cerebellar cortex. These results suggest that NO is involved in numerous brain functions in teleosts.
Collapse
Affiliation(s)
- Loredana Bordieri
- Department of Animal and Human Biology, "La Sapienza" University, via A. Borelli, 50 00161 Rome, Italy
| | | | | | | |
Collapse
|
13
|
Marsala J, Lukácová N, Sulla I, Wohlfahrt P, Marsala M. The evidence for nitric oxide synthase immunopositivity in the monosynaptic Ia-motoneuron pathway of the dog. Exp Neurol 2005; 195:161-78. [PMID: 15979072 DOI: 10.1016/j.expneurol.2005.04.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2004] [Revised: 04/11/2005] [Accepted: 04/20/2005] [Indexed: 10/25/2022]
Abstract
In this study, nitric oxide synthase immunohistochemistry supported by nicotinamide adenine dinucleotide phosphate diaphorase histochemistry was used to demonstrate the nitric oxide synthase immunoreactivity in the monosynaptic Ia-motoneuron pathway exemplified by structural components of the afferent limb of the soleus H-reflex in the dog. A noticeable number of medium-sized intensely nitric oxide synthase immunoreactive somata (1000-2000 microm(2) square area) and large intraganglionic nitric oxide synthase immunoreactive fibers, presumed to be Ia axons, was found in the L7 and S1 dorsal root ganglia. The existence of nitric oxide synthase immunoreactive fibers (6-8 microm in diameter, not counting the myelin sheath) was confirmed in L7 and S1 dorsal roots and in the medial bundle of both dorsal roots before entering the dorsal root entry zone. By virtue of the funicular organization of nitric oxide synthase immunoreactive fibers in the dorsal funiculus, the largest nitric oxide synthase immunoreactive fibers represent stem Ia axons located in the deep portion of the dorsal funiculus close to the dorsomedial margin of the dorsal horn. Upon entering the gray matter of L7 and S1 segments and passing through the medial half of the dorsal horn, tapered nitric oxide synthase immunoreactive collaterals of the stem Ia fibers pass through the deep layers of the dorsal horn and intermediate zone, and terminate in the group of homonymous motoneurons in L7 and S1 segments innervating the gastrocnemius-soleus muscles. Terminal fibers issued in the ventral horn intensely nitric oxide synthase immunoreactive terminals with long axis ranging from 0.7 to >or=15.1 microm presumed to be Ia bNOS-IR boutons. This finding is unique in that it focuses directly on nitric oxide synthase immunopositivity in the signalling transmitted by proprioceptive Ia fibers. Nitric oxide synthase immunoreactive boutons were found in the neuropil of Clarke's column of L4 segment, varying greatly in size from 0.7 to >or=15.1 microm in length x 0.7 to 4.8 microm wide. Subsequent to identification of the afferent nitric oxide synthase immunoreactive limb of the monosynaptic Ia-motoneuron pathway on control sections, intramuscular injections of the retrograde tracer Fluorogold into the gastrocnemius-soleus muscles, combined with nitric oxide synthase immunohistochemistry of L7 and S1 dorsal root ganglia, confirmed the existence of a number of medium-sized nitric oxide synthase immunoreactive somata (1000-2000 microm(2) square area) in the dorsolateral part of both dorsal root ganglia, presumed to be proprioceptive Ia neurons. Concurrently, large nitric oxide synthase immunoreactive fibers were detected at the input and output side of both dorsal root ganglia. S1 and S2 dorsal rhizotomy caused a marked depletion of nitric oxide synthase immunoreactivity in the medial bundle of S1 and S2 dorsal roots and in the dorsal funiculus of S1, S2 and lower lumbar segments. In addition, anterograde degeneration of large nitric oxide synthase immunoreactive Ia fibers in the dorsal funiculus of L7-S2 segments produces direct evidence that the afferent limb of the soleus H-reflex is nitric oxide synthase immunoreactive and presents new immunohistochemical characteristics of the monosynaptic Ia-motoneuron pathway, unseparably coupled with the performance of the stretch reflex.
