1
|
Song H, Mylvaganam SM, Wang J, Mylvaganam SMK, Wu C, Carlen PL, Eubanks JH, Feng J, Zhang L. Contributions of the Hippocampal CA3 Circuitry to Acute Seizures and Hyperexcitability Responses in Mouse Models of Brain Ischemia. Front Cell Neurosci 2018; 12:278. [PMID: 30210302 PMCID: PMC6123792 DOI: 10.3389/fncel.2018.00278] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/08/2018] [Indexed: 12/29/2022] Open
Abstract
The hippocampal circuitry is widely recognized as susceptible to ischemic injury and seizure generation. However, hippocampal contribution to acute non-convulsive seizures (NCS) in models involving middle cerebral artery occlusion (MCAO) remains to be determined. To address this, we occluded the middle cerebral artery in adult C57 black mice and monitored electroencephalographic (EEG) discharges from hippocampal and neocortical areas. Electrographic discharges in the absence of convulsive motor behaviors were observed within 90 min following occlusion of the middle cerebral artery. Hippocampal discharges were more robust than corresponding cortical discharges in all seizure events examined, and hippocampal discharges alone or with minimal cortical involvement were also observed in some seizure events. Seizure development was associated with ipsilateral hippocampal injuries as determined by subsequent histological examinations. We also introduced hypoxia-hypoglycemia episodes in mouse brain slices and examined regional hyperexcitable responses ex vivo. Extracellular recordings showed that the hippocampal CA3 region had a greater propensity for exhibiting single/multiunit activities or epileptiform field potentials following hypoxic-hypoglycemic (HH) episodes compared to the CA1, dentate gyrus, entorhinal cortical (EC) or neocortical regions. Whole-cell recordings revealed that CA3 pyramidal neurons exhibited excessive excitatory postsynaptic currents, attenuated inhibitory postsynaptic currents and intermittent or repetitive spikes in response to HH challenge. Together, these observations suggest that hippocampal discharges, possibly as a result of CA3 circuitry hyperexcitability, are a major component of acute NCS in a mouse model of MCAO.
Collapse
Affiliation(s)
- Hongmei Song
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | | | - Justin Wang
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | | | - Chiping Wu
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Peter L. Carlen
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Medicine (Neurology), University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - James H. Eubanks
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Surgery (Neurosurgery), University of Toronto, Toronto, ON, Canada
| | - Jiachun Feng
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Liang Zhang
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Medicine (Neurology), University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Kim JW, Hong JH, Kang SH, Kim YY. Effect of Creatine on the Survival of RGC-5 Cells under Serum Deprivation. JOURNAL OF THE KOREAN OPHTHALMOLOGICAL SOCIETY 2011. [DOI: 10.3341/jkos.2011.52.5.618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Jae Woo Kim
- Department of Ophthalmology, Catholic University of Daegu School of Medicine, Daegu, Korea
| | - Jung Heum Hong
- Department of Ophthalmology, Catholic University of Daegu School of Medicine, Daegu, Korea
| | - Sun Hee Kang
- Department of Ophthalmology, Catholic University of Daegu School of Medicine, Daegu, Korea
| | - Yun Young Kim
- Department of Ophthalmology, Catholic University of Daegu School of Medicine, Daegu, Korea
| |
Collapse
|
3
|
van Brederode JFM, Berger AJ. Spike-firing resonance in hypoglossal motoneurons. J Neurophysiol 2008; 99:2916-28. [PMID: 18385480 DOI: 10.1152/jn.01037.2007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During an inspiration the output of hypoglossal (XII) motoneurons (HMs) in vitro is characterized by synchronous oscillatory firing in the 20- to 40-Hz range. To maintain synchronicity it is important that the cells fire with high reliability and precision. It is not known whether the intrinsic properties of HMs are tuned to maintain synchronicity when stimulated with time-varying inputs. We intracellularly recorded from HMs in an in vitro brain stem slice preparation from juvenile mice. Cells were held at or near spike threshold and were stimulated with steady or swept sine-wave current functions (10-s duration; 0- to 40-Hz range). Peristimulus time histograms were constructed from spike times based on threshold crossings. Synaptic transmission was suppressed by including blockers of GABAergic, glycinergic, and glutamatergic neurotransmission in the bath solution. Cells responded to sine-wave stimulation with bursts of action potentials at low (<3- to 5-Hz) sine-wave frequency, whereas they phase-locked 1:1 to the stimulus at intermediate frequencies (3-25 Hz). Beyond the 1:1 frequency range cells were able to phase-lock to subharmonics (1:2, 1:3, or 1:4) of the input frequency. The 1:1 phase-locking range increased with increasing stimulus amplitude and membrane depolarization. Reliability and spike-timing precision were highest when the cells phase-locked 1:1 to the stimulus. Our findings suggest that the coding of time-varying inspiratory synaptic inputs by individual HMs is most reliable and precise at frequencies that are generally lower than the frequency of the synchronous inspiratory oscillatory activity recorded from the XII nerve.
