1
|
Gordleeva SY, Kastalskiy IA, Tsybina YA, Ermolaeva AV, Hramov AE, Kazantsev VB. Control of movement of underwater swimmers: Animals, simulated animates and swimming robots. Phys Life Rev 2023; 47:211-244. [PMID: 38072505 DOI: 10.1016/j.plrev.2023.10.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 12/18/2023]
Abstract
The control of movement in living organisms represents a fundamental task that the brain has evolved to solve. One crucial aspect is how the nervous system organizes the transformation of sensory information into motor commands. These commands lead to muscle activation and subsequent animal movement, which can exhibit complex patterns. One example of such movement is locomotion, which involves the translation of the entire body through space. Central Pattern Generators (CPGs) are neuronal circuits that provide control signals for these movements. Compared to the intricate circuits found in the brain, CPGs can be simplified into networks of neurons that generate rhythmic activation, coordinating muscle movements. Since the 1990s, researchers have developed numerous models of locomotive circuits to simulate different types of animal movement, including walking, flying, and swimming. Initially, the primary goal of these studies was to construct biomimetic robots. However, it became apparent that simplified CPGs alone were not sufficient to replicate the diverse range of adaptive locomotive movements observed in living organisms. Factors such as sensory modulation, higher-level control, and cognitive components related to learning and memory needed to be considered. This necessitated the use of more complex, high-dimensional circuits, as well as novel materials and hardware, in both modeling and robotics. With advancements in high-power computing, artificial intelligence, big data processing, smart materials, and electronics, the possibility of designing a new generation of true bio-mimetic robots has emerged. These robots have the capability to imitate not only simple locomotion but also exhibit adaptive motor behavior and decision-making. This motivation serves as the foundation for the current review, which aims to analyze existing concepts and models of movement control systems. As an illustrative example, we focus on underwater movement and explore the fundamental biological concepts, as well as the mathematical and physical models that underlie locomotion and its various modulations.
Collapse
Affiliation(s)
- S Yu Gordleeva
- National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., Nizhny Novgorod, 603022, Russia; Immanuel Kant Baltic Federal University, 14 A. Nevskogo St., Kaliningrad, 236016, Russia; Moscow Institute of Physics and Technology, 9 Institutskiy Ln., Dolgoprudny, 141701, Moscow Region, Russia
| | - I A Kastalskiy
- National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., Nizhny Novgorod, 603022, Russia; Moscow Institute of Physics and Technology, 9 Institutskiy Ln., Dolgoprudny, 141701, Moscow Region, Russia.
| | - Yu A Tsybina
- National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., Nizhny Novgorod, 603022, Russia; I.M. Sechenov First Moscow State Medical University (Sechenov University), 2 Bol'shaya Pirogovskaya St., Moscow, 119435, Russia
| | - A V Ermolaeva
- National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., Nizhny Novgorod, 603022, Russia; I.M. Sechenov First Moscow State Medical University (Sechenov University), 2 Bol'shaya Pirogovskaya St., Moscow, 119435, Russia
| | - A E Hramov
- Immanuel Kant Baltic Federal University, 14 A. Nevskogo St., Kaliningrad, 236016, Russia; Saint Petersburg State University, 7-9 Universitetskaya Emb., Saint Petersburg, 199034, Russia
| | - V B Kazantsev
- National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., Nizhny Novgorod, 603022, Russia; Immanuel Kant Baltic Federal University, 14 A. Nevskogo St., Kaliningrad, 236016, Russia; Moscow Institute of Physics and Technology, 9 Institutskiy Ln., Dolgoprudny, 141701, Moscow Region, Russia
| |
Collapse
|
2
|
Adanina VO, Vesselkin NP. Synaptic and electotonic contacts on primary afferent axons in the lamprey Lampetra fluviatilis spinal cord. J EVOL BIOCHEM PHYS+ 2016. [DOI: 10.1134/s0022093016050070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Pombal MA, Ruiz Y, Rodríguez-Alonso M, de Arriba MC, Costas V, Alvarez R, Megías M. Developmental changes of the GABA-immunoreactive fibers in the lamprey spinal cord. Brain Res Bull 2005; 66:371-5. [PMID: 16144617 DOI: 10.1016/j.brainresbull.2005.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Accepted: 11/01/2004] [Indexed: 11/22/2022]
Abstract
The changes in distribution and number of GABA immunoreactive (GABA-ir) fibers from postembryonic stages to adulthood in the lamprey spinal cord white matter were studied by using immunocytochemical techniques. From prolarvae to adult spawning animals there was an increase of the number of GABA-ir fibers. Three phases can be distinguished: (a) from prolarvae to middle size larvae (around 50 mm in body length) an increase in the number of GABA-ir fibers per section is observed. Furthermore, an adult-like pattern of GABA-ir fibers distribution is established during this phase. (b) Then, the number of GABA-ir fibers remains stable until metamorphosis, the end of the larval period. (c) Finally, in young postmetamorphic and adult animals the number of GABA-ir fibers is higher than in larvae. These observations, joined to the changes previously reported in the GABA-ir neurons, indicate that at least parts of the GABA inhibitory component of the spinal locomotor network is reorganized during the lamprey life cycle and it may indicate different inhibitory requirements in the locomotor network.