Collapse
Affiliation(s)
- Jozef Marsala
- Institute of Neurobiology, Slovak Academy of Sciences, Kosice, Slovak Republic.
| | | | | | | | | |
Collapse
|
14
|
Kucharova K, Jalc P, Radonak J, Marsala J. Response of NADPH-diaphorase-exhibiting neurons in the medullar reticular formation to high spinal cord injury. Cell Mol Neurobiol 2004; 24:865-72. [PMID: 15672686 PMCID: PMC11529973 DOI: 10.1007/s10571-004-6925-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
1. The effect of hemisection of the cervical spinal cord on NADPH-diaphorase staining in the reticular nuclei of the rabbit medulla was investigated using histochemical technique. 2. A quantitative assessment of somal and neuropil NADPH-diaphorase staining was made by an image analyzer in a selected area of each reticular nucleus of the rabbit medulla. 3. On the 7th postsurgery day, the highest up-regulation of somatic NADPH-diaphorase staining was observed in regions regulating cardiorespiratory processes; however, the highest increase of neuropil NADPH-diaphorase staining was found in the reticular nuclei modulating the tonus of postural muscles. 4. The degeneration of non-NADPH-diaphorase-stained neurons was detected throughout the reticular formation of the medulla, but the extent of neuronal death did not correlate with the up-regulation of the NADPH-diaphorase staining in the reticular nuclei of the medulla. 5. The findings provide evidence that NADPH-diaphorase-exhibiting neurons are refractory to the hemisection of the cervical spinal cord and that the neuronal up-regulation of NADPH-diaphorase at the medullar level is probably not a causative factor leading to the death of the reticulospinal neurons.
Collapse
Affiliation(s)
- Karolina Kucharova
- Institute of Neurobiology, Slovak Academy of Sciences, Kosice, Slovak Republic.
| | | | | | | |
Collapse
|
15
|
Marsala J, Lukácová N, Cízková D, Lukác I, Kuchárová K, Marsala M. Premotor nitric oxide synthase immunoreactive pathway connecting lumbar segments with the ventral motor nucleus of the cervical enlargement in the dog. J Chem Neuroanat 2004; 27:43-54. [PMID: 15036362 DOI: 10.1016/j.jchemneu.2003.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2003] [Revised: 06/30/2003] [Accepted: 10/05/2003] [Indexed: 11/18/2022]
Abstract
In this study we investigate the occurrence and origin of punctate nitric oxide synthase immunoreactivity in the neuropil of the ventral motor nucleus in C7-Th1 segments of the dog spine, which are supposed to be the terminal field of an ascending premotor propriospinal nitric oxide synthase-immunoreactive pathway. As the first step, nitric oxide synthase immunohistochemistry was used to distinguish nitric oxide synthase-immunoreactive staining of the ventral motor nucleus. Dense, punctate nitric oxide synthase immunoreactivity was found on control sections in the neuropil of the ventral motor nucleus. After hemisection at Th10-11, axotomy-induced retrograde changes consisting in a strong upregulation of nitric oxide synthase-containing neurons were found mostly unilaterally in lamina VIII, the medial part of lamina VII and in the pericentral region in all segments of the lumbosacral enlargement. Concurrently, a strong depletion of the punctate nitric oxide synthase immunopositivity in the neuropil of the ventral motor nucleus ipsilaterally with the hemisection was detected, thus revealing that an uncrossed ascending premotor propriospinal pathway containing a fairly high number of nitric oxide synthase-immunoreactive fibers terminates in the ventral motor nucleus. Application of the retrograde fluorescent tracer Fluorogold injected into the ventral motor nucleus and analysis of alternate sections processed for nitric oxide synthase immunocytochemistry revealed the presence of Fluorogold-labeled and nitric oxide synthase-immunoreactive axons in the ventrolateral funiculus and in the lateral and medial portions of the ventral column throughout the thoracic and upper lumbar segments. A noticeable number of Fluorogold-labeled and nitric oxide synthase-immunoreactive somata detected on consecutive sections were found in the lumbosacral enlargement, mainly in laminae VIII-IX, the medial part of lamina VII and in the pericentral region (lamina X), ipsilaterally with the injection of Fluorogold into the ventral motor nucleus. In summary, the present study provides evidence for a hitherto unknown ascending premotor propriospinal nitric oxide synthase-immunoreactive pathway connecting the lumbosacral enlargement with the motoneurons of the ventral motor nucleus in the dog.
Collapse
Affiliation(s)
- Jozef Marsala
- Institute of Neurobiology, Slovak Academy of Sciences, Kosice, Slovak Republic.