Collapse
Affiliation(s)
- Johannes F M van Brederode
- Department of Physiology and Biophysics, University of Washington, 1705 NE Pacific St., Harris Hydraulics Rm 309, Box 357290, Seattle, WA 98195-7290, USA.
| | | |
Collapse
|
4
|
Rubin DB, Cleland TA. Dynamical mechanisms of odor processing in olfactory bulb mitral cells. J Neurophysiol 2006; 96:555-68. [PMID: 16707721 DOI: 10.1152/jn.00264.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the olfactory system, the contribution of dynamical properties such as neuronal oscillations and spike synchronization to the representation of odor stimuli is a matter of substantial debate. While relatively simple computational models have sufficed to guide current research in large-scale network dynamics, less attention has been paid to modeling the membrane dynamics in bulbar neurons that may be equally essential to sensory processing. We here present a reduced, conductance-based compartmental model of olfactory bulb mitral cells that exhibits the complex dynamical properties observed in these neurons. Specifically, model neurons exhibit intrinsic subthreshold oscillations with voltage-dependent frequencies that shape the timing of stimulus-evoked action potentials. These oscillations rely on a persistent sodium conductance, an inactivating potassium conductance, and a calcium-dependent potassium conductance and are reset via inhibitory input such as that delivered by periglomerular cell shunt inhibition. Mitral cells fire bursts, or clusters, of spikes when continuously stimulated. Burst properties depend critically on multiple currents, but a progressive deinactivation of I(A) over the course of a burst is an important regulator of burst termination. Each of these complex properties exhibits appropriate dynamics and pharmacology as determined by electrophysiological studies. Additionally, we propose that a second, inconsistently observed form of infrathreshold bistability in mitral cells may derive from the activation of ATP-activated potassium currents responding to hypoxic conditions. We discuss the integration of these cellular properties in the larger context of olfactory bulb network operations.
Collapse
Affiliation(s)
- Daniel B Rubin
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
5
|
Weiner JL, Valenzuela CF. Ethanol modulation of GABAergic transmission: the view from the slice. Pharmacol Ther 2006; 111:533-54. [PMID: 16427127 DOI: 10.1016/j.pharmthera.2005.11.002] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2005] [Accepted: 11/16/2005] [Indexed: 10/25/2022]
Abstract
For almost three decades now, the GABAergic synapse has been the focus of intense study for its putative role in mediating many of the behavioral consequences associated with acute and chronic ethanol exposure. Although it was initially thought that ethanol interacted solely with the postsynaptic GABAA receptors that mediate the majority of fast synaptic inhibition in the mammalian central nervous system (CNS), a number of recent studies have identified novel pre- and postsynaptic mechanisms that may contribute to the acute and long-term effects of ethanol on GABAergic synaptic inhibition. These mechanisms appear to differ in a brain region specific manner and may also be influenced by a variety of endogenous neuromodulatory factors. This article provides a focused review of recent evidence, primarily from in vitro brain slice electrophysiological studies, that offers new insight into the mechanisms through which acute and chronic ethanol exposures modulate the activity of GABAergic synapses. The implications of these new mechanistic insights to our understanding of the behavioral and cognitive effects of ethanol are also discussed.
Collapse
Affiliation(s)
- J L Weiner
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1083, USA.