Collapse
Affiliation(s)
- M A Pombal
- Neurolam Group, Department of Functional Biology and Health Sciences, Faculty of Biology, University of Vigo, Spain.
| | | | | | | | | | | | | |
Collapse
|
5
|
Ovsepian SV, Vesselkin NP. Dual effect of GABA on descending monosynaptic excitatory postsynaptic potential in frog lumbar motoneurons. Neuroscience 2005; 129:639-46. [PMID: 15541885 DOI: 10.1016/j.neuroscience.2004.07.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2004] [Indexed: 11/28/2022]
Abstract
Monosynaptic excitatory postsynaptic potentials (EPSPs) evoked by stimulating ipsilateral ventrolateral column (VLC) in the thoracic section were recorded in lumbar motoneurons within the isolated spinal cord of the frog Rana ridibunda. Bath application of the selective GABAB receptor agonist (-)-baclofen (0.05 mM) caused a reduction in the peak amplitude of VLC EPSP. Baclofen did not cause any consistent change in the membrane potential or in the EPSP waveform within frog motoneurones. The selective GABA(B) receptor antagonist saclofen (0.1 mM) completely blocked the effect of (-)-baclofen on VLC EPSP. A decrease in VLC EPSP peak amplitude was also observed during GABA (0.5 mM) application. Unlike (-)-baclofen, inhibition of VLC EPSP induced by GABA was accompanied by a shortening of the EPSP time course and a reduction in membrane input resistance within lumbar motoneurons. The decrease in VLC EPSP peak amplitude induced by (-)-baclofen and GABA was accompanied by an increase in the paired-pulse facilitation. These data provide evidence for a dual pre- and postsynaptic GABAergic inhibition of the VLC monosynaptic EPSP in lumbar motoneurons within the frog spinal cord.
Collapse
Affiliation(s)
- S V Ovsepian
- Department of Pharmacology and Therapeutics, Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | | |
Collapse
|
6
|
Li Y, Li X, Harvey PJ, Bennett DJ. Effects of baclofen on spinal reflexes and persistent inward currents in motoneurons of chronic spinal rats with spasticity. J Neurophysiol 2005; 92:2694-703. [PMID: 15486423 DOI: 10.1152/jn.00164.2004] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the months after spinal cord injury, motoneurons develop large voltage-dependent persistent inward currents (PICs) that cause sustained reflexes and associated muscle spasms. These muscle spasms are triggered by any excitatory postsynaptic potential (EPSP) that is long enough to activate the PICs, which take > 100 ms to activate. The PICs are composed of a persistent sodium current (Na PIC) and a persistent calcium current (Ca PIC). Considering that Ca PICs have been shown in other neurons to be inhibited by baclofen, we tested whether part of the antispastic action of baclofen was to reduce the motoneuron PICs as opposed to EPSPs. The whole sacrocaudal spinal cord from acute spinal rats and spastic chronic spinal rats (with sacral spinal transection 2 mo previously) was studied in vitro. Ventral root reflexes were recorded in response to dorsal root stimulation. Intracellular recordings were made from motoneurons, and slow voltage ramps were used to measure PICs. Chronic spinal rats exhibited large monosynaptic and long-lasting polysynaptic ventral root reflexes, and motoneurons had associated large EPSPs and PICs. Baclofen inhibited these reflexes at very low doses with a 50% inhibition (EC50) of the mono- and polysynaptic reflexes at 0.26 +/- 0.07 and 0.25 +/- 0.09 (SD) microM, respectively. Baclofen inhibited the monosynaptic reflex in acute spinal rats at even lower doses (EC50 = 0.18 +/- 0.02 microM). In chronic (and acute) spinal rats, all reflexes and EPSPs were eliminated with 1 microM baclofen with little change in motoneuron properties (PICs, input resistance, etc), suggesting that baclofen's antispastic action is presynaptic to the motoneuron. Unexpectedly, in chronic spinal rats higher doses of baclofen (20-30 microM) significantly increased the total motoneuron PIC by 31.6 +/- 12.4%. However, the Ca PIC component (measured in TTX to block the Na PIC) was significantly reduced by baclofen. Thus baclofen increased the Na PIC and decreased the Ca PIC with a net increase in total PIC. By contrast, when a PIC was induced by 5-HT (10-30 microM) in motoneurons of acute spinal rats, baclofen (20-30 microM) significantly decreased the PIC by 38.8 +/- 25.8%, primarily due to a reduction in the Ca PIC (measured in TTX), which dominated the total PIC in these acute spinal neurons. In summary, baclofen does not exert its antispastic action postsynaptically at clinically achievable doses (< 1 microM), and at higher doses (10-30 microM), baclofen unexpectedly increases motoneuron excitability (Na PIC) in chronic spinal rats.