| | | | | | | | | | | |
Collapse
|
16
|
Marsala J, Marsala M, Lukácová N, Ishikawa T, Cízková D. Localization and distribution patterns of nicotinamide adenine dinucleotide phosphate diaphorase exhibiting axons in the white matter of the spinal cord of the rabbit. Cell Mol Neurobiol 2003; 23:57-92. [PMID: 12701884 PMCID: PMC11530192 DOI: 10.1023/a:1022545117993] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The funicular distribution of nicotinamide adenine dinucleotide phosphate diaphorase (NADPHd)-exhibiting axons was examined in the white matter of the rabbit spinal cord by using horizontal, parasaggital, and transverse sections. Four morphologically distinct kinds of NADPHd-exhibiting axons (2.5-3.5 microm in diameter) were identified in the sulcomarginal fasciculus as a part of the ventral column in the cervical and upper thoracic segments and in the long propriospinal bundle of the ventral column in Th3-L3 segments. Varicose NADPHd-exhibiting axons of the sympathetic preganglionic neurons, characterized by widely spaced varicosities, were found in the ventral column of Th2-L3 segments. A third kind of NADPHd-positive ultrafine axons, 0.3-0.5 microm in diameter with numerous varicosities mostly spherical in shape, was identified in large number within Lissauer's tract. The last group of NADPHd-exhibiting axons (1.0-1.5 microm in diameter) occurred in the Lissauer tract. Most of these axons were traceable for considerable distances and generated varicosities varying in shape from spherical to elliptical forms. The majority of NADPHd-exhibiting axons identified in the cuneate and gracile fascicles were concentrated in the deep portion of the dorsal column. An extremely reduced number of NADPHd-exhibiting axons, confirmed by a computer-assisted image-processing system, was found in the dorsal half of the gracile fascicle. Axonal NADPHd positivity could not be detected in a wide area of the lateral column consistent with the location of the dorsal spinoccrebellar tract. Numerous, mostly thin NADPHd-positive axonal profiles were detected in the dorsolateral funiculus in all the segments studied and in a juxtagriscal portion of the lateral column as far as the cervical and lumbar enlargements. A massive occurrence of axonal NADPHd positivity was detected in the juxtagriseal layer of the ventral column all along the rostrocaudal axis of the spinal cord. The prominent NADPHd-exhibiting bundles containing thick, smooth, nonvaricose axons were identified in the mediobasal and central portion of the ventral column. First, the sulcomarginal fasciculus was found in the basal and medial portion of the ventral column in all cervical and upper thoracic segments. Second, more caudally, a long propriospinal bundle displaying prominent NADPHd positivity was localized in the central portion of the ventral column throughout the Th3-L3 segments.
Collapse
Affiliation(s)
- Jozef Marsala
- Institute of Neurobiologym, Slovak Academy of Sciences, Kosice, Slovak Republic.
| | | | | | | | | |
Collapse
|
17
|
Lukácová N, Cízková D, Krizanová O, Pavel J, Marsala M, Marsala J. Peripheral axotomy affects nicotinamide adenine dinucleotide phosphate diaphorase and nitric oxide synthases in the spinal cord of the rabbit. J Neurosci Res 2003; 71:300-13. [PMID: 12503094 DOI: 10.1002/jnr.10470] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Using nicotinamide adenine dinucleotide phosphate diaphorase (NADPHd) histochemistry and nitric oxide synthase (NOS) immunocytochemistry combined with radioassay of calcium-dependent NOS activity, we examined the occurrence of NADPHd staining and NOS immunoreactivity (NOS-IR) in the dorsal root ganglia (DRG) neurons, dorsal root afferents, and axons projecting via gracile fascicle to gracile nucleus 14 days after unilateral sciatic nerve transection in the rabbit. Mild to moderate NADPHd staining and NOS-IR appeared in a large number of small and medium-sized to large neurons in the ipsilateral L4-L6 DRG, accompanied by enhanced NOS-IR of thick myelinated fibers in the ipsilateral L4-L6 dorsal roots. A noticeable increase in the density of punctate NADPHd staining occurred throughout laminae I-IV in the ipsilateral medial part of the dorsal horn in L4-L6 segments. Concurrently, a statistically significant decrease in the number of small NADPHd-exhibiting neurons in laminae I-II and, in contrast to this, a statistically significant increase of medium-sized to large NADPHd-stained somata in the ipsilateral laminae III-VI of L4-L6 segments were found. A detailed compartmentalization of L4-L6 segments into gray and white matter regions disclosed substantially increased catalytic NOS activity and inducible NOS mRNA levels in the dorsal horn and dorsal column ipsilaterally to the peripheral injury. A noticeable increase in the number of thick myelinated NADPHd-exhibiting and NOS-IR axons was noted in the ipsilateral gracile fascicle, terminating in dense, punctate NADPHd staining in the neuropil of the gracile nucleus. These observations indicate that the de novo-synthesized NOS in the lesioned primary afferent neurons resulting after sciatic nerve transection may be involved in an increase in NADPHd staining and NOS-IR in the ipsilateral dorsal roots and dorsal horn of L4-L6 segments, whence NOS could be supplied to ascending axons of the gracile fascicle.