| | | |
Collapse
|
6
|
Wu C, Asl MN, Gillis J, Skinner FK, Zhang L. An in vitro model of hippocampal sharp waves: regional initiation and intracellular correlates. J Neurophysiol 2005; 94:741-53. [PMID: 15772241 DOI: 10.1152/jn.00086.2005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During slow wave sleep and consummatory behaviors, electroencephalographic recordings from the rodent hippocampus reveal large amplitude potentials called sharp waves. The sharp waves originate from the CA3 circuitry and their generation is correlated with coherent discharges of CA3 pyramidal neurons and dependent on activities mediated by AMPA glutamate receptors. To model sharp waves in a relatively large hippocampal circuitry in vitro, we developed thick (1 mm) mouse hippocampal slices by separating the dentate gyrus from the CA2/CA1 areas while keeping the functional dentate gyrus-CA3-CA1 connections. We found that large amplitude (0.3-3 mV) sharp wave-like field potentials occurred spontaneously in the thick slices without extra ionic or pharmacological manipulation and they resemble closely electroencephalographic sharp waves with respect to waveform, regional initiation, pharmacological manipulations, and intracellular correlates. Through measuring tissue O2, K+, and synaptic and single cell activities, we verified that the sharp wave-like potentials are not a consequence of anoxia, nonspecific elevation of extracellular K+ and dissection-related tissue damage. Our data suggest that a subtle but crucial increase in the CA3 glutamatergic activity effectively recruits a population of neurons thus responsible for the generation of the sharp wave-like spontaneous field potentials in isolated hippocampal circuitry.
Collapse
Affiliation(s)
- Chiping Wu
- Toronto Western Research Institute, University Health Network, Department of Medicine, University of Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
7
|
Wu C, Luk WP, Gillis J, Skinner F, Zhang L. Size does matter: generation of intrinsic network rhythms in thick mouse hippocampal slices. J Neurophysiol 2004; 93:2302-17. [PMID: 15537814 DOI: 10.1152/jn.00806.2004] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Rodent hippocampal slices of < or = 0.5 mm thickness have been widely used as a convenient in vitro model since the 1970s. However, spontaneous population rhythmic activities do not consistently occur in this preparation due to limited network connectivity. To overcome this limitation, we develop a novel slice preparation of 1 mm thickness from adult mouse hippocampus by separating dentate gyrus from CA3/CA1 areas but preserving dentate-CA3-CA1 connectivity. While superfused in vitro at 32 or 37 degrees C, the thick slice exhibits robust spontaneous network rhythms of 1-4 Hz that originate from the CA3 area. Via assessing tissue O2, K+, pH, synaptic, and single-cell activities of superfused thick slices, we verify that these spontaneous rhythms are not a consequence of hypoxia and nonspecific experimental artifacts. We suggest that the thick slice contains a unitary circuitry sufficient to generate intrinsic hippocampal network rhythms and this preparation is suitable for exploring the fundamental properties and plasticity of a functionally defined hippocampal "lamella" in vitro.
Collapse
Affiliation(s)
- Chiping Wu
- Toronto Western Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
8
|
Zhang XL, Zhang L, Carlen PL. Electrotonic coupling between stratum oriens interneurones in the intact in vitro mouse juvenile hippocampus. J Physiol 2004; 558:825-39. [PMID: 15194737 PMCID: PMC1665026 DOI: 10.1113/jphysiol.2004.065649] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Using the isolated juvenile (7-14 days) mouse whole hippocampus preparation, which contains intact complex local circuitry, 145 dual whole cell recordings were made from stratum oriens (s.o.) interneurones under infrared microscopy. In 11.7% of paired recordings, evidence for direct electrotonic coupling between the s.o. interneurones was obtained from the response of one interneurone to a long (400-600 ms) constant current pulse passed into the coupled interneurone. When specifically orienting the dual recordings in the transectional plane of the hippocampus, 18.5% of paired recordings showed electrotonic coupling. The coupling coefficient, estimated from averaged data, was 6.9 +/- 4.7%, ranging from 1.3 to 17.6%. The time constant of the electrotonically transmitted hyperpolarization was inversely related to the coupling coefficient between the two neurones. The electrotonic responses of one neurone to constant current pulses injected into the other coupled neurone were intermittent. Spikes in one of the coupled neurones were associated with small electrotonic EPSPs (spikelets) in the other coupled neurone, in those neuronal pairs with coupling coefficients greater than 10%. Failure of spikelet production following a spike in the coupled cell occurred 5-10% of the time. Electrotonic coupling and spikelets persisted in the presence of chemical synaptic transmission blockade by CNQX, APV and bicuculline, or in zero Ca(2+) perfusate, but were abolished by carbenoxolone (100 microm), a gap junctional blocker. These data confirm the existence of electrotonic coupling between s.o. interneurones, presumably via gap junctions located in dendrites.