Collapse
Affiliation(s)
- Y Li
- Centre for Neuroscience, 513 Heritage Medical Research Centre, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | | | | | | |
Collapse
|
7
|
Ovsepyan SV, Veselkin NP. Involvement of GABA(B) receptors in presynaptic inhibition of fibers of the descending projections of the spinal cord in the frog Rana ridibunda. ACTA ACUST UNITED AC 2004; 33:873-81. [PMID: 14969425 DOI: 10.1023/a:1025944704898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Isolated spinal cord preparations from Rana ridibunda frogs were used for studies of the effects of the GABA(B) receptor agonists (-)-baclofen (50 and 100 microM) and GABA (4-8 mM) and the specific GABA(B) receptor antagonist 2-hydroxysaclofen (100 microM) on the transmission of signals from fibers of the ventral columns monosynaptically connected with motoneurons in segments 9 and 10. These experiments showed that (-)-baclofen (50 and 100 microM) produced significant and dose-dependent suppression of excitatory postsynaptic potentials (EPSP) in motoneurons and ventral root potentials evoked by stimulation of fibers of the ipsi- and contralateral ventral columns. The inhibitory effect of (-)-baclofen (100 microM) on descending EPSP was 35-50% blocked by the GABA(B) receptor antagonist 2-hydroxysaclofen (0.2 mM). The inhibitory effect of GABA (4-8 mM) on descending EPSP was 60% blocked by the GABA(A) receptor antagonist picrotoxin (0.05 mM). (-)-Baclofen (50 microM) and GABA (4 and 6 mM) were found to have inhibitory effects on ventral root potentials evoked by stimulation of the ipsi- and contralateral ventral columns. The data obtained here, as well as data obtained by pharmacological analysis and conditioning by stimulation of the ipsi- and contralateral ventral columns, are regarded as a significant argument supporting the existence of GABA(B) receptor-mediated presynaptic inhibition of descending fibers connected monosynaptically to spinal cord motoneurons in the frog Rana ridibunda.
Collapse
Affiliation(s)
- S V Ovsepyan
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Moris Torez Prospekt, 194223 St. Petersburg, Russia
| | | |
Collapse
|
8
|
Batueva IV, Buchanan JT, Veselkin NP, Suderevskaya EI, Tsvetkov EA. The effects of serotonin on functionally diverse isolated lamprey spinal cord neurons. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2002; 32:89-101. [PMID: 11838562 DOI: 10.1023/a:1012960711757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The experiments reported here showed that application of serotonin (5-hydroxytryptamine, 5-HT) (100 microM) did not induce any significant current through the membranes of any of the spinal neurons studied (n = 62). At the same time, the membranes of most motoneurons and interneurons (15 of 18) underwent slight depolarization (2-6 mV) in the presence of 5-HT, which was not accompanied by any change in the input resistance of the cells. Depolarization to 10-20 mV occurred in some cells (3 of 18) of these functional groups, this being accompanied by 20-60% decreases in input resistance. The same concentration of 5-HT induced transient low-amplitude depolarization of most sensory spinal neurons (dorsal sensory cells), this changing smoothly to long-term hyperpolarization by 2-7 mV. The input resistance of the cell membranes in these cases showed no significant change (n = 8). Data were obtained which provided a better understanding of the mechanism by which 5-HT modulates the activity of spinal neurons. Thus, 5-HT facilitates chemoreceptive currents induced by application of NMDA to motoneurons and interneurons, while the NMDA responses of dorsal sensory cells were decreased by 5-HT. 5-HT affected the post-spike afterresponses of neurons. 5-HT significantly decreased the amplitude of afterhyperpolarization arising at the end of the descending phase of action potentials in motoneurons and interneurons and increased the amplitude of afterdepolarization in these types of cells. In sensory spinal neurons, 5-HT had no great effect on post-spike afterresponses. The results obtained here support the suggestion that 5-HT significantly modulates the activity of spinal neurons of different functional types. 5-HT facilitates excitation induced by subthreshold depolarization in motoneurons and some interneurons, facilitating the generation of rhythmic discharges by decreasing afterhyperpolarization. In sensory cells, 5-HT enhances inhibition due to hyperpolarization, suppressing NMDA currents. The differences in the effects of 5-HT on functionally diverse neurons are presumed to be associated with the combination of different types of 5-HT receptors on the membranes of these types of spinal neurons.