Collapse
Affiliation(s)
- Nadezda Lukácová
- Institute of Neurobiology, Slovak Academy of Sciences, Kosice, Slovak Republic.
| | | | | | | | | | | |
Collapse
|
18
|
Lukácová N, Cízková D, Marsala M, Lukác I, Marsala J. The regional distribution of nitric oxide synthase activity in the spinal cord of the dog. Brain Res Bull 2002; 58:173-8. [PMID: 12127014 DOI: 10.1016/s0361-9230(02)00774-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The aim of this study was to examine the distribution of calcium-dependent nitric oxide synthase activity (cNOS) in the white and gray matter in cervical, thoracic, lumbar and sacral segments of the spinal cord and cauda equina of the dog. The enzyme's activity, measured by the conversion of [3H]arginine to [3H]citrulline revealed considerable region-dependent differences along the rostrocaudal axis of the spinal cord in general and in cervical (C1, C2, C4, C6 and C8) and lumbar (L1-L3, L4-L7) segments in particular. In the non-compartmentalized spinal cord, the cNOS activity was lowest in the thoracic and highest in the sacral segments. No significant differences were noted in the gray matter regions (dorsal horn, intermediate zone and ventral horn) and the white matter columns (dorsal, lateral and ventral) in the upper cervical segments (C1-C4), except for a significant increase in the ventral horn of C4 segment. In C6 segment, the enzyme's activity displayed significant differences in the intermediate zone, ventral and lateral columns. Surprisingly, extremely high cNOS activity was noted in the dorsal horn and dorsal column of the lowest cervical segment. Comparing the enzyme's activity in upper and lower lumbar segments of the spinal cord, cNOS activity prevailed in L4-L7 segments in the dorsal horn and in all the above mentioned white matter columns.
Collapse
Affiliation(s)
- Nadezda Lukácová
- Institute of Neurobiology, Slovak Academy of Sciences, Kosice, Slovak Republic.
| | | | | | | | | |
Collapse
|
19
|
Cízková D, Lukácová N, Marsala M, Marsala J. Neuropathic pain is associated with alterations of nitric oxide synthase immunoreactivity and catalytic activity in dorsal root ganglia and spinal dorsal horn. Brain Res Bull 2002; 58:161-71. [PMID: 12127013 DOI: 10.1016/s0361-9230(02)00761-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Previous experiments have suggested that nitric oxide may play an important role in nociceptive transmission in the spinal cord. To assess the possible roles of neuronal nitric oxide synthase (nNOS) in spinal sensitization after nerve injury, we examined the distribution of nNOS immunoreactivity in dorsal root ganglia (DRGs) and dorsal horn of the corresponding spinal segments. NOS catalytic activity was also determined by monitoring the conversion of [3H]arginine to [3H]citrulline in the lumbar (L4-L6) spinal cord segments and DRGs in rats 21 days after unilateral loose ligation of the sciatic nerve. Behavioral signs of tactile and cold allodynia developed in the nerve-ligated rats within 1 week after surgery and lasted up to 21 days. Immunocytochemical staining revealed a significant increase (approximately 6.7-fold) of nNOS-immunoreactive neurons and fibers in the DRGs L4-L6. No significant changes were detected in the number of nNOS-positive neurons in laminae I-II of the spinal segments L4-L6 ipsilateral to nerve ligation. However, an increased number of large stellate or elongated somata in deep laminae III-V of the L5 segment expressed high nNOS immunoreactivity. The alterations of NOS catalytic activity in the spinal segments L4-L6 and corresponding DRGs closely correlated with nNOS distribution detected by immunocytochemistry. No such changes were detected in the contralateral DRGs or spinal cord of sham-operated rats. The results indicate that marked alterations of nNOS in the DRG cells and in the spinal cord may contribute to spinal sensory processing as well as to the development of neuronal plasticity phenomena in the dorsal horn.
Collapse
Affiliation(s)
- Dása Cízková
- Institute of Neurobiology, Slovak Academy of Sciences, Kosice, Slovak Republic.