Collapse
Affiliation(s)
- Xiao-Lei Zhang
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
9
|
Bui BV, Vingrys AJ, Kalloniatis M. Correlating retinal function and amino acid immunocytochemistry following post-mortem ischemia. Exp Eye Res 2003; 77:125-36. [PMID: 12873442 DOI: 10.1016/s0014-4835(03)00132-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We wanted to determine the characteristics associated with electrophysiological and neurochemical changes secondary to ischemic insult as well as correlate these electrophysiological and neurochemical changes. A Ganzfeld source was used to elicit electroretinograms in anesthetized adult Sprague-Dawley rats. Following baseline recordings, one eye was removed for control quantitative amino acid immunocytochemistry, and ischemic insult was induced by cervical dislocation. Following the induction of ischemia, a single electroretinogram signal was collected at 1, 2, 4, 6, 8, 16, 32 or 64 min, after which the eye was removed for immunocytochemistry. The post-receptoral b-wave was undetectable after 1 min post-ischemia, whereas phototransduction declined more gradually and persisted for up to 16 min post-mortem. Both phototransduction saturated amplitude and sensitivity decayed with a similar time course (tc=3.06 (2.73, 3.48) versus 3.29 (2.61, 4.62)min). Significant elevation of amino acid neurotransmitter levels was not observed until 6 min post-mortem. Between 8 and 16 min post-ischemia, glutamate and GABA were significantly accumulated in neurons and Müller cells (p<0.05). Beyond 16 min, the neurotransmitter elevation in neurons and Müller cells was relatively attenuated. Aspartate immunoreactivity was significantly elevated at 4 and 6 min post-ischemia in neurons, prior to a change in any other amino acid. Moreover, of the amino acids assessed the post-ischemic change in aspartate immunoreactivity showed the best correlation with phototransduction decay (r2=0.68). Our findings show that complete impairment of phototransduction coincides with the accumulation of amino acid neurotransmitter. The correlation of aspartate immunoreactivity and phototransduction provides evidence of heightened glutamate oxidation during ischemic insult.
Collapse
Affiliation(s)
- B V Bui
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville 3010, Victoria, Australia
| | | | | |
Collapse
|
10
|
Abstract
Population neuronal rhythms of various frequencies are observed in the rodent hippocampus during distinct behavioural states. However, the question of whether the hippocampus exhibits properties of spontaneous rhythms and population synchrony in isolation has not been definitively answered. To address this, we developed a novel preparation for studying neuronal rhythms in a relatively large hippocampal tissue in vitro. We isolated the whole hippocampus from mice up to 28 days postnatal age, removing the dentate gyrus while preserving the functional CA3-to-CA1 connections. Placing the hippocampal isolate in a perfusion chamber for electrophysiological assessment extracellular recordings from the CA1 revealed rhythmic field potential of 0.5 to </= 4 Hz that occurred spontaneously and propagated along the ventro-dorsal hippocampal axis. We provide convergent evidence, via measurements of extracellular pH and K(+), recordings of synaptic and intracellular activities and morphological assessments, verifying that these rhythms were not the consequence of hypoxia. Data obtained via simultaneous extracellular and patch clamp recordings suggest that the spontaneous rhythms represent a summation of GABAergic IPSPs originating from pyramidal neurons, which result from synchronous discharges of GABAergic inhibitory interneurons. Similar spontaneous field rhythms were also observed in the hippocampal isolate prepared from young gerbils and rats. Based on these data, we postulate that the spontaneous rhythms represent a fundamental oscillatory state of the hippocampal circuitry isolated from extra-hippocampal inputs.
Collapse
Affiliation(s)
- Chiping Wu
- Toronto Western Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada, M5T 2S8
| | | | | | | |
Collapse
|
11
|
Aksenova M, Butterfield DA, Zhang SX, Underwood M, Geddes JW. Increased protein oxidation and decreased creatine kinase BB expression and activity after spinal cord contusion injury. J Neurotrauma 2002; 19:491-502. [PMID: 11990354 DOI: 10.1089/08977150252932433] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Traumatic injury to the spinal cord triggers several secondary effects, including oxidative stress and compromised energy metabolism, which play a major role in biochemical and pathological changes in spinal cord tissue. Free radical generation and lipid peroxidation have been shown to be early events subsequent to spinal cord injury. In the present study, we demonstrated that protein oxidation increases in rat spinal cord tissue after experimental injury. As early as h after injury, the level of protein carbonyls at the injury epicenter was significantly higher than in control (169%, p < 0.05) and increased gradually over the next 4 weeks to 1260% of control level. Both caudal and rostral parts of the injured spinal cord demonstrated a mild increase of protein carbonyls by 4 weeks postinjury (135-138%, p < 0.05). Immunocytochemical analysis of protein carbonyls in the spinal cord cross-sections showed increased protein carbonyl immunoreactivity in the epicenter section compared to rostral and caudal sections of the same animal or control laminectomy animals. Increased protein carbonyl formation in damaged spinal cord tissue was associated with changes in activity and expression of an oxidative sensitive enzyme, creatine kinase BB, which plays an important role in the maintenance of ATP level in the CNS tissue. Damage to CK function in the CNS may severely aggravate the impairment of energy metabolism. The results of our study indicate that events associated with oxidative damage are triggered immediately after spinal cord trauma but continue to occur over the subsequent 4 weeks. These results suggest that antioxidant therapeutic strategies may be beneficial to lessen the consequences of the injury and potentially improve the restoration of neurological function.