Collapse
Affiliation(s)
- I V Batueva
- Laboratory for the Evolution of Intercellular Interactions, I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St Petersburg
| | | | | | | | | |
Collapse
|
9
|
Vesselkin NP, Adanina VO, Rio JP, Repérant J. Axo-axonic GABA-immunopositive synapses on the primary afferent fibers in frogs. J Chem Neuroanat 2001; 22:209-17. [PMID: 11719020 DOI: 10.1016/s0891-0618(01)00132-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In three frog species Rana esculenta, Rana temporaria and Xenopus laevis, the contacts established by gamma-aminobutyric acid and glutamate decarboxylase immunoreactive (-ir) terminals upon primary afferent fibers were studied using confocal and electron microscopy. For confocal microscopy, the primary afferent fibers were labeled through the dorsal root with Dextran-Texas Red, whereas gamma-aminobutyric acid and glutamate decarboxylase immunoreactivity were revealed with fluorescein isothiocyanate. Appositions of gamma-aminobutyric acid and glutamate decarboxylase immunoreactive profiles onto primary afferent fibers were observed and were considered as putative axo-axonic contacts of GABAergic terminals upon primary afferents. The latter was confirmed by the ultrastructural finding of axo-axonic synapses from gamma-aminobutyric acid immunopositive boutons upon the HRP-labeled primary afferent fibers in postembedding immunoelectron microscopic study. Such synapses may represent the morphological basis of GABAergic presynaptic inhibition of primary afferent fibers.
Collapse
Affiliation(s)
- N P Vesselkin
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St.-Petersburg, Russia
| | | | | | | |
Collapse
|
10
|
Buchanan JT. Contributions of identifiable neurons and neuron classes to lamprey vertebrate neurobiology. Prog Neurobiol 2001; 63:441-66. [PMID: 11163686 DOI: 10.1016/s0301-0082(00)00050-2] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Among the advantages offered by the lamprey brainstem and spinal cord for studies of the structure and function of the nervous system is the unique identifiability of several pairs of reticulospinal neurons in the brainstem. These neurons have been exploited in investigations of the patterns of sensory input to these cells and the patterns of their outputs to spinal neurons, but no doubt these cells could be used much more effectively in exploring their roles in descending control of the spinal cord. The variability of cell positions of neurons in the spinal cord has precluded the recognition of unique spinal neurons. However, classes of nerve cells can be readily defined and characterized within the lamprey spinal cord and this has led to progress in understanding the cellular and synaptic mechanisms of locomotor activity. In addition, both the identifiable reticulospinal cells and the various spinal nerve cell classes and their known synaptic interactions have been used to demonstrate the degree and specificity of regeneration within the lamprey nervous system. The lack of uniquely identifiable cells within the lamprey spinal cord has hampered progress in these areas, especially in gaining a full understanding of the locomotor network and how neuromodulation of the network is accomplished.
Collapse
Affiliation(s)
- J T Buchanan
- Department of Biology, Marquette University, P.O. Box 1881, Milwaukee, WI 53201-1881, USA.
| |
Collapse
|
11
|
Vesselkin NP, Rio JP, Adanina VO, Repérant J. GABA- and glycine-immunoreactive terminals contacting motoneurons in lamprey spinal cord. J Chem Neuroanat 2000; 19:69-80. [PMID: 10936743 DOI: 10.1016/s0891-0618(00)00054-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Double postembedding GABA- and glycine-immunostaining was performed on the lamprey (Lampetra fluviatilis) spinal cord after previous HRP labeling of motoneurons. Immunopositive boutons contacting motoneurons were counted and distinguished as GABA (39%), glycine (30%) and both GABA+glycine-immunopositive (31%). Densely-packed, flattened synaptic vesicles were only observed in glycine-immunopositive boutons while GABA-immunoreactive and GABA+glycine-immunoreactive boutons contained rounded or oval synaptic vesicles. Dense-core vesicles of different diameters were associated with conventional synaptic vesicles in 74% of GABA-only-immunopositive boutons, 50% of double GABA+glycine-immunopositive boutons, but were only observed in 9% of glycine-only-immunopositive boutons. The presence of terminals immunoreactive to either GABA or glycine contacting the motoneurons suggests that there is a morphological substrate for both GABAergic and glycinergic postsynaptic inhibition of motoneurons in the lamprey spinal cord.
Collapse
Affiliation(s)
- N P Vesselkin
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | | | | | | |
Collapse
|