| | | | | | | |
Collapse
|
20
|
Moreno N, López JM, Sánchez-Camacho C, González A. Development of NADPH-diaphorase/nitric oxide synthase in the brain of the urodele amphibian Pleurodeles waltl. J Chem Neuroanat 2002; 23:105-21. [PMID: 11841915 DOI: 10.1016/s0891-0618(01)00146-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In the present study, the ontogenesis of nitrergic neurons has been studied in the urodele amphibian Pleurodeles waltl by means of NADPH-diaphorase (NADPHd) histochemistry and neuronal nitric oxide synthase (NOS) immunohistochemistry. Embryonic and larval stages were studied. Except for the olfactory fibers and glomeruli, both methods were equally suitable to reveal nitrergic structures in the brain. The earliest positive neurons were observed in the inferior reticular nucleus (Ri) in the caudal rhombencephalon at embryonic stage 30. At stage 33b, weakly reactive cells appeared in the tegmentum of the mesencephalon and isthmus, in the ventral hypothalamus (VH), and in the proximity of the solitary tract (sol). At initial larval stages (stages 34-38), two new groups appeared in the caudal telencephalon (future amygdaloid complex (Am)) and in the middle reticular nucleus (Rm) of the rhombencephalon. During the active larval life (stages 39-55c) the nitrergic system developed progressively both in number of cells and fiber tracts. At stages 39-42 reactive cells were found in the inner granular layer (igl) of the olfactory bulb, the telencephalic pallium, the pretectal region, the optic tectum (OT) and retina. New populations of nitrergic cells appear during the second half of the larval period (stages 52-55). Rostrally, reactive cells were found in the telencephalic diagonal band (DB) nucleus, medial septum and in the thalamic eminence (TE), whereas caudally cells appeared in the raphe (Ra) and the descending trigeminal nucleus (Vd). The last changes occurred during the juvenile period (metamorphic climax), when cells of the spinal cord (sc) and the preoptic area became positive. The sequence of appearance of nitrergic cells revealed a first involvement of this system in reticulospinal control, likely influencing locomotor behavior. As development proceeds, cells in different sensory systems expressed progressively nitric oxide synthase in a pattern that shows many similarities with amniotes.
Collapse
Affiliation(s)
- N Moreno
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040, Madrid, Spain
| | | | | | | |
Collapse
|
21
|
Lukácová N, Pavel J, Jalc P, Cízková DV, Marsala M, Lukác I, Chalimoniuk M, Strosznajder J, Marsala J. Effect of spinal cord compression on cyclic 3',5'-guanosine monophosphate in the white matter columns of rabbit. Neurochem Int 2001; 39:275-82. [PMID: 11551667 DOI: 10.1016/s0197-0186(01)00036-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Changes in the level of cyclic 3',5'-guanosine monophosphate (cGMP) were studied one day after a surgically induced spinal cord constriction performed at the Th7 segment level in the dorsal, lateral and ventral white matter columns and in the non-compartmentalized white matter of Th5-Th6 segments, i.e., above the site of the spinal cord constriction and in Th8-Th9 segments, located below the spinal cord constriction. The midthoracic spinal cord constriction caused a significant decrease in the level of cGMP in the ventral column of Th5-Th6 segments and a significant increase in the lateral column of Th8-Th9 segments. The level of cGMP in the dorsal column, located either rostrally or caudally to the site of the spinal cord injury, remained unchanged. In addition, no significant changes in the level of cGMP were found in the non-compartmentalized white matter of Th5-Th6 and Th8-Th9 segments in response to constriction of the Th7 segment.
Collapse
Affiliation(s)
- N Lukácová
- Institute of Neurobiology, Slovak Academy of Sciences, Soltésovej 4, 040 01, Kosice, Slovak Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Pavel J, Lukácová N, Marsala J, Marsala M. The regional changes of the catalytic NOS activity in the spinal cord of the rabbit after repeated sublethal ischemia. Neurochem Res 2001; 26:833-9. [PMID: 11565616 DOI: 10.1023/a:1011620320596] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The regional distribution of catalytic NOS activity was studied in the lumbosacral segments of the spinal cord of the rabbit during single (8-min), twice (8-, 8-min) and thrice repeated (8-, 8-, 9-min) sublethal ischemia followed each time by 1 h of reperfusion. Single ischemia/reperfusion induced a significant increase of cNOS activity in almost all spinal cord regions, with the exception of non-significant increase in the dorsal horn. Sublethal ischemia repeated twice produced a significant decrease of enzyme activity in the intermediate zone and ventral horn and an increase in the white matter columns. Within thrice repeated ischemia, the activity of cNOS in the gray matter regions was similar to that found after a single ischemia/reperfusion. For all the animals subjected to single and twice repeated sublethal ischemic insults, there was no neurological impairment. Following thrice repeated ischemic insults, four out of five of the experimental animals recovered only partially and one was completely paraplegic. Our results do not indicate a cumulative effect of repeated sublethal ischemia on cNOS activity and, consequently, on NO production. The NO generated during thrice repeated ischemia/reperfusion appears to have a detrimental effect on the neurological outcome.