Collapse
Affiliation(s)
- Marina Aksenova
- Department of Pharmacology, University of Kentucky, Lexington 40506-0055, USA
| | | | | | | | | |
Collapse
|
12
|
Brewer GJ, Wallimann TW. Protective effect of the energy precursor creatine against toxicity of glutamate and beta-amyloid in rat hippocampal neurons. J Neurochem 2000; 74:1968-78. [PMID: 10800940 DOI: 10.1046/j.1471-4159.2000.0741968.x] [Citation(s) in RCA: 171] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The loss of ATP, which is needed for ionic homeostasis, is an early event in the neurotoxicity of glutamate and beta-amyloid (A(beta)). We hypothesize that cells supplemented with the precursor creatine make more phosphocreatine (PCr) and create larger energy reserves with consequent neuroprotection against stressors. In serum-free cultures, glutamate at 0.5-1 mM was toxic to embryonic hippocampal neurons. Creatine at >0.1 mM greatly reduced glutamate toxicity. Creatine (1 mM) could be added as late as 2 h after glutamate to achieve protection at 24 h. In association with neurotoxic protection by creatine during the first 4 h, PCr levels remained constant, and PCr/ATP ratios increased. Morphologically, creatine protected against glutamate-induced dendritic pruning. Toxicity in embryonic neurons exposed to A(beta) (25-35) for 48 h was partially prevented by creatine as well. During the first 6 h of treatment with A(beta) plus creatine, the molar ratio of PCr/ATP in neurons increased from 15 to 60. Neurons from adult rats were also partially protected from a 24-h exposure to A(beta) (25-35) by creatine, but protection was reduced in neurons from old animals. These results suggest that fortified energy reserves are able to protect neurons against important cytotoxic agents. The oral availability of creatine may benefit patients with neurodegenerative diseases.
Collapse
Affiliation(s)
- G J Brewer
- Department of Medical Microbiology/Immunology, Southern Illinois University School of Medicine, Springfield, Illinois 62794-9626, USA.
| | | |
Collapse
|
13
|
Ouanonou A, Zhang Y, Zhang L. Changes in the calcium dependence of glutamate transmission in the hippocampal CA1 region after brief hypoxia-hypoglycemia. J Neurophysiol 1999; 82:1147-55. [PMID: 10482734 DOI: 10.1152/jn.1999.82.3.1147] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Using the model of hypoxia-hypoglycemia (HH) in rat brain slices, we asked whether glutamate transmission is altered following a brief HH episode. The HH challenge was conducted by exposing slices to a glucose-free medium aerated with 95% N2-5% CO2, for approximately 4 min, and glutamate transmission in the hippocampal CA1 region was monitored at different post HH times. In slices examined </=8 h post HH, CA1 synaptic field potentials are comparable in amplitude to controls, but are less sensitive to experimental manipulations designed to attenuate intracellular Ca2+ signals, as compared with controls. Reducing calcium influx, by applying a nonspecific calcium channel blocker Co2+ or lowering external Ca2+, attenuated CA1 synaptic potentials much less in challenged slices than in controls. Buffering intracellular Ca2+ by bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid-AM (BAPTA-AM) attenuated CA1 synaptic potentials in control but not in slices post HH. Furthermore, minimally evoked excitatory postsynaptic currents displayed a lower failure rate in post-hypoxic CA1 neurons compared with controls. Based on these convergent observations, we suggest that evoked CA1 glutamate transmission is altered in the first several hours after brief hypoxia, likely resulting from alterations in intracellular Ca2+ homeostasis and/or Ca2+-dependent processes governing transmitter release.
Collapse
Affiliation(s)
- A Ouanonou
- Playfair Neuroscience Unit, Toronto Hospital Research Institute, Department of Medicine (Neurology), Bloorview Epilepsy Program, University of Toronto, Toronto, Ontario M5T 2S8, Canada
| | | | | |
Collapse
|