Collapse
Affiliation(s)
- J Pavel
- Institute of Neurobiology, Slovak Academy of Sciences, Kosice, Slovak Republic.
| | | | | | | |
Collapse
|
23
|
Abstract
The present study used nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase histochemistry to identify populations of neurons containing nitric oxide synthase and to describe their putative migration during development of the human spinal cord. As early as week 6 (W6) of gestation, diaphorase expression was observed in sympathetic preganglionic neurons (SPNs) and interneurons of the ventral horn. As development proceeded, the SPNs translocated dorsally to form the intermediolateral nucleus, and the interneurons remained scattered throughout the ventral horn. In addition to the dorsal translocation of SPNs, a unique dorsomedially directed migratory pathway was observed. At later stages of development, other groups of SPNs were identified laterally in the lateral funiculus and medially in the intercalated and central autonomic regions. In addition, two "U-shaped" groups of diaphorase-labeled cells were identified around the ventral ventricular zone at W7. Cells of these groups appeared to translocate dorsally over the next weeks and presumably give rise to interneurons within the deep dorsal horn and surrounding the central canal. Furthermore, during W7-14 of gestation, the deep dorsal horn contained a number of diaphorase-positive cells, whereas the superficial dorsal horn was relatively free of staining. These data demonstrate that nitric oxide is present very early in human spinal cord development and that two unique cell migrations initially observed in rodents have now been identified in humans. Furthermore, nitric oxide may be expressed in some populations of neurons as they migrate to their final positions, suggesting that this molecule may play a role in neuronal development.
Collapse
Affiliation(s)
- J A Foster
- Department of Physiological Science, UCLA, Los Angeles, California 90095-1527, USA
| | | |
Collapse
|
24
|
Foster JA, Phelps PE. NADPH-diaphorase reveals presumptive sympathetic primary afferents in the developing human spinal cord. Auton Neurosci 2000; 84:111-7. [PMID: 11109996 DOI: 10.1016/s1566-0702(00)00189-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Numerous studies have elucidated two visceral afferent pathways in the spinal cord of mammals, the lateral collateral pathway (LCP) and the medial collateral pathway (MCP). The present study utilized NADPH-diaphorase histochemistry to visualize afferent pathways in the developing human thoracolumbar spinal cord. Diaphorase-positive fiber bundles, strikingly similar to the previously defined LCP and MCP, were observed coursing along the lateral and medial aspects of the dorsal horn to the base of the dorsal horn, the intermediate gray, and/or the dorsal commissure. Furthermore, some axons forming the MCP crossed in the dorsal commissure to the contralateral side of the spinal cord. In addition, axons projecting in the LCP often appeared to terminate within clusters of diaphorase-labeled sympathetic preganglionic neurons, supporting the concept that monosynaptic connections may exist between primary afferents and autonomic motor neurons. Thus, nitric oxide may be involved in both afferent and efferent neurons in reflex pathways of the human sympathetic nervous system.
Collapse
Affiliation(s)
- J A Foster
- Department of Physiological Science, UCLA, Los Angeles, CA 90095-1527, USA
| | | |
Collapse
|
25
|
Lukácová N, Cízková D, Marsala M, Pavel J, Jalc P, Sulla I, Kafka J, Marsala J. Effect of midthoracic spinal cord constriction on catalytic nitric oxide synthase activity in the white matter columns of rabbit. Neurochem Res 2000; 25:1139-48. [PMID: 11055753 DOI: 10.1023/a:1007682315257] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The distribution and changes of catalytic nitric oxid synthase (cNOS) activity in the dorsal, lateral and ventral white matter columns at midthoracic level of the rabbit's spinal cord were studied in a model of surgically-induced spinal cord constriction performed at Th7 segment level and compared with the occurrence of nicotinamide adenine dinucleotide phosphate diaphorase expressing and neuronal nitric oxide synthase immunoreactive axons in the white matter of the control thoracic segments. Segmental and white-column dependent differences of cNOS activity were found in the dorsal (141.5 +/- 4.2 dpm/microm protein), lateral (87.3 +/- 11.5 dpm/microm protein) and ventral (117.1 +/- 7.6 dpm/microm protein) white matter columns in the Th5-Th6 segments and in the dorsal (103.3 +/- 15.5 dpm/microm protein), lateral (54.9 +/- 4.9 dpm/microm protein), and ventral (86.1 +/- 6.8 dpm/microm protein) white matter columns in the Th8-Th9 segments. A surgically-induced constriction of Th7 segment caused a disproportionate response of cNOS activity in the rostrally (Th5-Th6) and caudally (Th8-Th9) located segments in both lateral and ventral white matter columns. While a statistically significant decrease of cNOS activity was detected above the constriction site in the ventral columns, a considerable, statistically significant increase of cNOS activity was noted in the white lateral columns below the site of constriction. It is reasoned that the changes of cNOS activity may have adverse effects on nitric oxide (NO) production in the white matter close to the site of constriction injury, thus broadening the scope of the secondary mechanisms that play a role in neuronal trauma.
Collapse
Affiliation(s)
- N Lukácová
- Institute of Neurobiology, Slovak Academy of Sciences, Kosice, Slovak Republic.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Pavel J, Lukácová N, Marsala J. Regional changes of cyclic 3',5'-guanosine monophosphate in the spinal cord of the rabbit following brief repeated ischemic insults. Neurochem Res 2000; 25:1131-7. [PMID: 11055752 DOI: 10.1023/a:1007630331186] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The regional distribution of cyclic 3',5'-guanosine monophosphate was studied in the lumbosacral segments of the spinal cord of the rabbit under physiological conditions and following brief repeated sublethal ischemic insults. While the basal cGMP level in the gray matter was about 0.120 nmol cGMP/mg wet. wt., the level of cGMP in non-compartmentalized white matter was about half of this value. The highest level of cGMP in the compartmentalized gray matter was found in the dorsal horns, about 0.180 nmol cGMP/mg wet. wt., whereas the level of cGMP was greatly reduced in the ventral horns, reaching one half of the previous value. Multiple sublethal ischemic insults, repeated at 1-h intervals, caused a statistically significant decrease of cGMP in all gray matter regions. While the post-ischemic and post-reperfusion level of cGMP in the dorsal horns remained relatively high in comparison with the intermediate zone and ventral horns, the changes of cGMP level detected in the white matter columns differed considerably and resulted in a statistically significant cGMP increase in the dorsal and ventral columns and, vice versa, a statistically significant decrease of cGMP was found in the lateral columns.
Collapse
Affiliation(s)
- J Pavel
- Institute of Neurobiology, Slovak Academy of Sciences, Kosice, Slovak Republic.
| | | | | |
Collapse
|
27
|
Mu�oz M, Mar�n O, Gonz�lez A. Localization of NADPH diaphorase/nitric oxide synthase and choline acetyltransferase in the spinal cord of the frog,Rana perezi. J Comp Neurol 2000. [DOI: 10.1002/(sici)1096-9861(20000417)419:4<451::aid-cne4>3.0.co;2-m] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
28
|
Orendácová J, Marsala M, Sulla I, Kafka J, Jalc P, Cizková D, Taira Y, Marsala J. Incipient cauda equina syndrome as a model of somatovisceral pain in dogs: spinal cord structures involved as revealed by the expression of c-fos and NADPH diaphorase activity. Neuroscience 2000; 95:543-57. [PMID: 10658635 DOI: 10.1016/s0306-4522(99)00429-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Segmental and laminar distribution of Fos-like immunoreactive, reduced nicotinamide adenine dinucleotide phosphate diaphorase (NADPHd)-exhibiting and double-labeled (Fos-like immunoreactive and NADPHd-exhibiting) neurons was examined in lower lumbar and sacral segments of the dog spinal cord using the model of multiple cauda equina constrictions. NADPHd histochemistry was used as marker of nitric oxide synthase-containing neurons. The appearance and the time-course of Fos-like immunoreactive, NADPHd and double-labeled neurons was studied at 2 h and 8 h postconstriction characterized as the incipient phase of cauda equina syndrome. The occurrence of Fos-like immunoreactive and NADPHd-exhibiting neurons in fully developed cauda equina syndrome was studied at five days postconstriction. An increase in Fos-like immunoreactivity in superficial laminae (I-II) and an enhanced NADPHd staining of lamina VIII neurons were found. A statistically significant increase in Fos-like immunoreactive neurons was found in laminae I-II and VIII-X 8 h postconstriction, and in contrast, a prominent decrease in Fos-like immunoreactive neurons was found in laminae I-II, accompanied by a statistically significant increase in Fos-like immunoreactive neurons in more ventrally located laminae VII-X at five days postconstriction. Quantitative analysis of laminar distribution of constriction-induced NADPHd-exhibiting neurons revealed a considerable increase in these neurons in laminae VIII-IX 8 h postconstriction and a statistically highly significant increase in NADPHd-exhibiting neurons in laminae VII-X five days postconstriction. Concurrently, the number of NADPHd-exhibiting neurons in laminae I-II was greatly reduced. While a low number of double-labeled neurons was found throughout the gray matter of lower lumbar and sacral segments at 2 h postconstriction, a statistically significant number of double-labeled neurons was found in lamina X 8 h and in laminae VII-X five days postconstriction. The course and distribution of anterograde degeneration resulting five days after multiple cauda equina constrictions are compared with segmental and laminar distribution of Fos-like immunoreactive and NADPHd-exhibiting neurons. Prominent involvement of the spinal cord neurons appearing in the lumbosacral segments at the early beginning and in fully developed cauda equina syndrome results in a Fos-like immunoreactivity and strongly enhanced NADPHd staining of some neuronal pools. Under such circumstances, an early cauda equina decompression surgery is advisable aimed at decreasing or preventing the derangement of the neural circuits in the lumbosacral segments.
Collapse
Affiliation(s)
- J Orendácová
- Institute of Neurobiology, Slovak Academy of Sciences, Kosice, Slovak Republic
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Lukácová N, Cízková D, Marsala M, Jalc P, Marsala J. Segmental and laminar distributions of nicotinamide adenine dinucleotide phosphate-diaphorase-expressing and neuronal nitric oxide synthase-immunoreactive neurons versus radioassay detection of catalytic nitric oxide synthase activity in the rabbit spinal cord. Neuroscience 1999; 94:229-37. [PMID: 10613513 DOI: 10.1016/s0306-4522(99)00233-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The distributions of neuronal nitric oxide synthase-immunoreactive neurons and of nicotinamide adenine dinucleotide phosphate-diaphorase activity were studied in the C6, Th2, L1, L5, S2 and S3 segments and laminae in the rabbit spinal cord and compared with the catalytic nitric oxide synthase activity, determined by monitoring the conversion of [3H]arginine to [3H]citrulline in the same segments and laminae. Morphologically, a heterogeneous population of nicotinamide adenine dinucleotide phosphate-diaphorase-expressing and neuronal nitric oxide synthase-immunoreactive neurons was detected in the superficial and deep dorsal horn and the pericentral region in all segments studied, and in the intermediolateral cell column of the thoracic and lumbosacral segments. A disproportionate distribution of both neuronal categories which had a significantly higher number of nicotinamide adenine dinucleotide phosphate-diaphorase-expressing rather than neuronal nitric oxide synthase-immunoreactive cell bodies was found in all segments. The catalytic nitric oxide synthase activity was distributed unequally in the C6, Th2, L1, L5, S2 and S3 segments, with a comparatively low value in the Th2 segment (70 +/- 5.1 d.p.m./microg protein) in comparison with the S3 segment, where the highest level (140 +/- 5.5 d.p.m./microg protein) was found. A close correlation between the number of neuronal nitric oxide synthase-immunoreactive somata and catalytic nitric oxide synthase activity was revealed in the dorsal horn (laminae I-VI). Whereas a low number of neuronal nitric oxide synthase-immunoreactive somata in laminae VII-X was found in the L5, S2 and S3 segments, the values of catalytic nitric oxide synthase activity in the same laminae and segments were found to be exceedingly high. These findings indicate that the occurrence of many neuronal nitric oxide synthase-immunoreactive fibers (mainly axons), and dense, punctate, non-somatic neuronal nitric oxide synthase immunopositivity in the neuropil staining of the same laminae and segments, can substantially enhance catalytic nitric oxide synthase activity.
Collapse
Affiliation(s)
- N Lukácová
- Institute of Neurobiology, Slovak Academy of Sciences, Kosice, Slovak Republic.
| | | | | | | | | |
Collapse
|
30
|
Abstract
Segmental and laminar distributions of nicotinamide adenine dinucleotide phosphate diaphorase (NADPHd)-exhibiting neurons were examined in the rabbit spinal cord by using horizontal, sagittal, and transverse sections. A large number of NADPHd-positive neurons in the spinal cord of rabbit appeared to fall into six categories (N1-N6), but others could not be classified. Major cell groups of NADPHd-exhibiting neurons were identified in the superficial dorsal horn and around the central canal at all spinal levels and in the intermediolateral cell column at thoracic and upper lumbar levels. NADPHd-exhibiting neurons of the pericentral region were divided into a thin subependymal cell column containing longitudinally arranged, small bipolar neurons with processes penetrating deeply into the intermediolateral cell column and/or running rostrocaudally in the subependymal layer. The second pericentral cell column located more laterally in lamina X contains large, intensely stained NADPHd-exhibiting neurons with long dendrites radiating in the transverse plane. In the pericentral region (lamina X), close association of NADPHd-exhibiting somata and fibers and mostly longitudinally oriented blood vessels were detected. Neurons of the sacral parasympathetic nucleus, seen in segments S1-S3, exhibited prominent NADPHd cellular staining accompanied by heavily stained fibers extending from Lissauer's tract through lamina I along the lateral edge of the dorsal horn to lamina V. A massive dorsal gray commissure, highly positive in NADPHd staining, was found in segments S1-S3. Scattered positive cells were also found in the deeper dorsal horn, ventral horn, and white matter. Fiberlike NADPHd staining was found in the superficial dorsal horn and pericentral region in all the segments studied. Dense, punctate, nonsomatic NADPHd staining was detected in the superficial dorsal horn, in the pericentral region all along the rostrocaudal axis, and in the nucleus phrenicus (segments C4-C5), nucleus dorsalis (segments Th2-L2), Onuf's nucleus (segments S1-S3), and the dorsal part of the dorsal gray commissure (S1-S3).
Collapse
Affiliation(s)
- J Marsala
- Institute of Neurobiology, Slovak Academy of Sciences, Slovak Republic.
| | | | | | | |
Collapse
|